On uniqueness

for Volterra-type stochastic equation (Joint work with Tom Salisbury)

Volterra-type stochastic equation

$$
X_{t}=X_{0}+\int_{0}^{t}(t-s)^{-\alpha} \sigma\left(X_{s}\right) d B_{s} .
$$

Parameters:
$\alpha \in(0,1 / 2)$,
γ - Hölder exponent of $\sigma ; \gamma<1$.
Question: Pathwise Uniqueness?
Some other cases:

- $\gamma=$ 1. Lipschitz case. PU follows easily.
- $\alpha=0$. PU for $\gamma \geq 1 / 2$
by Yamada-Watanabe (71).

Motivation

Consider the SPDE
$\frac{\partial}{\partial t} X(t, x)=\frac{1}{2} \Delta X(t, x)+\sigma(X(t, x)) \dot{W}(x, t)$, or precisely

$$
\begin{aligned}
X(t, x)= & \int p_{t}(x-y) X(0, y) d y \\
& +\int_{0}^{t} \int p_{t-s}(x-y) \sigma(X(s, y)) W(d y, d s)
\end{aligned}
$$

where \dot{W} is a space-time white noise.

Existence: function-valued solution exists if $d=1$.

Uniqueness?

Pathwise uniqueness (PU):

$X^{1}, X^{2}-$ two solutions, $X^{1}(0, \cdot)=X^{2}(0, \cdot)$
$\Longrightarrow X^{1}(t, \cdot)=X^{2}(t, \cdot), \forall t>0$.
$\sigma-$ Lipschitz $\Longrightarrow \mathrm{PU}$ follows easily.
σ - non-Lipschitz: ?

Let $\sigma(x)$ be Hölder continuous with exponent γ. Ongoing work with E. Perkins:
$\gamma \geq 0.95$ - PU for

$$
\frac{\partial X}{\partial t}=\frac{1}{2} \Delta X+\sigma(X) \dot{W},
$$

where \dot{W} is space-time white noise.
Open: critical γ_{0} such that
$\gamma>\gamma_{0}$ - PU,
$\gamma<\gamma_{0}$ - no PU.
We want to consider equations that are close to the above.
One way is to take less singular (spatially) noise. The noise \dot{W} is "white" in time and (possibly) "colored" in space, that is,

$$
E[\dot{W}(x, t) \dot{W}(y, s)]=\delta(t-s) k(x-y) .
$$

Assumptions $k(z) \leq|z|^{-\alpha}, 0 \leq \alpha<d$. $\sigma(x)$ is Hölder continuous with exponent γ.

Existence of function-valued solution:

$0 \leq \alpha<2 \wedge d$, Peszat-Zabczyk(00), Dalang(99) (for Lipschitz case. Similar for non-Lipschitz).

Theorem 1 (Sturm, Perkins, M., 05) PU holds if

$$
\alpha<2 \gamma-1 .
$$

Super-Brownian motion

Branching Brownian motions.
\mathbf{R}^{d}
X^{n} :
$\sim n$ particles in \mathbf{R}^{d} at time 0 .
12
$\frac{1}{n}, \frac{2}{n}, \ldots$ - times of death or split,
$p_{0}=p_{2}=\frac{1}{2}$ - probabilities of death or split.
Critical branching:
mean number of offspring $=1$.

New particles move as independent Brownian motions.

$$
X_{t}^{n}(A)=\frac{\# \text { particles in } A \text { at time } t}{n}, A \subset \mathbf{R}^{\mathrm{d}} .
$$

$X^{n} \Rightarrow X$,
X is a super-Brownian motion - measurevalued process.

Properties

Singular measure if $d>1$.
Existence of density only in $d=1$:
$X_{t}(d x)=X_{t}(x) d x$
$\mathbf{d}=1 . \quad X_{t}(x)$ is jointly continuous in (t, x).
N. Konno, T. Shiga(88); M. Reimers (89):

$$
\frac{\partial X}{\partial t}=\frac{1}{2} \Delta X+\sqrt{X} \dot{W} .
$$

\dot{W} - Gaussian space-time white noise.

Pathwise uniqueness (PU) for the above SPDE is an open question. (\sqrt{X} is non-Lipschitz.)
Numerous attempts to prove PU failed.

Weak uniqueness (in law) holds by duality argument.

Consider more general super-Brownian motion:
$\frac{\partial X_{t}(x)}{\partial t}=\frac{1}{2} \Delta X_{t}(x)+\sqrt{\lambda_{s}(x) X_{t}(x)} \dot{W}, \quad t \geq 0, x \in R$.
$\lambda_{S}(x)$ is a "rate" of branching at the point x at time s.

Replace $\lambda_{s}(x) d x$ by a singular measure $\rho_{s}(d x)$. X is a catalytic SBM with catalyst ρ (studied by Dawson, Fleischmann, Delmas and others).

Particular case: $\rho=\delta_{0}$ - point catalyst.

Particular case: $\rho=\delta_{0}$ - point catalyst.
Let l_{t}^{0} be a local time, that is

$$
l_{t}^{0}=\int_{0}^{t} \int_{R} \delta_{0}(y) X_{s}(d y) d s
$$

Then SBM with a point catalyst at $x=0$ satisfies the martingale problem:

$$
\left\{\begin{array}{l}
\text { For all } \phi \in \mathcal{D}(\Delta), M_{0}(\phi)=0 \\
X_{t}(\phi)=X_{0}(\phi)+\int_{0}^{t} X_{s}(\Delta \phi / 2) d s+M_{t}(\phi) \tag{2}\\
\text { where } M_{t}(\phi) \text { is a continuous } \mathcal{F}_{t} \text {-martingale } \\
\text { and }\langle M(\phi)\rangle_{t}=\phi(0)^{2} l^{0}(t)
\end{array}\right.
$$

Pretend for a second that $l^{0}(d s)$ is absolutely continuous, that is,

$$
\begin{equation*}
l_{t}^{0}=\int_{0}^{t} X_{s}(0) d s \tag{3}
\end{equation*}
$$

Then $X_{t}(\cdot)$ solves a degenerate SPDE
$X_{t}(x)=\int_{\mathbb{R}} p_{t}(x-y) X_{0}(d y)+\int_{0}^{t} p_{t-s}(x) \sqrt{X_{s}(0)} d B_{s}$,
where $p_{t}(x)$ is a transition density of Brownian motion.

Set $x=0$ to get the following SDE
$X_{t}(0)=\int_{\mathbb{R}} p_{t}(y) X_{0}(d y)+c \int_{0}^{t}(t-s)^{-1 / 2} \sqrt{X_{s}(0)} d B_{s}$.
$X_{0}=$ const. Volterra equation?
However (3) is wrong-the local time $l^{0}(d s)$ is singular
$X_{t}(d x)$ does not have a density at $x=0$.
No solution to (4).
Instead of $1 / 2$ take α :
Easy to get existence of solution to the following SDE

$$
\begin{equation*}
X_{t}(0)=X_{0}+c \int_{0}^{t}(t-s)^{-\alpha} \sqrt{X_{s}(0)} d B_{s} \tag{5}
\end{equation*}
$$

for $0 \leq \alpha<1 / 2$.

Uniqueness?

Let σ be a Hölder continuous with exponent γ.
We will consider uniqueness problem the following Volterra-type stochastic equation

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t}(t-s)^{-\alpha} \sigma\left(X_{s}\right) d B_{s} \tag{6}
\end{equation*}
$$

Recall: pathwise uniqueness for SDEs

$$
d X_{t}=\sigma\left(X_{t}\right) d B_{t}
$$

B_{t} is a one-dimensional Brownian motion.

Theorem 2 (Yamada, Watanabe (71))

 If σ is Hölder continuous with exponent $1 / 2$, then PU holds.Remark 1 There are counter examples for σ which is Hölder continuous with exponent less than $1 / 2$.

Proof of Theorem 2 Define (in a special way) function $\phi_{n} \in C_{c}^{\infty}(R)$ s.t.

$$
\begin{aligned}
& \phi_{n}(x) \uparrow|x|, \text { as } n \rightarrow \infty, \\
& \phi_{n}^{\prime \prime} \rightarrow \delta_{0}, \\
& \text { as } n \rightarrow \infty .
\end{aligned}
$$

Define $\quad \tilde{X}=X^{1}-X^{2}$. Hence

$$
\begin{aligned}
d \tilde{X}_{t} & =\left(\sigma\left(X_{t}^{1}\right)-\sigma\left(X_{t}^{1}\right)\right) d B_{t} \\
\tilde{X}_{0} & =0 .
\end{aligned}
$$

Ito's formula:

$$
\begin{aligned}
\phi_{n}\left(\tilde{X}_{t}\right)= & \int_{0}^{t} \phi_{n}^{\prime}\left(\tilde{X}_{s}\right)\left(\sigma\left(X_{s}^{1}\right)-\sigma\left(X_{s}^{2}\right)\right) d B_{s} \\
& +\frac{1}{2} \int_{0}^{t} \phi_{n}^{\prime \prime}\left(\tilde{X}_{s}\right)\left(\sigma\left(X_{s}^{1}\right)-\sigma\left(X_{s}^{2}\right)\right)^{2} d s
\end{aligned}
$$

By the special choice of the function ϕ_{n} and Hölder assumptions on σ one can show

$$
\begin{aligned}
E\left[\phi_{n}\left(\tilde{X}_{t}\right)\right] & \leq c E\left[\int_{0}^{t} \phi_{n}^{\prime \prime}\left(\tilde{X}_{s}\right)\left|\tilde{X}_{s}\right| d s\right] \\
& \rightarrow 0, \text { as } n \rightarrow \infty .
\end{aligned}
$$

Proof of Theorem 1 Recall

$$
\frac{\partial X}{\partial t}=\frac{1}{2} \Delta X+\sigma(X) \dot{W}
$$

where σ is Hölder continuous with exponent γ and \dot{W} is a colored noise

$$
E[\dot{W}(x, t) \dot{W}(y, s)]=\delta(t-s) k(x-y)
$$

with

$$
k(z) \leq|z|^{-\alpha}, \alpha>0
$$

$X^{1}, X^{2}-$ two solutions, $\tilde{X}=X^{1}-X^{2}$.
$\frac{\partial \tilde{X}_{t}(x)}{\partial t}=\frac{1}{2} \Delta \tilde{X}_{t}(x)+\left(\sigma\left(X_{t}^{1}(x)\right)-\sigma\left(X_{t}^{2}(x)\right)\right) \dot{W}(t, x)$.
Take again the functions ϕ_{n} :

$$
\begin{aligned}
\phi_{n}(x) \uparrow|x|, & \text { as } n \rightarrow \infty \\
\phi_{n}^{\prime \prime} \rightarrow \delta_{0} & \text { as } n \rightarrow \infty
\end{aligned}
$$

Denote

$$
\tilde{\sigma}(s, x) \equiv \sigma\left(X_{s}^{1}(x)\right)-\sigma\left(X_{s}^{2}(x)\right)
$$

Ito:

$$
\begin{aligned}
& E\left[\phi_{n}\left(\tilde{X}_{t}(f)\right)\right]=E\left[\int_{0}^{t} \phi_{n}^{\prime}\left(\tilde{X}_{s}(f)\right) \tilde{X}_{s}\left(\frac{1}{2} \Delta f\right) d s\right] \\
& +E\left[\frac{1}{2} \int_{0}^{t} \int_{R^{2 d}} \phi_{n}^{\prime \prime}\left(\left|\tilde{X}_{s}(f)\right|\right) \tilde{\sigma}(s, z) \tilde{\sigma}(s, y) f(z) f(y) k(z-y) d z d y d s\right]
\end{aligned}
$$

$$
\text { Let } f=f_{x}^{n} \rightarrow \delta_{x} \text {. }
$$

Also $\mathbf{H}(\gamma) \Longrightarrow|\tilde{\sigma}(s, x)| \leq c\left|\tilde{X}_{s}(x)\right|^{\gamma}$ and hence

$$
\begin{aligned}
& E\left[\phi_{n}\left(\tilde{X}_{t}\left(f_{x}^{n}\right)\right)\right] \leq E\left[\int_{0}^{t} \phi_{n}^{\prime}\left(\tilde{X}_{s}\left(f_{x}^{n}\right)\right) \tilde{X}_{s}\left(\frac{1}{2} \Delta f_{x}^{n}\right) d s\right] \\
& +E\left[\frac{1}{2} \int_{0}^{t} \int_{R^{2 d}} \phi_{n}^{\prime \prime}\left(\left|\tilde{X}_{s}\left(f_{x}^{n}\right)\right|\right)\left|\tilde{X}_{s}(z)\right|^{\gamma}\left|\tilde{X}_{s}(y)\right|^{\gamma}\right. \\
& \left.\quad \times f_{x}^{n}(z) f_{x}^{n}(y) k(z-y) d z d y d s\right] \\
& =I^{1, n}+I^{2, n}
\end{aligned}
$$

"Easy" to check:

$$
\limsup _{n \rightarrow \infty} I^{1, n} \leq \int_{0}^{t} \frac{1}{2} \Delta E\left[\left|\tilde{X}_{s}(x)\right|\right] d s
$$

Crucial for $I^{2, n}$: Hölder exponent of \tilde{X}.
Suppose \tilde{X} is Hölder continuous with exponent ξ.
Then we can show:

$$
\begin{aligned}
& I^{2, n} \rightarrow 0, \text { if } \alpha<\xi(2 \gamma-1) \\
\Longrightarrow & E\left[\left|\tilde{X}_{t}(x)\right|\right] \leq \int_{0}^{t} \frac{1}{2} \Delta E\left[\left|\tilde{X}_{s}(x)\right|\right] d s \\
\Longrightarrow & E\left[\left|\tilde{X}_{t}(x)\right|\right]=0, \text { if } \alpha<\xi(2 \gamma-1)
\end{aligned}
$$

We got condition for PU:

$$
\alpha<\xi(2 \gamma-1) .
$$

Proposition 2 (Sanz-Solé, Sarrà) For any $\xi<$ $1-\frac{\alpha}{2}, \tilde{X}_{s}(\cdot)$ is Hölder continuous with exponent ξ.

By Theorem of Sanz-Solé, Sarrà we get

$$
\alpha<\frac{2 \gamma-1}{\gamma+1 / 2} .
$$

Bad: $\gamma / 1 \Longrightarrow \alpha<2 / 3$.

Proposition 3 (Sturm, Perkins, M.)

At the points x where $\tilde{X}_{s}(x)=0, \tilde{X}_{s}(\cdot)$ is ξ-Hölder continuous $\forall \xi<1$.

Remark Mueller-Tribe have the result similar to Proposition 3.

By condition on PU $(\alpha<\xi(2 \gamma-1))$ we get

$$
\alpha<2 \gamma-1
$$

and this finishes the proof of Theorem 1.

Volterra-type stochastic equation

$$
X_{t}=X_{0}+\int_{0}^{t}(t-s)^{-\alpha} \sigma\left(X_{s}\right) d B_{s} .
$$

$\alpha \in(0,1 / 2)$,
$\gamma \in(1 / 2,1]$ - Hölder exponent of σ.

Theorem 3 Let

$$
\gamma>\frac{1}{2(1-\alpha)} .
$$

Then PU holds.

$$
X_{t}=X_{0}+\int_{0}^{t}(t-s)^{-\alpha} \sigma\left(X_{s}\right) d B_{s} .
$$

Idea: represent it as a solution to SPDE.
Fix θ such that $\frac{1}{2+\theta}=\alpha$. Define

$$
\begin{equation*}
\Delta_{\theta}=\frac{2}{(2+\theta)^{2}} \frac{\partial}{\partial x}|x|^{-\theta} \frac{\partial}{\partial x} \tag{7}
\end{equation*}
$$

Then the function

$$
p^{\theta}(t, x)=\frac{C_{\theta}}{t^{\frac{1}{2+\theta}}} e^{-\frac{|x|^{2+\theta}}{2 t}}
$$

is a solution to

$$
\left\{\begin{align*}
\frac{\partial u}{\partial t} & =\Delta_{\theta} u \tag{8}\\
u_{0} & =\delta_{0}
\end{align*}\right.
$$

Let X be a solution to the following SPDE on $R_{+} \times R$

$$
\begin{equation*}
\frac{\partial X(t, x)}{\partial t}=\Delta_{\theta} X(t, x)+\delta_{0}(x) \sigma(X(t, x)) \dot{B}(t) \tag{9}
\end{equation*}
$$

More precisely X solves

$$
\begin{aligned}
& X(t, x)=S_{t} X_{0}(x) \\
& \quad+\int_{0}^{t} \int_{\mathbb{R}} p^{\theta}(t-s, x) \sigma(X(s, 0)) d B(s)
\end{aligned}
$$

where $S_{t}, t \geq 0$ is the semigroup generated by Δ_{θ}.

Existence: easy by tightness argument.
Let $X_{0}(\cdot)=x_{0}=$ const. Then

$$
X(t, x)=X_{0}+\int_{0}^{t} p^{\theta}(t-s, x) \sigma(X(s, 0)) d B(s)
$$

In particular for $x=0$ we have

$$
X(t, 0)=x_{0}+\int_{0}^{t} c_{\theta}(t-s)^{-\alpha} \sigma(X(s, 0)) d B(s) \cdot(10)
$$

Remark 4 Uniqueness for (10) follows from uniqueness for (9).
X^{1}, X^{2} - two solutions, $\tilde{X}=X^{1}-X^{2}$.
$\frac{\partial \tilde{X}_{t}(x)}{\partial t}=\Delta_{\theta} \tilde{X}_{t}(x)+\delta_{0}(x)\left(\sigma\left(X_{t}^{1}(x)\right)-\sigma\left(X_{t}^{2}(x)\right)\right) \dot{B}(t)$.
Take again the functions ϕ_{n} :

$$
\begin{aligned}
\phi_{n}(x) \uparrow|x|, & \text { as } n \rightarrow \infty, \\
\phi_{n}^{\prime \prime} \rightarrow \delta_{0} & \text { as } n \rightarrow \infty .
\end{aligned}
$$

Denote

$$
\tilde{\sigma}(s, x) \equiv \sigma\left(X_{s}^{1}(x)\right)-\sigma\left(X_{s}^{2}(x)\right) .
$$

Ito:

$$
\begin{aligned}
& E\left[\phi_{n}\left(\tilde{X}_{t}(f)\right)\right]=E\left[\int_{0}^{t} \phi_{n}^{\prime}\left(\tilde{X}_{s}(f)\right) \tilde{X}_{s}\left(\Delta_{\theta} f\right) d s\right] \\
& +E\left[\frac{1}{2} \int_{0}^{t} \phi_{n}^{\prime \prime}\left(\left|\tilde{X}_{s}(f)\right|\right) \tilde{\sigma}(s, 0)^{2} f(0)^{2} d s\right] .
\end{aligned}
$$

Let $f=f_{x}^{n} \rightarrow \delta_{x}$.

$$
\begin{aligned}
& E\left[\phi_{n}\left(\tilde{X}_{t}\left(f_{x}^{n}\right)\right)\right]=E\left[\int_{0}^{t} \phi_{n}^{\prime}\left(\tilde{X}_{s}\left(f_{x}^{n}\right)\right) \tilde{X}_{s}\left(\Delta_{\theta} f_{x}^{n}\right) d s\right] \\
& +E\left[\frac{1}{2} \int_{0}^{t} \phi_{n}^{\prime \prime}\left(\left|\tilde{X}_{s}\left(f_{x}^{n}\right)\right|\right) \tilde{\sigma}(s, 0)^{2} f_{x}^{n}(0)^{2} d s\right] \\
& \quad=I^{1, n}+I^{2, n}
\end{aligned}
$$

Again

$$
\limsup _{n \rightarrow \infty} I^{1, n} \leq \int_{0}^{t} \Delta_{\theta} E\left[\left|\tilde{X}_{s}(x)\right|\right] d s .
$$

For $I^{2, n}$ crucial:
Regularity of $\tilde{X}_{s}(x)$ for x close to 0 .
Suppose for all $|x|$ small:

$$
\left|\tilde{X}_{s}(x)\right| \leq|x|^{\xi}
$$

Then we can show:

$$
\begin{aligned}
& I^{2, n} \rightarrow 0, \text { if } \gamma>\frac{1}{2}+\frac{1}{2 \xi} . \\
\Longrightarrow & E\left[\left|\tilde{X}_{t}(x)\right|\right] \leq \int_{0}^{t} \Delta_{\theta} E\left[\left|\tilde{X}_{s}(x)\right|\right] d s \\
\Longrightarrow & E\left[\left|\tilde{X}_{t}(x)\right|\right]=0, \text { if } \gamma>\frac{1}{2}+\frac{1}{2 \xi} .
\end{aligned}
$$

We got condition for PU:

$$
\gamma>\frac{1}{2}+\frac{1}{2 \xi} .
$$

Proposition 5
At times s where $\tilde{X}_{s}(0)=0$, we have

$$
\left|\tilde{X}_{s}(x)\right| \leq C|x|^{\xi},
$$

for any

$$
\xi<\frac{1}{\alpha}\left(\frac{1 / 2-\alpha}{1-\gamma} \wedge 1\right)
$$

By condition on PU we get

$$
\alpha<\frac{\gamma-1 / 2}{\gamma}
$$

and this finishes the proof of Theorem 3.

Proof of Proposition 5

$$
\begin{aligned}
\tilde{X}_{t^{\prime}}(0)-\tilde{X}_{t}(0)= & \int_{0}^{t}\left(\left(t^{\prime}-s\right)^{-\alpha}-(t-s)^{-\alpha}\right) \tilde{\sigma}(s, 0) d B_{s} \\
& +\int_{t}^{t^{\prime}}\left(t^{\prime}-s\right)^{-\alpha} \tilde{\sigma}(s, 0) d B_{s} .
\end{aligned}
$$

We assume that $\tilde{X}(t, 0)=0$, and
$\tilde{X}(t, 0)$ is Hölder with exponent η. Then

$$
|\tilde{\sigma}(s, o)| \leq|\tilde{X}(s, 0)|^{\gamma} \leq c(t-s)^{\eta \gamma}
$$

Formally

$$
\begin{aligned}
\left|\tilde{X}_{t^{\prime}}(0)-\tilde{X}_{t}(0)\right| \leq & c \sqrt{\int_{0}^{t}\left(\left(t^{\prime}-s\right)^{-\alpha}-(t-s)^{-\alpha}\right)^{2} \tilde{\sigma}(s, 0)^{2} d s} \\
& +c \sqrt{\int_{t}^{t^{\prime}}\left(t^{\prime}-s\right)^{-2 \alpha} \tilde{\sigma}(s, 0)^{2} d s} \\
\leq & c \sqrt{\int_{0}^{t}\left(\left(t^{\prime}-s\right)^{-\alpha}-(t-s)^{-\alpha}\right)^{2}(t-s)^{2 \gamma \eta} d s} \\
& +c \sqrt{\int_{t}^{t^{\prime}}\left(t^{\prime}-s\right)^{-2 \alpha}(t-s)^{2 \gamma \eta} d s} \\
\leq & c\left|t^{\prime}-t\right|^{(1 / 2-\alpha+\eta \gamma) \wedge 1}
\end{aligned}
$$

Iterate to get

$$
\left|\tilde{X}_{t^{\prime}}(0)-\tilde{X}_{t}(0)\right| \leq c\left|t^{\prime}-t\right|^{\eta}
$$

for any

$$
\eta<\frac{1 / 2-\alpha}{1-\gamma} \wedge 1
$$

Similarly

$$
\begin{aligned}
\left|\tilde{X}_{t}(x)-\tilde{X}_{t}(0)\right| & =\left|\int_{0}^{t}\left(p_{t-s}^{\theta}(x)-p_{t-s}^{\theta}\right) \tilde{\sigma}(s, 0) d B_{s}\right| \\
& \leq c \sqrt{\int_{0}^{t}\left(p_{t-s}^{\theta}(x)-p_{t-s}^{\theta}(0)^{2}(t-s)^{2 \gamma \eta} d s\right.} \\
& \leq|x|^{\eta / \alpha}
\end{aligned}
$$

for any

$$
\eta<\frac{1 / 2-\alpha}{1-\gamma} \wedge 1
$$

Theorem 4 For any $\alpha<1 / 2$, weak uniqueness holds for non-negative solutions of

$$
X_{t}=X_{0}+\int_{0}^{t}(t-s)^{-\alpha} \sqrt{\left|X_{s}\right|} d B_{s}
$$

Proof Duality argument.

