Modified Log-Sobolev inequalities and transportation cost inequalities in Euclidean space

JINGHAI SHAO

Beijing Normal University

July 14, 2007

JINGHAI SHAO (Beijing Normal University Modified Log-Sobolev inequalities and

July 14, 2007 1 / 23

Consider $d\mu = \frac{1}{Z}e^{-V}dx$ on \mathbb{R}^n and give out a sufficient condition on V such that μ satisfies modified logarithmic Sobolev inequality and transportation cost inequality.

As an example, we establish one kind of modified Log-Sobolev inequality and transportation cost inequality for $d\mu_p = \frac{1}{Z_p} e^{-|x|^p} dx$ with p > 1, and give out the explicit estimates of their constants.

- First, review some known results in this aspect;
- then introduce our main results;
- at last, introduce the idea of proof and key points in the proof.

Consider $d\mu = \frac{1}{Z}e^{-V}dx$ on \mathbb{R}^n and give out a sufficient condition on V such that μ satisfies modified logarithmic Sobolev inequality and transportation cost inequality.

As an example, we establish one kind of modified Log-Sobolev inequality and transportation cost inequality for $d\mu_p = \frac{1}{Z_p} e^{-|x|^p} dx$ with p > 1, and give out the explicit estimates of their constants.

- First, review some known results in this aspect;
- then introduce our main results;
- at last, introduce the idea of proof and key points in the proof.

Given a probability measure μ on \mathbb{R}^n , μ is said to satisfy Log-Sobolev inequality if $\exists c > 0$ such that

$$\operatorname{Ent}_{\mu}(f^2) \le c \int |\nabla f|^2 \,\mathrm{d}\mu. \tag{1}$$

for $f \in C^1(\mathbb{R}^n)$, where $\operatorname{Ent}_{\mu}(f^2) = \int f^2 \log f^2 d\mu - \int f^2 d\mu \log \int f^2 d\mu$. Now consider $\mu_p(dx) = \frac{1}{Z_p} e^{-|x|^p} dx$ for $p \ge 1$ on \mathbb{R}^n . Z_p is normalizing constant.

 μ_p satisfies Log-Sobolev inequality (1) if and only if $p \ge 2$.

How about μ_p for 1 ?

• In this case, μ_p satisfies Poincaré inequality (PI.)

$$\operatorname{Var}_{\mu_p}(f) \le C \int |\nabla f|^2 \,\mathrm{d}\mu_p.$$

Latała -Oleszkiewicz(2000):

$$\int f^2 \,\mathrm{d}\mu_p - \left(\int |f|^\alpha \,\mathrm{d}\mu_p\right)^{2/\alpha} \le C(2-\alpha)^\beta \int |\nabla f|^2 \,\mathrm{d}\mu_p, \quad \forall \, \alpha \in [1,2),$$

where $\beta = 2(p-1)/p$. This is an interpolation between Poincaré inequality and Log-Sobolev inequality. $\beta = 0$ is PI. and $\beta = 1$ is Log-Sobolev inequality.

Wang(2005) explored the relationship between previous inequality with F-Sobolev and super-Poincaré inequalities.

• In \mathbb{R} , I. Gentil, Guillin and Miclo(2005,2007) proved that for 1 ,

$$\operatorname{Ent}_{\mu_p}(f^2) \le C \int_{\mathbb{R}} H_p\left(\frac{f'}{f}\right) f^2 \,\mathrm{d}\mu_p,\tag{2}$$

where C is positive constant, and

$$H_p(x) = \max(|x|^2, |x|^q), \quad q = p/(p-1).$$

This result can be extended to more general log-concave measure on \mathbb{R} between the exponential and Gaussian measure and to product measure on \mathbb{R}^n using the product property of entropy.

Barthe and Roberto(2007) gave out a sufficient condition for modified Log-Sobolev inequality to hold. All these results rely on Hardy inequality on the line. Wang(2007): M a connected complete Reimannian manifold, μ probability measure. \log^{δ} -Sobolev inequality with power $\delta > 0$

$$\mu(f^2 \log^{\delta}(1+f^2)) \le C_1 \mu(|\nabla f|^2) + C_2, \quad \mu(f^2) = 1$$
(3)

implies modified log-Sobolev inequality

$$\mu(f^2 \log f^2) \le C\mu(|\nabla f|^2 \lor \left(\frac{|\nabla f|}{f}\right)^{2/\delta} f^2), \quad \mu(f^2) = 1.$$
(4).

Therefore, all known sufficient conditions for \log^{δ} -Sobolev inequality are also sufficient for (4). Especially, on \mathbb{R} , Wang gave out a sufficient condition for (4).

From modified log-Sobolev, under the help of Hamilton-Jacobi semigroup, transportation cost inequality can be deduced.

$$W_{\rho_{\delta}}(f\mu,\mu) \leq C\mu(f\log f), \quad f \geq 0, \ \mu(f) = 1,$$

for some constant C > 0, where ρ is Riemannian distance, $\rho_{\delta} = \rho \wedge \rho^{1/(2-\delta)}$,

$$W_{\rho_{\delta}}(f\mu,\mu) = \inf_{\pi \in \mathscr{C}(f\mu,\mu)} \int_{M \times M} \rho_{\delta}(x,y)^2 \pi(\mathrm{d}x,\mathrm{d}y).$$

Here $\mathscr{C}(f\mu,\mu)$ denotes the set of all couplings of $f\mu$ and μ .

Consider the absolutely continuous measure $e^{-V(x)} dx$ on \mathbb{R}^n .

Theorem

Let V be a C^1 function on \mathbb{R}^n . Assume that there exists some continuous function $\Psi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ and constant c > 0, such that

$$V(z+h) - V(z) - \langle \nabla V(z), h \rangle \ge c \Psi(z,h), \quad z, h \in \mathbb{R}^n.$$
 (5)

Set $\mu(dx) = e^{-V} dx$. Then it holds

$$\operatorname{Ent}_{\mu}(f^{2}) \leq c \int_{\mathbb{R}^{n}} \Psi_{*}\big(\frac{2\nabla f}{cf}, z\big) f^{2} \,\mathrm{d}\mu(z), \quad \text{for positive } f \in C^{1}(\mathbb{R}^{n}), \quad (6)$$

where $\Psi_*(x,z) := \sup_{h \in \mathbb{R}^n} \{ \langle x,h \rangle - \Psi(z,h) \}$ for $x, \ z \in \mathbb{R}^n$.

Remark:

• If $\operatorname{Hess}_x V(\xi,\xi) \ge c|\xi|^2$ for some constant c > 0, then condition (5) is satisfied by taking $\Psi(z,h) = |h|^2/2$. Hence, $\Psi_*(x,z) = |x|^2/2$. (6) turns out to be

$$\operatorname{Ent}_{\mu}(f^2) \leq \frac{1}{C} \int |\nabla f|^2 \,\mathrm{d}\mu.$$

This is just the Bakry-Emery criterion.

• If Hess_xV is not uniformly bounded below, our result can also help to deduce some kind of modified log-Sobolev inequality.

As an application, consider $\mu_p(\mathrm{d} x) = \frac{1}{Z_p} e^{-|x|^p} \mathrm{d} x$ on $\mathbb{R}^n.$ We proved that

$$\begin{aligned} &\text{for } p \geq 2, \quad |z+h|^p - |z|^p - p|z|^{p-2} \langle z,h \rangle \geq c |h|^p, \\ &\text{for } 1$$

then it follows that

Theorem

For all positive C^1 function f, it holds that

$$p \ge 2, \operatorname{Ent}_{\mu_p}(f^2) \le \frac{2^q}{q(cp)^{q-1}} \int_{\mathbb{R}^n} \left(\frac{|\nabla f|}{f}\right)^q f^2 \,\mathrm{d}\mu_p,$$

$$1
where $q = \frac{p}{p-1}, \ c = \min\left(\frac{p}{2^{p-1}}, \ \frac{(p-1)^{\frac{p}{p-2}} + p(p-1)^{\frac{1}{p-2}} + 1}{\left((p-1)^{\frac{1}{p-2}} + 1\right)^p} \mathbf{1}_{p>2} + \mathbf{1}_{p=2}\right)$ and
 $\tilde{c} = 2^p - 1 - p.$$$

JINGHAI SHAO (Beijing Normal University Modified Log-Sobolev inequalities and

As an application, consider $\mu_p(\mathrm{d} x) = \frac{1}{Z_p} e^{-|x|^p} \mathrm{d} x$ on $\mathbb{R}^n.$ We proved that

$$\begin{split} &\text{for } p \geq 2, \quad |z+h|^p - |z|^p - p|z|^{p-2} \langle z,h \rangle \geq c |h|^p, \\ &\text{for } 1$$

then it follows that

Theorem

For all positive C^1 function f, it holds that

$$p \ge 2, \operatorname{Ent}_{\mu_p}(f^2) \le \frac{2^q}{q(cp)^{q-1}} \int_{\mathbb{R}^n} \left(\frac{|\nabla f|}{f}\right)^q f^2 \,\mathrm{d}\mu_p,$$

$$1
where $q = \frac{p}{p-1}, \ c = \min\left(\frac{p}{2^{p-1}}, \ \frac{(p-1)^{\frac{p}{p-2}} + p(p-1)^{\frac{1}{p-2}} + 1}{\left((p-1)^{\frac{1}{p-2}} + 1\right)^p} \mathbf{1}_{p>2} + \mathbf{1}_{p=2}\right)$ and $\tilde{c} = 2^p - 1 - p$$$

Talagrand(1996) established

$$W_2^2(f\gamma,\gamma) \le 2\int_{\mathbb{R}^n} |\nabla f|^2 \,\mathrm{d}\gamma, \quad f\ge 0, \ \int_{\mathbb{R}^n} f=1,$$

where $\gamma(\mathrm{d} x)$ is Gaussian measure on \mathbb{R}^n , and

$$W_2^2(f\gamma,\gamma) = \inf_{\pi \in \mathscr{C}(f\gamma,\gamma)} \Big(\int_{\mathbb{R}^n \times \mathbb{R}^n} |x-y|^2 \,\mathrm{d}\pi(x,y) \Big).$$

Recall that $\mathscr{C}(\mu,\nu)$ denotes the set of all couplings of μ and ν . In general, given a lower semi-continuous function $C(\cdot,\cdot): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$, define

$$W_c(\mu,\nu) = \inf_{\pi \in \mathscr{C}(\mu,\nu)} \Big(\int_{\mathbb{R}^n \times \mathbb{R}^n} C(x,y) \, \mathrm{d}\pi(x,y) \Big).$$

Theorem

Let $\mu(dx) = e^{-V(x)} dx$, $V \in C^1(\mathbb{R}^n)$. Assume

$$V(x) - V(y) - \langle \nabla V(y), x - y \rangle \ge \Psi(x, y), \quad x, y \in \mathbb{R}^n,$$

where $\Psi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$ is lower semi-continuous function. Then for any $f \ge 0, \ \mu(f) = 1$,

$$W_{\Psi}(\mu, f\mu) \le \operatorname{Ent}_{\mu}(f). \tag{7}$$

N. Gozlan(2006) gave a sufficient condition for a transportation cost inequality to hold on \mathbb{R} for the measure $d\mu = e^{-V(x)}dx$, where V is "good potential".

Indeed, V is a good potential if $V \in C^2(\mathbb{R})$ and

• $\exists x_0 > 0$ such that V' > 0 on $(-\infty, -x_0] \cup [x_0, \infty)$,

•
$$\frac{V''(x)}{V'^2(x)} \to 0$$
 as $x \to \pm \infty$.

Then μ satisfies the transportation cost inequality with the cost function $C(x,y) = \alpha(|x-y|)$ where α is a even "good potential" and satisfies some conditions. One of them is

$$\exists \ \lambda > 0, \ \text{such that} \ \lim_{x \to \pm \infty} \frac{lpha'(\lambda x)}{V'(x+m)} < +\infty.$$

One application of our theorem is that when $\mathrm{Hess}V$ is not uniformly bounded below, we get

Proposition

If $V \in C^2(\mathbb{R}^n)$ and \exists measurable function k(x) such that $\operatorname{Hess}_x V(\xi,\xi) \ge k(x)|\xi|^2$, then

$$\inf_{\pi \in \mathscr{C}(\mu, f\mu)} \left(\int K(x, y) |x - y|^2 \, \pi(\mathrm{d}x, \mathrm{d}y) \right) \le \operatorname{Ent}_{\mu}(f),$$

where $K(x, y) = \int_0^1 sk(sx + (1 - s)y) ds$.

Another application is to deduce the transportation cost inequality for μ_p on \mathbb{R}^n .

Proposition

When $p \ge 2$, for each $f \ge 0$, $\int f \mu_p = 1$,

$$W_p^p(f\mu_p,\mu_p) := \inf_{\pi \in \mathscr{C}(f\mu_p,\mu_p)} \left(\int_{\mathbb{R}^n \times \mathbb{R}^n} |x-y|^p \,\mathrm{d}\pi(x,y) \right) \le \frac{1}{c} \mathrm{Ent}_{\mu_p}(f),$$

When $1 , for each <math>f \ge 0$, $\int f \mu_p = 1$,

$$\begin{split} W_p^p(f\mu_p,\mu_p) \\ &:= \inf_{\pi \in \mathscr{C}(f\mu,\mu)} \left(\int_{\mathbb{R}^n \times \mathbb{R}^n} \min\left(|y|^{p-2} |x-y|^2, |x-y|^p \right) \mathrm{d}\pi(x,y) \right) \\ &\leq \frac{1}{\tilde{c}} \mathrm{Ent}_{\mu_p}(f). \end{split}$$

July 14, 2007

15 / 23

Here, c and \tilde{c} are the same constants as in previous theorem.

JINGHAI SHAO (Beijing Normal University Modified Log-Sobolev inequalities and

Idea of the proof Using the idea of Bobkov and Ledoux(2000), the Prékopa-Leindler inequality implies modified Log-Sobolev inequality and transportation cost inequality. Prékopa-Leindler inequality is:

For some $s, \ t>0, \ s+t=1, \ u,v,w$ are non-negative measurable functions on \mathbb{R}^n such that

$$w(sx+ty) \geq su(x) + tv(y), \quad x, \ y \in \mathbb{R}^n,$$

then

$$\int_{\mathbb{R}^n} w \ge \big(\int_{\mathbb{R}^n} u\big)^s \big(\int_{\mathbb{R}^n} v\big)^t.$$

Conditions in Bobkov and Ledoux(2000) are: V is a convex function such that for some c > 0, for all s, t > 0, s + t = 1,

$$tV(x) + sV(y) - V(tx + sy) \ge \frac{c}{p}(s + o(s))|x - y|^p,$$

where $p \ge 2$, $o(s)/s \to 0$, as $s \to 0^+$. Lemma: Let B be an compact set in \mathbb{R}^n , $V \in C^1(\mathbb{R}^n)$. Then

$$\lim_{s \to 0^+} \sup_{h \in B} \frac{1}{s} [sV(z+th) + tV(z-th) - sV(z)]$$

=
$$\sup_{h \in B} \lim_{s \to 0^+} \frac{1}{s} [sV(z+th) + tV(z-th) - sV(z)]$$

=
$$\sup_{h \in B} V(z+h) - V(z) - \langle \nabla V(z), h \rangle.$$

<u>Proof of the Lemma</u>: Set $\Phi_s(x, y) := sV(x) + tV(y) - V(sx + ty)$ and $\Psi(z, h) = V(z+h) - V(z) - \langle \nabla V(z), h \rangle$. For each fixed $z \in \mathbb{R}^n$, there exists a constant M such that $|\nabla V(x)| \leq M$ for any $x \in \{x : z + \lambda B, \lambda \in [0, 1]\}$ due to $V \in C^1$. Since

$$\lim_{s \to 0^+} \frac{\Phi_s(z+th,z-sh)}{s} = \Psi(z,h),$$

then for any $\varepsilon > 0$, for each $h \in B$, $\exists \ \delta_h > 0$ such that $\forall \ 0 < s < \delta_h$,

$$\left|\frac{\Phi_s(z+th,z-sh)}{s}-\Psi(z,h)\right|<\varepsilon.$$

Let

$$A_n = \Big\{ h \in B : \max_{0 \le s \le 1/n} \Big| \frac{\Phi_s(z+th,z-sh)}{s} - \Psi(z,h) \Big| < \varepsilon \Big\}.$$

Then $\bigcup_{n=1}^{\infty} A_n = B$. Each A_n is an open set.

Indeed, if $h_0 \in A_n$, then

$$a := \max_{0 \le t \le 1/n} \left| \frac{\Phi_s(z + th_0, z - sh_0)}{s} - \Psi(z, h_0) \right| < \varepsilon.$$

 $h \in B$ such that $|h - h_0| < \frac{\varepsilon - a}{4M}$ belong to A_n . So A_n is an open set. By the compactness of B, there exists a N such that $\bigcup_{n=1}^N A_n = B$. Then for any $0 < s \le 1/N$,

$$\sup_{h\in B} \left\{ \Psi(z,h) \right\} - \varepsilon \leq \sup_{h\in B} \left\{ \frac{\Phi_s(z+th,z-sh)}{s} \right\} \leq \sup_{h\in B} \left\{ \Psi(z,h) \right\} + \varepsilon.$$

Hence,

$$\sup_{h\in B}\left\{\Psi(z,h)\right\}-\varepsilon\leq \lim_{s\to 0^+}\sup_{h\in B}\left\{\frac{\Phi_s(z+th,z-sh)}{s}\right\}\leq \sup_{h\in B}\left\{\Psi(z,h)\right\}+\varepsilon.$$

By the arbitrariness of ε , the proof is complete.

<u>Proof of transportation cost inequality</u>: Let $\mu_N(dx) = \mathbf{1}_{B_N}(x)\mu(dx)/Z_N$, where $Z_N = \mu(B_N)$, B_N is the open ball in \mathbb{R}^n with radius N centered at 0. Set $f_N = \mathbf{1}_{B_N} f/\mu_N(f)$. Given a Lipschitz continuous function g, for s, t > 0, s + t = 1, set $w \equiv 1, u(x) = e^{tg_t(x)}, v(y) = e^{-sg(y)}$, where

$$g_t(x) := \inf_{y \in B_N} \left\{ g(y) + \frac{\Phi_s(x,y)}{st} \right\}, \quad x \in \mathbb{R}^n.$$

Recall $\Phi_s(x,y) = sV(x) + tV(y) - V(sx + ty)$. It is easy to check that

$$w(sx+ty) \ge u(x)^s v(y)^t e^{-\Phi_s(x,y)}, \quad x, \ y \in B_N.$$

By the Prékopa-Leindler inequality, we get

$$1 \ge \left(\int_{B_N} e^{tg_t} \,\mathrm{d}\mu\right)^s \left(\int_{B_N} e^{-sg} \,\mathrm{d}\mu\right)^t$$
$$1 \ge \left(\int_{B_N} e^{tg_t} \,\mathrm{d}\mu\right)^{\frac{1}{t}} \left(\int_{B_N} e^{-sg} \,\mathrm{d}\mu\right)^{\frac{1}{s}}$$

Letting $t \to 1(s \to 0)$, and noting that $g_t(x)$ converges to

$$\widetilde{Q}g(x) := \inf_{y \in B_N} \Big\{ g(y) + V(x) - V(y) - \langle \nabla V(y), x - y \rangle \Big\},\$$

it yields that

$$\int_{B_N} e^{\widetilde{Q}g} \,\mathrm{d}\mu_N \cdot e^{-\int_{B_N} g \,\mathrm{d}\mu_N} \le 1.$$
(8)

By the variation formula of entropy $\operatorname{Ent}_{\mu}(f) = \sup\{\int fg \, d\mu | \int e^g \, d\mu \leq 1\}$, we have

$$\int_{B_N} f_N \widetilde{Q}g \,\mathrm{d}\mu_N - \int_{B_N} g \,\mathrm{d}\mu_N \leq \mathrm{Ent}_{\mu_N}(f_N).$$

By the assumption on V, we have

$$Qg(x) := \inf_{y \in B_N} \left\{ g(y) + \Psi(x, y) \right\} \le \widetilde{Q}g(x).$$

The Kantorovich dual representation for the Wasserstein distance yields that

$$W_{\Psi}(f_N\mu_N,\mu_N) \leq \operatorname{Ent}_{\mu_N}(f_N).$$

Since $\Psi(x, y)$ is lower semi-continuous on $\mathbb{R}^n \times \mathbb{R}^n$, and μ_N , $f_N \mu_N$ weakly converge to μ , $f\mu$ respectively, we obtain

$$W_{\Psi}(f\mu,\mu) \leq \lim_{N \to +\infty} W_{\Psi}(f_N\mu_N,\mu_N) \leq \lim_{N \to +\infty} \operatorname{Ent}_{\mu_N}(f_N) = \operatorname{Ent}_{\mu}(f).$$

The proof of this theorem is completed now.

Thank You!

JINGHAI SHAO (Beijing Normal University Modified Log-Sobolev inequalities and

3 July 14, 2007 23 / 23

э

Image: A math a math