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(Joint work with Tom Salisbury)
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Volterra-type stochastic equation

Xt = X0 +
∫ t

0
(t− s)−ασ(Xs)dBs .

Parameters:

α ∈ (0,1/2),

γ — Hölder exponent of σ; γ < 1.

Question: Pathwise Uniqueness?

Some other cases:

• γ = 1. Lipschitz case. PU follows easily.

• α = 0. PU for γ ≥ 1/2

by Yamada-Watanabe (71).
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Motivation

Consider the SPDE

∂

∂t
X(t, x) =

1

2
∆X(t, x) + σ(X(t, x))Ẇ (x, t),

or precisely

X(t, x) =
∫

pt(x− y)X(0, y)dy

+
∫ t

0

∫
pt−s(x− y)σ(X(s, y))W (dy, ds),

where Ẇ is a space-time white noise.

Existence: function-valued solution exists if

d = 1.

Uniqueness?

Pathwise uniqueness (PU):

X1, X2 — two solutions, X1(0, ·) = X2(0, ·)
=⇒ X1(t, ·) = X2(t, ·) , ∀t > 0.

σ — Lipschitz =⇒ PU follows easily.

σ - non-Lipschitz: ?
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Let σ(x) be Hölder continuous with exponent γ.
Ongoing work with E. Perkins:
γ ≥ 0.95 — PU for

∂X

∂t
=

1

2
∆X + σ(X)Ẇ ,

where Ẇ is space-time white noise.
Open: critical γ0 such that
γ > γ0 — PU,
γ < γ0 — no PU.
We want to consider equations that are close
to the above.
One way is to take less singular (spatially) noise.
The noise Ẇ is “white” in time and (possibly)
“colored” in space, that is,

E
[
Ẇ (x, t)Ẇ (y, s)

]
= δ(t− s)k(x− y).

Assumptions k(z) ≤ |z|−α, 0 ≤ α < d.
σ(x) is Hölder continuous with exponent γ.

Existence of function-valued solution:
0 ≤ α < 2∧d, Peszat-Zabczyk(00), Dalang(99)
(for Lipschitz case. Similar for non-Lipschitz).

Theorem 1 (Sturm, Perkins, M., 05)
PU holds if

α < 2γ − 1.
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Super-Brownian motion

Branching Brownian motions.

Rd

Xn:

∼ n particles in Rd at time 0.
1

n
,
2

n
, . . . — times of death or split,

p0 = p2 =
1

2
— probabilities of death or split.

Critical branching:

mean number of offspring = 1.

New particles move as independent Brownian

motions.

Xn
t (A) =

# particles in A at time t

n
, A ⊂ Rd.

Xn ⇒ X,

X is a super-Brownian motion — measure-

valued process.
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Properties

Singular measure if d > 1.

Existence of density only in d = 1:

Xt(dx) = Xt(x)dx

d = 1. Xt(x) is jointly continuous in (t, x).

N. Konno, T. Shiga(88); M. Reimers (89):

∂X

∂t
=

1

2
∆X +

√
XẆ .

Ẇ — Gaussian space-time white noise.

Pathwise uniqueness (PU) for the above SPDE

is an open question. (
√

X is non-Lipschitz.)

Numerous attempts to prove PU failed.

Weak uniqueness (in law) holds by duality

argument.
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Consider more general super-Brownian motion:

∂Xt(x)

∂t
=

1

2
∆Xt(x) +

√
λs(x)Xt(x)Ẇ , t ≥ 0, x ∈ R.(1)

λs(x) is a “rate” of branching at the point x

at time s.

Replace λs(x)dx by a singular measure ρs(dx).

X is a catalytic SBM with catalyst ρ (studied

by Dawson, Fleischmann, Delmas and others).

Particular case: ρ = δ0 — point catalyst.
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Particular case: ρ = δ0 — point catalyst.

Let l0t be a local time, that is

l0t =
∫ t

0

∫
R

δ0(y)Xs(dy) ds.

Then SBM with a point catalyst at x = 0 sat-

isfies the martingale problem:

For all φ ∈ D(∆), M0(φ) = 0

Xt(φ) = X0(φ) +
∫ t
0 Xs(∆φ/2) ds + Mt(φ),

where Mt(φ) is a continuous Ft-martingale

and 〈M(φ)〉t = φ(0)2l0(t).

(2)

Pretend for a second that l0(ds) is absolutely

continuous, that is,

l0t =
∫ t

0
Xs(0) ds, (3)

Then Xt(·) solves a degenerate SPDE

Xt(x) =
∫

R

pt(x−y)X0(dy)+
∫ t

0
pt−s(x)

√
Xs(0)dBs ,

where pt(x) is a transition density of Brownian

motion.
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Set x = 0 to get the following SDE

Xt(0) =

∫
R

pt(y)X0(dy) + c

∫ t

0
(t− s)−1/2

√
Xs(0)dBs . (4)

X0 = const. Volterra equation?

However (3) is wrong—the local time l0(ds) is
singular
Xt(dx) does not have a density at x = 0.
No solution to (4).

Instead of 1/2 take α:

Easy to get existence of solution to the follow-
ing SDE

Xt(0) = X0 + c
∫ t

0
(t− s)−α

√
Xs(0)dBs . (5)

for 0 ≤ α < 1/2.

Uniqueness?
Let σ be a Hölder continuous with exponent γ.

We will consider uniqueness problem the fol-
lowing Volterra-type stochastic equation

Xt = X0 +
∫ t

0
(t− s)−ασ(Xs)dBs . (6)
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Recall: pathwise uniqueness for SDEs

dXt = σ(Xt)dBt

Bt is a one-dimensional Brownian motion.

Theorem 2 ( Yamada, Watanabe (71))

If σ is Hölder continuous with exponent 1/2,

then PU holds.

Remark 1 There are counter examples for σ

which is Hölder continuous with exponent less

than 1/2.
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Proof of Theorem 2 Define (in a special

way) function φn ∈ C∞c (R) s.t.

φn(x) ↑ |x|, as n →∞,

φ′′n → δ0 , as n →∞.

Define X̃ = X1 −X2. Hence

dX̃t = (σ(X1
t )− σ(X1

t ))dBt

X̃0 = 0.

Ito’s formula:

φn(X̃t) =
∫ t

0
φ′n(X̃s)(σ(X1

s )− σ(X2
s )) dBs

+
1

2

∫ t

0
φ′′n(X̃s)(σ(X1

s )− σ(X2
s ))2 ds

By the special choice of the function φn and

Hölder assumptions on σ one can show

E
[
φn(X̃t)

]
≤ cE

[∫ t

0
φ′′n(X̃s)|X̃s| ds

]
→ 0, as n →∞.
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Proof of Theorem 1 Recall
∂X

∂t
=

1

2
∆X + σ(X)Ẇ ,

where σ is Hölder continuous with exponent γ

and Ẇ is a colored noise

E
[
Ẇ (x, t)Ẇ (y, s)

]
= δ(t− s)k(x− y).

with

k(z) ≤ |z|−α, α > 0.

X1, X2 — two solutions, X̃ = X1 −X2.

∂X̃t(x)

∂t
=

1

2
∆X̃t(x) + (σ(X1

t (x))− σ(X2
t (x)))Ẇ (t, x).

Take again the functions φn:

φn(x) ↑ |x|, as n →∞,

φ′′n → δ0 as n →∞.

Denote

σ̃(s, x) ≡ σ(X1
s (x))− σ(X2

s (x)).

Ito:

E
[
φn(X̃t(f))

]
= E

[∫ t

0
φ′n(X̃s(f))X̃s(

1

2
∆f) ds

]
+ E

[
1

2

∫ t

0

∫
R2d

φ′′n(|X̃s(f)|)σ̃(s, z)σ̃(s, y)f(z)f(y)k(z − y)dz dy ds

]
.
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Let f = fn
x → δx .

Also H(γ) =⇒ |σ̃(s, x)| ≤ c|X̃s(x)|γ and hence

E
[
φn(X̃t(f

n
x ))

]
≤ E

[∫ t

0
φ′n(X̃s(f

n
x ))X̃s(

1

2
∆fn

x ) ds

]
+ E

[
1

2

∫ t

0

∫
R2d

φ′′n(|X̃s(f
n
x )|)|X̃s(z)|γ|X̃s(y)|γ

× fn
x (z)fn

x (y)k(z − y)dz dy ds]

= I1,n + I2,n.

“Easy” to check:

lim sup
n→∞

I1,n ≤
∫ t

0

1

2
∆E

[∣∣∣X̃s(x)
∣∣∣] ds.

Crucial for I2,n: Hölder exponent of X̃.

Suppose X̃ is Hölder continuous with exponent ξ.

Then we can show:

I2,n → 0, if α < ξ(2γ − 1).

=⇒ E
[
|X̃t(x)|

]
≤
∫ t

0

1

2
∆E

[∣∣∣X̃s(x)
∣∣∣] ds

=⇒ E
[
|X̃t(x)|

]
= 0, if α < ξ(2γ − 1).
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We got condition for PU:

α < ξ(2γ − 1).

Proposition 2 (Sanz-Solé, Sarrà) For any ξ <

1 − α
2, X̃s(·) is Hölder continuous with expo-

nent ξ.

By Theorem of Sanz-Solé, Sarrà we get

α <
2γ − 1

γ + 1/2
.

Bad: γ ↗ 1 =⇒ α < 2/3.
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Proposition 3 (Sturm, Perkins, M.)

At the points x where X̃s(x) = 0, X̃s(·) is

ξ-Hölder continuous ∀ξ < 1.

Remark Mueller-Tribe have the result similar

to Proposition 3.

By condition on PU (α < ξ(2γ − 1)) we get

α < 2γ − 1

and this finishes the proof of Theorem 1.
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Volterra-type stochastic equation

Xt = X0 +
∫ t

0
(t− s)−ασ(Xs)dBs .

α ∈ (0,1/2),

γ ∈ (1/2,1] — Hölder exponent of σ.

Theorem 3 Let

γ >
1

2(1− α)
.

Then PU holds.
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Xt = X0 +
∫ t

0
(t− s)−ασ(Xs)dBs .

Idea: represent it as a solution to SPDE.

Fix θ such that 1
2+θ = α. Define

∆θ =
2

(2 + θ)2
∂

∂x
|x|−θ ∂

∂x
(7)

Then the function

pθ(t, x) =
Cθ

t
1

2+θ

e−
|x|2+θ

2t

is a solution to{
∂u
∂t = ∆θu
u0 = δ0

(8)
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Let X be a solution to the following SPDE on
R+ ×R

∂X(t, x)

∂t
= ∆θX(t, x) + δ0(x)σ(X(t, x))Ḃ(t). (9)

More precisely X solves

X(t, x) = StX0(x)

+

∫ t

0

∫
R

pθ(t− s, x)σ(X(s,0))dB(s)

where St , t ≥ 0 is the semigroup generated by

∆θ.

Existence: easy by tightness argument.

Let X0(·) = x0 = const. Then

X(t, x) = X0 +

∫ t

0
pθ(t− s, x)σ(X(s,0))dB(s)

In particular for x = 0 we have

X(t,0) = x0 +

∫ t

0
cθ(t− s)−ασ(X(s,0))dB(s).(10)

Remark 4 Uniqueness for (10) follows from

uniqueness for (9).
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X1, X2 — two solutions, X̃ = X1 −X2.

∂X̃t(x)

∂t
= ∆θX̃t(x) + δ0(x)(σ(X1

t (x))− σ(X2
t (x)))Ḃ(t).

Take again the functions φn:

φn(x) ↑ |x|, as n →∞,

φ′′n → δ0 as n →∞.

Denote

σ̃(s, x) ≡ σ(X1
s (x))− σ(X2

s (x)).

Ito:

E
[
φn(X̃t(f))

]
= E

[∫ t

0
φ′n(X̃s(f))X̃s(∆θf) ds

]
+ E

[
1

2

∫ t

0
φ′′n(|X̃s(f)|)σ̃(s,0)2f(0)2ds

]
.
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Let f = fn
x → δx .

E
[
φn(X̃t(f

n
x ))
]
= E

[∫ t

0
φ′n(X̃s(f

n
x ))X̃s(∆θf

n
x ) ds

]
+ E

[
1

2

∫ t

0
φ′′n(|X̃s(f

n
x )|)σ̃(s,0)2fn

x (0)2 ds

]
= I1,n + I2,n.

Again

lim sup
n→∞

I1,n ≤
∫ t

0
∆θE

[∣∣X̃s(x)
∣∣] ds.

For I2,n crucial:

Regularity of X̃s(x) for x close to 0.

Suppose for all |x| small:∣∣∣X̃s(x)
∣∣∣ ≤ |x|ξ

Then we can show:

I2,n → 0, if γ >
1

2
+

1

2ξ
.

=⇒ E
[
|X̃t(x)|

]
≤
∫ t

0
∆θE

[∣∣∣X̃s(x)
∣∣∣] ds

=⇒ E
[
|X̃t(x)|

]
= 0, if γ >

1

2
+

1

2ξ
.
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We got condition for PU:

γ >
1

2
+

1

2ξ
.

Proposition 5

At times s where X̃s(0) = 0, we have∣∣∣X̃s(x)
∣∣∣ ≤ C |x|ξ ,

for any

ξ <
1

α

(
1/2− α

1− γ
∧ 1

)

By condition on PU we get

α <
γ − 1/2

γ

and this finishes the proof of Theorem 3.
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Proof of Proposition 5

X̃t′(0)− X̃t(0) =

∫ t

0
((t′ − s)−α − (t− s)−α)σ̃(s,0) dBs

+

∫ t′

t

(t′ − s)−ασ̃(s,0) dBs .

We assume that X̃(t,0) = 0, and
X̃(t,0) is Hölder with exponent η. Then

|σ̃(s, o)| ≤ |X̃(s,0)|γ ≤ c(t− s)ηγ.

Formally

|X̃t′(0)− X̃t(0)| ≤ c

√∫ t

0
((t′ − s)−α − (t− s)−α)2σ̃(s,0)2 ds

+ c

√∫ t′

t

(t′ − s)−2ασ̃(s,0)2 ds

≤ c

√∫ t

0
((t′ − s)−α − (t− s)−α)2(t− s)2γη ds

+ c

√∫ t′

t

(t′ − s)−2α(t− s)2γη ds

≤ c|t′ − t|(1/2−α+ηγ)∧1

Iterate to get

|X̃t′(0)− X̃t(0)| ≤ c|t′ − t|η

for any

η <
1/2− α

1− γ
∧ 1.
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Similarly

|X̃t(x)− X̃t(0)| = |
∫ t

0
(pθ

t−s(x)− pθ
t−s)σ̃(s,0) dBs|

≤ c

√∫ t

0
(pθ

t−s(x)− pθ
t−s(0)2(t− s)2γη ds

. . .

≤ |x|η/α

for any

η <
1/2− α

1− γ
∧ 1.
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Theorem 4 For any α < 1/2, weak uniqueness

holds for non-negative solutions of

Xt = X0 +
∫ t

0
(t− s)−α

√
|Xs|dBs .

Proof Duality argument.
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