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1. Introduction

B(t) is the d-dim Brownian motion and X(c) satisfies

(1.1) dX(c)(t) = cb(X(c)(t))dt+ dB(t).

b(·) is a smooth vector field with period 1.

b is divergence free. That is,

(1.2) div(b) = 0.

c is a large parameter.



X(c)(t) is a diffusion process on d-dim torus.

X(c)(t) has Lebsegue measure (on torus) as the invariance

measure (by (1.2)).

This is a particular example of a more general class of

diffusion processes,

dX(t) = (−∇U(X(t)) + b(X(t)))dt+ dB(t),

with U, b periodic and satisfying

div(b exp(−2U)) = 0,



such that they have µ as the invariance measure,

dµ =
1
Z

exp(−2U(x))dx.

Such diffusion processes appear in MCMC(Markov Chain

Monte Carlo),

One chooses particular b to simulate µ.

We may also consider µ on Rd and we do not assume

periodicity of U .

A main concern is how well the distribution of X(t)
approximate µ and how to choose a better b.



We consider cb(·) and by taking c large, we are able to

say some quantitative behaviors of such processes.

This is a joint work with

Chii-Ruey Hwang, Brice Franke, Hui-Ming Pei

In the following, we denote

T
(c)
t f(x) = Ex[f(X(c)(t))],

L(c)f(x) =
1
2
∆f(x) + cb(x)∇f(x).



We consider the largest ρ ( denoted as ρ(c)) such that∫
|T (c)
t f(x)|2dx ≤ cf exp(−ρt)

for large t and f satisfying∫
f(x)dx = 0,

∫
|f(x)|2dx <∞.

Then

ρ(c) = inf{−Re(ρ); ρ 6= 0 is in the spectrum of L(c) }.

ρ(c) is also called the spectral gap



( the gap between 0 and the rest of spectrum)

ρ(c) is used to measure the convergence rate of X(c)(t)
to the equilibrium.∫

T
|T (c)
t f(x)− π(f)|2dx ≤ cf exp(−ρ(c)t).

Here

π(f) =
∫

T
f(x)dx.

The spectral gap for a self-adjoint operator can be

expressed by a variational form.



This is the case for c = 0.

ρ(0) = 2π2 = inf{1
2

∫
T |∇f(x)|2dx;

∫
T f(x)dx = 0,∫

T f(x)2dx = 1}.

We can not have such expression for ρ(c), c > 0.

This causes great difficulty to calculate ρ(c).

However, we always have

ρ(c) ≥ ρ(0).

Here is a simple argument.



We assume π(f) = 0. Consider

d
dt

∫
T |T

(c)
t f(x)|2dx = 2

∫
T T

(c)
t f(x)L(c)T

(c)
t f(x)dx

= −
∫
T∇T

(c)
t f(x)∇T (c)

t f(x)dx
≤ −2ρ(0)

∫
T |T

(c)
t f(x)|2dx.

Then∫
T
|T (c)
t f(x)|2dx ≤ exp(−2ρ(0)t)

∫
T
|f(x)|2dx.

A general discussion is first given in Rd:



Hwang, C.R., Hwang-Ma, S.Y. and Sheu, S.J.(1993), Accelerating

Gaussian diffusions, Ann. Appl. Probab.3 897-913.

The computation of the spectral gap is done for the

following case.

U(x) =
1
2
x ·Ax,

A is a positive definite matrix.

b(x) = SAx,

S is a skew symmetric.

We denote ρS the spectral gap for b(x) = SAx and c = 1.



It is shown that

max{ρS; S is skew symmetric} =
1
d
trac(A).

We consider general b here but confine the discussion on

torus.

(Our discussion can also be applied to compact manifolds)

Our main result is to show the convergence of ρ(c) when

c→∞.

The limit is given by a variational expression as in the



following theorem.

Theorem 1.1.

limc→∞ ρ(c) = inf{1
2

∫
T |∇ψ(x)|2dx;∃µ, b∇ψ = iµψ,∫

Tψ(x)dx = 0,
∫
T |ψ(x)|2dx = 1}.

In this expression, ψ = ψ1 + iψ2, i =
√
−1.

Using such expression, we give some example to calculate

ρ(c) approximately for some b.

Here are some related works.



• Hwang, C.R., Hwang-Ma, S.Y. and Sheu, S.J.(1993), Accelerating

Gaussian diffusions, Ann. Appl. Probab.3 897-913.

• Hwang, C.R. and Sheu, S.J.(2000), On some quadratic perturbation

of Ornstein-Ulenbeck processes, Soochow J. Math. 26 22-37

• Hwang, C.R, Hwang-Ma, S.Y and Sheu, S.J.(2005), Accelerating

diffusions, Ann. Appl. Probab. 15, 1433-1444.

• Hwang, C.R. and Pei, H. M. (2006), Blowing up Spectral Gap of

Laplacian on N -Torus by Antisymmetric Perturbations, preprint.

• Constantin, P., Kislev, A., Ryzhik, L., and Zlatos, A.(2006)

Diffusion and mixing in fluid flows, preprint.



• B. Franke, C. R. Hwang, H. M. Pei and S. J. Sheu (2007) The

behavior of the spectral gap under growing drift, preprint.

First, we describe our approach. We then give some

examples. We then give some details.

We first obtain the result.

( a lower estimate which is an easier part) ,

(1.3)
lim infc→∞ ρ(c)

≥ inf{1
2

∫
T |∇ψ(x)|2dx;∃µ, b∇ψ = iµψ,∫

Tψ(x)dx = 0,
∫
T |ψ(x)|2dx = 1}.



For the upper estimate, we obtain more information about

the spectrum of L(c).

To describe, we need some notations.

(1.4)
H1 = {ψ = ψ1 + iψ2;ψ,∇ψ ∈ L2,∫

Tψ1(x)dx = 0 =
∫
Tψ2(x)dx = 0},

(1.5) H1
µ = {ψ ∈ H1; b∇ψ = iµψ}, µ ∈ R.



Using these notations, Theorem 1.1 can be stated

(1.6)
limc→∞ ρ(c)

= inf{1
2

∫
|∇ψ1|2 + |∇ψ2|2dx;

∫
Tψ

2
1 + ψ2

2dx = 1,
∃µ such that ψ = ψ1 + iψ2 ∈ H1

µ}.

Let µ ∈ R. Assume H1
µ has nonzero element. Define

ρµ = inf{
1
2

∫
T |∇ψ(x)|2dx∫
T |ψ(x)|2dx

;ψ 6= 0 ∈ H1
µ}

Theorem 1.2. Let µ, ρµ be defined as above. Then for



any r > 0, there is c0 = c0(r) such that for all c ≥ c0,

there is −ρ̄+ iµ̄ in the spectrum of L(c) such that

(ρ̄− ρµ)2 + (µ̄− cµ)2 < r2.

This theorem implies L(c) has an eigenvalue with large

imaginary part, and is close to cµ, if µ 6= 0 and H1
µ

contains nonzero elements.

As another consequence of this theorem, we have

lim sup
c→∞

ρ(c) ≤ ρµ,



if H1
µ contains nonzero elements. Therefore,

lim sup
c→∞

ρ(c) ≤ inf{ρµ;µ ∈ R}.

Together with (1.3), we have Theorem 1.1.

The following are recent results that closely relate to our

work.

Relaxation Enhancing

The following result is in the paper Constantin-Kiselev-

Ryzhik-Zlatos (2006)



P. Constantin, A. Kiselev, L. Ryzhik and A. Zlatos (2006) Diffusion

and Mixing in Fluid Flow, Preprint.,

Theorem 1.3. Assume b∇ does not have eigenfunction

in H1. That is, there is no ψ = ψ1 + iψ2 6= 0 ∈ H1 such

that b∇ψ = iµψ for some µ. Then for any t > 0

‖T (c)
t ‖ → 0, c→∞.

Here

‖T (c)
t ‖2 = sup{

∫
T |T

(c)
t f(x)|2dx;

∫
T f(x)dx = 0,∫

bfT |f(x)|2dx = 1}



Such result is called relaxation enhancing

The result in Theorem 1.3 implies

lim
c→∞

ρ(c) = ∞.

In two dimensional space, if b is smooth, then b∇ always

has eigenfunctions in H1.

It is difficult to construct b satisfying the condition in

Theorem 1.3.

Therefore, it is interesting to study the limit of ρ(c) when



the condition in Theorem 1.3 fails.

In the following paper, some particular b is considered and

the limit of ρ(c) is calculated:

Hwang, C. R. and Pei, H. M. (2006) Blowing Up the Spectral Gap

of Laplacian on N-torus by antisymmetric perturbations( preprint).

Eigenvalue Problem

The following result from H. Berestycki, F. Hamel and N.

Nadirashvili (2005) is also relevant

H. Berestycki, F. Hamel and N. Nadirashvili (2005) Elliptic



Eigenvalue Problems with Large Drift and Applications to Nonlinear

Propagation Phenomena, Commun. Math. Phys 253, 451-480.

Let b be a divergence free smooth vector field.

Consider the following eigenvalue problem:

(1.7)
1
2∆φ+ cb · ∇φ = λφ, on D

φ = 0 on ∂D,

D is a domian in Rd with smooth boundary.

We know there is a unique solution (λ(c), φ(c)) such that



φ(c) is smooth,

φ(c) > 0 on D, φ(c) = 0 on ∂D∫
|φ(c)(x)|2dx = 1.

Other solutions have the property that Re(λ) < λ(c).

λ(c) is called the principal eigenvalue.

If c = 0, then

(1.8) λ(0) = sup{
−

∫
D

1
2|∇f(x)|2dx∫

D |f(x)|2dx
},



the supremum is taken over f ∈ H1
0(D).

H1
0(D): those f defined on D with 0 on the boundary

and f, |∇f | are in L2(D).

For general c, we have the expression for λ(c),

(1.9) λ(c) = sup
µ

inf
u

∫
D

L(c)u(x)
u(x)

dµ(x),

the supremum is taken over probability measures µ on D,



the inf is taken over u ∈ C2(D̄), u > 0. Here

L(c)f =
1
2
∆f + cb∇f.

Denote

H0 = {w ∈ H1
0(D); b · ∇w = 0}

The following interesting results in Berestycki-Hamel-

Nadirashvili (2005) is close to our (Theorem 1.1)

Theorem 1.4. If λ(c) is bounded in c, then H0 is not



empty. And

lim
c→∞

λ(c) = sup{
−

∫
D

1
2|∇w(x)|2dx∫
D |w(x)|2

}.

Here sup is taken over w ∈ H0.

The probabilistic meaning is the following.

Denote τ (c) the exit time of X(c)(t) from D,

τ (c) = inf{t > 0;X(c)(t) /∈ D}.



Then

−λ(c) = sup{k;Ex[exp(kτ (c))] <∞, x ∈ D}.

Denote

S
(c)
t f(x) = Ex[f(X(c)(t)), t < τ (c)].

Then the decay rate of S
(c)
t f to 0 is given by exp(λ(c)t)

as t→∞. ∫ ∞

0
exp(kt)S(c)

t f(x)dt

is finite if and only if k < −λ(c).



The following problem may be also interesting.

Let V be smooth function with some growth condition.

We consider

Ex[exp(
∫ T

0
V (X(c)(t))dt)] ∼ exp(Λ(c)T ), T →∞.

Determine the asymptotic behavior of Λ(c).

Some study in the following paper may be useful.

H. Kaise and S.J. Sheu (2006), Evaluation of large time

expectations for diffusion proceses, preprint



2. Resolvent

The following calculation show some idea for Theorem

1.2.

Let λ > 0, we consider

(2.1) L(c)ψ(c) − λψ(c) = −g

for g ∈ L2 satisfying
∫
g = 0. This has unique solution,

ψ(c)(x) =
∫ ∞

0
exp(−λt)T (c)

t g(x)dt.



T (c)g is the semigroup generated by L(c).

d

dt
T

(c)
t g = L(c)T

(c)
t g.

Since

d
dt

∫
T |T

(c)
t g(x)|2dx =

∫
T 2T (c)

t g(x)L(c)T
(c)
t g(x)dx

= −2
∫
T |∇T

(c)g(x)|2dx
≤ −8π2

∫
T |T

(c)
t g(x)|2dx,



we have∫
T
|T (c)
t g(x)|2dx ≤ exp(−8π2t)

∫
T
|g(x)|2dx.

ψ(c given above is well defined even for λ = 0 or λ = icµ.

In particular, we consider

(2.2) L(c)ψ(c) = icµψ(c) − g,

where

g = g1 + ig2 ∈ H1
µ,



(2.3)
H1
µ = {g = g1 + ig2;

∫
T |∇g|

2dx <∞,∫
g1 =

∫
g2 = 0, b∇g = iµg}.

(2.2) can be rewritten as

1
2
∆ψ(c)

1 + cb∇ψ(c)
1 = −cµψ(c)

2 − g1,

1
2
∆ψ(c)

2 + cb∇ψ(c)
2 = cµψ

(c)
1 − g2.

Multiplying the first equation by ψ
(c)
1 and the second



equation by ψ
(c)
2 and adding the relations, we obtain

(2.4)
1
2

∫
T
|∇ψ(c)

1 |2 + |∇ψ(c)
2 |2 =

∫
T
ψ

(c)
1 g1 + ψ

(c)
2 g2.

Multiplying the first equation by g1 and the second

equation by g2 and adding the relations, we obtain

1
2

∫
∇ψ(c)

1 ∇g1 +∇ψ(c)
2 ∇g2 − c

∫
b∇ψ(c)

1 g1 − b∇ψ(c)
2 g2

=
∫
g2

1 + g2
2 + cµ

∫
ψ

(c)
2 g1 − ψ

(c)
1 g2.

b∇g1 = −µg2, b∇g2 = µg1.



(2.5)
1
2

∫
∇ψ(c)

1 ∇g1 +∇ψ(c)
2 ∇g2 =

∫
g2

1 + g2
2.

Here we use ∫
b∇f1f2 = −

∫
b∇f2f1

for all f1, f2 and g is an element of H1
µ.

(2.4) implies

(
1
2

∫
|∇ψ(c)

1 |2 + |∇ψ(c)
2 |2)2 ≤ (

∫
g2

1 + g2
2)(

∫
ψ2

1 + ψ2
2).



(2.5) implies

(
∫
g2

1+g
2
2)

2 ≤ (
1
2

∫
|∇ψ(c)

1 |2+|∇ψ(c)
2 |2)(1

2

∫
|∇g1|2+|∇g2|2).

From these two relations, we have

(2.6)
1
2

∫
|∇ψ(c)

1 |2 + |∇ψ(c)
2 |2∫

ψ
(c)
1

2
+ ψ

(c)
2

2 ≤
1
2

∫
|∇g1|2 + |∇g2|2∫

g2
1 + g2

2
.

This relation suggests if g = g1 + ig2 ∈ H1
µ attains the



minimum of

(2.7) inf{
1
2

∫
|∇ψ1|2 + |∇ψ2|2∫

ψ2
1 + ψ2

2
}

over ψ1 + iψ2 6= 0 ∈ H1
µ, then limit of ψ(c) (denoted by

ψ∗ = ψ∗1 + iψ∗2) is also an element of H1
µ and attains the

minimum of (2.7).

Assume the uniqueness of (2.7) (up to multiplication of

constant). Then

ψ∗ = kg

some constant k.



(2.5) implies

1
k

= ρµ = the value of (2.7) .

Therefore, we have the picture

Lψ(c) = icµψ(c) − g ∼ (−ρµ + icµ)ψ(c).

This suggests that an eigenvalue of L(c) close to −ρµ+icµ
can be found.

Theorem 1.2 gives the precise statement.



The following provides a rigorous argument.

Proposition 2.1. Let Hµ 6= {0} and g = g1 + ig2 ∈ Mµ.

Let α > 0 be small and ε, δ ∈ R be fixed such that

0 6= ε2 + δ2 ≤ α2.

Denote ρ̄ = ρµ + ε and µ̄ = cµ+ δ. Assume cn → ∞ be

such that there is φn ∈ H1 satisfying

1
2
∆φn + cnb∇φn = (−ρ̄+ iµ̄)φn − g.

Then φn converges to φ∗ in L2 and weakly in H1 as



n→∞,

φ∗ = − ε+ iδ

ε2 + δ2g.

Proposition 2.2. Let Hµ 6= {0} and g = g1 + ig2 ∈ Mµ.

Let α > 0. Assume for each z = z1 + iz2

|z − (−ρµ + icµ)|2 = α2

the following equation has solution φz,c,

1
2
∆φz,c + cb∇φz,c = zφz,c − g.



Then for α small, we have

lim sup
c→∞

sup
|z−(−ρµ+icµ)|2=α2

∫
T
|φz,c|2 <∞

Proof of Theorem 1.2.

Denote Bα(−ρµ + icµ) the ball with radius α around

−ρµ + icµ.

Γα,c be the boundary of Bα(−ρµ + icµ).

Assume Lc does not have spectrum in Bα(−ρµ + icµ).



Then

0 =
∫

Γα,c

(Lc − z)−1gdz.

φz,c = (Lc − z)−1g is the solution of

1
2
∆φz,c + cb∇φz,c = zφz,c − g.

Then ∫
T |2πig(x)|dx

=
∫
T |

∫
Γα,c

(φz,c(x) + 1
z−(−ρµ+icµ)g(x))dz|dx

≤
∫

Γα,c

∫
T |φ

z,c(x) + 1
z−(−ρµ+icµ)g(x)|dxdz



By Proposition 2.1 and 2.2, the righthand side tends to

0. This implies g = 0, a contradiction.

In the rest of this section, we give some interesting results

about the resolvent of L(c).

Let λ > 0, we consider

L(c)ψ(c) − λψ(c) = −g

for g ∈ L2 satisfying
∫
g = 0. We denote

ψ(c) = R
(c)
λ g,



H1
0 = {ψ;

∫
bfT

ψ = 0,
∫

T
|∇ψ|2 <∞, b∇ψ = 0},

H1 = {ψ;
∫

T
|∇ψ|2 <∞}.

Theorem 2.3. For g in L2, R
(c)
λ g converges to R∗

λg in

H1. R∗
λg ∈ H1

0 . R∗
λg is the unique element taking the

minimum of∫
T
(
1
2
|∇ψ(x)|2 + λψ(x)2 − 2g(x)ψ(x))dx,

taken over ψ ∈ H1
0 .



Theorem 2.4 R∗
λ defined on H0 is a family of self-adjoint

resolvent operators. That is,

R∗
λg −R∗

µg = (µ− λ)R∗
λR

∗
µg, λ > 0, µ > 0.∫

T
R∗
λf(x)g(x)dx =

∫
T
R∗
λg(x)f(x)dx.

Theorem 2.5. The range of R∗
λ has closure H1

0( in L2).

From Theorem 2.5, the operator defined by

L∗R∗
λg = λR∗

λ − g



is densely defined on H1
0 such that

R∗
µ = (µ− L∗)−1.

L∗ generates a semigroup T ∗
t .

One expects T
(c)
t converges to T ∗

t . However, this has not

been done rigorously.

Another interesting question is to understand the

probabilistic meaning of R∗
λ.

This will connect with the convergence of X(c)(t) defined



by

dX(c) = cb(X(c))dt+ dB(t).



3. Examples

Example 1

The following example is considered in Hwang-Pei(2006).

b(x) = pcos(2πq · x),

where

p = (p1, p2, · · · , pd), q = (q1, q2, · · · , qd),



pi, qi ∈ Z (integer) and

0 = p · q = p1q1 + p2q2 + · · ·+ pdqd.

The limiting value of ρ(c) is then given by

inf{2π2|m|2;m = (m1,m2, · · · ,md),
mi ∈ Z, p ·m = 0}

Take a particular example of p = (1,M,M 2, · · · ,M d−1).
Then

m · p = m1 +m2M +m3M
2 + · · ·+mdM

d−1 = 0



implies m1 is a nonzero multiple of M or

m2 +m3M +m4M
2 + · · ·+mdM

d−2 = 0.

By this argument, we can see (3.4) has a lower bound

2π2(M 2 + 1). The value

m1 = M,m2 = −1,m3 = m4 = · · · = md = 0

gives the lower bound.

We have H1
µ = {0} if µ 6= 0.

Here is another observation.



In this example, let

m · p = 0,m = (m1,m2, · · · ,md),mi ∈ Z.

Then L(c) has eigenfunction φm(x) = exp(2πm · x),

L(c)φm = −2π2|m|2φm.

Example 2

We consider a modification of previous example.



Let d = 3. General d is similar.

b(x) = (2πMsin(2πx3), 2πMcos(2πx3), 1),

M is a positive integer.

The limit of ρ(c) is equal to 2π2(1 + 2π2M 2).

H1
µ 6= {0} iff µ = 2πk, k is an integer.

ρµ = 2π2(1 + 2π2M 2) + 2π2k2 if µ = 2πk.

It is difficult to construct eigenfunctions of L(c).

More examples on manifold from geometry can be found



in our paper.



4. Concluding Remark

Here are several problems for further consideration.

• How to obtain our main results by using probability

methods such as coupling?

• Obtain Kc such as

‖T (c)
t f − π(f)‖ ≤ Kc‖f − π(f)‖ exp(−ρ(c)t).

This will give another proof for the result in Constantin-



Kislev-Ryzhik-Zlatos.

• More generally, take c = 1. Study quantitatively how

the spectral gap depend on b.

• Obtain similar results in Rd.

• The limiting process of X(c)(t) should be a process with

state space E , the collection of integral curves of

d

dt
X(t) = b(X(t)).

How to describe the process?


