On uniqueness
for Volterra-type stochastic equation

(Joint work with Tom Salisbury)



Volterra-type stochastic equation

t
X; = Xg + /O (t — )% (Xs)dBs .

Parameters:
a € (0,1/2),
~ — HOolder exponent of o; ~ < 1.

Question: Pathwise Uniqueness?

Some other cases:
e v = 1. Lipschitz case. PU follows easily.

e a=0. PUfory>1/2
by Yamada-Watanabe (71).



Motivation

Consider the SPDE

0, 1 ;
&X(t’ z) = 5AX(t, z) + o(X (¢, z))W(z,t),

or precisely
X(t,x) = /pt(:v—y)X(O,y)dy

n /O t [ pi-s(@ =)o (X (5,9)) W (dy, ds),

where W is a space-time white noise.

Existence: function-valued solution exists if
d=1.

Uniqueness?

Pathwise uniqueness (PU):

x1 x2 — two solutions, X1(0,-) = X2(0,")
— X1(¢,)) = X2(,-),Vt > 0.

o — Lipschitz = PU follows easily.

o - non-Lipschitz: 7



Let o(x) be HOlder continuous with exponent .
Ongoing work with E. Perkins:
~ > 0.95 — PU for

0X 1 .
5 = QAX + o (X)W,
where W is space-time white noise.
Open: critical g such that
v > — PU,
v < v — ho PU.
We want to consider equations that are close
to the above.
One way is to take less singular (spatially) noise.
The noise W is “white” in time and (possibly)

“colored” in space, that is,

E [W(a;, W (v, s)} = 5(t — 8)k(x — ).

Assumptions k(z) < |z|7%, 0 < a < d.
o(x) is Holder continuous with exponent ~.

EXistence of function-valued solution:
0 < a < 2Ad, Peszat-Zabczyk(00), Dalang(99)
(for Lipschitz case. Similar for non-Lipschitz).

Theorem 1 (Sturm, Perkins, M., 05)
PU holds if

a < 2v— 1.



Super-Brownian motion

Branching Brownian motions.

Rd

Xn

~7 particles in R? at time O.
—,—,... — times of death or split,
mn N

1
pPo = pp = 5 probabilities of death or split.

Critical branching:
mean number of offspring = 1.

New particles move as independent Brownian
motions.

# particles in A at time ¢

XM(A) = . AcCR4
n

X"= X,

X is a super-Brownian motion — measure-

valued process.



Properties

Singular measure if d > 1.
Existence of density only in d = 1:
Xi(dr) = Xi(x)dx

d=1. Xi(x) is jointly continuous in (¢, x).
N. Konno, T. Shiga(88); M. Reimers (89):

0X 1 :
— = -AX +VXW.
ot 2 +

W — Gaussian space-time white noise.

Pathwise uniqueness (PU) for the above SPDE
is an open question. (v X is non-Lipschitz.)
Numerous attempts to prove PU failed.

Weak uniqueness (in law) holds by duality
argument.



Consider more general super-Brownian motion:

0X 1 i
(;fw) = 58X (x) + VAs@ X (@)W, ¢>0, € R.(

As(x) is a “rate” of branching at the point z
at time s.

Replace As(x)dx by a singular measure ps(dx).
X is a catalytic SBM with catalyst p (studied
by Dawson, Fleischmann, Delmas and others).

Particular case: p = dg — point catalyst.



Particular case: p = dg — point catalyst.

Let 19 be a local time, that is

I = /Ot /R5o(y)Xs(dy) ds.

Then SBM with a point catalyst at * = 0 sat-
isfies the martingale problem:

( For all ¢ € D(A), Mp(¢p) =0

Xt(6) = Xo(¢) + JE Xs(Ap/2) ds + M(o), -
<

where M:(¢) is a continuous Fi-martingale

| and (M(¢)): = #(0)210(¢).

Pretend for a second that [9(ds) is absolutely
continuous, that is,

19 — /Ot X5(0) ds, (3)

Then X;(-) solves a degenerate SPDE

Xi(@) = [ me-—y)Xo(d)+ [ pis(@)y/X(0)aBs

where p:(x) is a transition density of Brownian
motion.



Set x = 0 to get the following SDE

X,(0) = / pe(y) Xo(dy) + ¢ /O (t — 5)"12\/X,(0)dB, . (4)

X = const. Volterra equation?

However (3) is wrong—the local time 19(ds) is
singular

Xt(dx) does not have a density at x = 0.

No solution to (4).

Instead of 1/2 take a:

Easy to get existence of solution to the follow-
ing SDE

X,(0) = Xg + C/Ot(t ) /X.(0)dBs. (5)
for0<a<1/2.

Uniqueness?
Let o be a HOlder continuous with exponent +.

We will consider uniqueness problem the fol-
lowing Volterra-type stochastic equation

t
X; = Xg + /O (t — )% (Xs)dBs . (6)



Recall: pathwise uniqueness for SDEs
dXt — O‘(Xt>dBt

B; is a one-dimensional Brownian motion.

Theorem 2 ( Yamada, Watanabe (71))
If o is H8lder continuous with exponent 1/2,
then PU holds.

Remark 1 There are counter examples for o
which is Holder continuous with exponent less
than 1/2.
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Proof of Theorem 2 Define (in a special
way) function ¢, € C°(R) s.t.

¢n($) T |'CC|7 asn — 0,

" — 8, asn — oo.

Define X = X! - X2 Hence
dX,
Xo

(o(X{) — o(X}))dBy
0.

Ito’s formula:
% e 1 2
(%) = [ on(Z(o(X]) - o(X2)) dBs

Lty s 1 21)2
+5 | HED (X — o (x2))? ds

By the special choice of the function ¢, and
Holder assumptions on o one can show

Blon(R0] < oB[ [ 6h(R)I%|ds

— 0, asn — oo.
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Proof of Theorem 1 Recall
00X 1 .
— = _—-AX X)W
ot 2 +o(XOW,

where o is HOlder continuous with exponent ~
and W is a colored noise
E [W(x, W (v, s)} = §(t — s)k(z — v).
with
k(z) <|z|7 %, a>0.
X1 X2 — two solutions, X = X1 — X2

8)(;573) — %AX}(CB) + (J(th(ac)) — U(th(a?)))W(t,x),

Take again the functions ¢n:

an(x) T |$|7 asn — 0,

/!

n, — 00 asSn — oo.

Denote

5(s,x) = o(X1(z)) — o(X2(x)).
Ito:

B (5] = B | [ a(SNT.GAnds

+ 815 [ [ AIRIDF 50T I WG )z dy ds
0 JRe
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Let f= fI! — dx.
Also H(y) = |6(s,z)| < ¢|Xs(x)|” and hence
~ t ~ ~ 1
E[6a(G(f)] < B | [ Sh(GUmNTGALD ds

—|—E[ //2d "X (SR ()] K s ()]

X fr(2) fo (y)k(z — y)dz dy ds]
— [1,n_l_]'2,n

“Easy” to check:

limsup It < /tlAE HX’S(Q;)H ds
n— 00 02
Crucial for I2™: Holder exponent of X.

Suppose X is Holder continuous with exponent €.
Then we can show:

" -0, ifa<&(2y—1).

A% a

— E||X(2)]]
[Xe@)f < | 5

—— F |Xt(:1:)| =0, if a<&(2y-1).
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We got condition for PU:

a<&(2y—1).
Proposition 2 (Sanz-Solé, Sarra) Foranyé <

1-3, Xs(-) is Hélder continuous with expo-
nent &.

By Theorem of Sanz-Solé, Sarra we get

Bad: v /1 — a<2/3.
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Proposition 3 (Sturm, Perkins, M.)
At the points © where Xs(z) = 0, Xs(.) is
£-Holder continuous VE < 1.

Remark Mueller-Tribe have the result similar
to Proposition 3.

By condition on PU (a < &(2v—1)) we get
a<2v—1

and this finishes the proof of Theorem 1.
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Volterra-type stochastic equation

t
X, = Xo + /O (t — 5) "% (X5)dBs.

a € (0,1/2),

v € (1/2,1] — HOolder exponent of o.

Theorem 3 Let
S 1
2(1 —a)

Y

Then PU holds.
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t
X; = Xg + /O (t — s) "% (Xs)dBs .

Idea: represent it as a solution to SPDE.

Fix 6 such that 2%_9 — «. Define

2 0
(2 4+ 0)20zx
Then the function

0

—0
Bl
i

(7)

Ag

240

0 . C@ _‘513|

b (t,iB) - 1 € 2t
t2—|—9

is a solution to

5
{ ot Dgu (8)
uQ 00
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Let X be a solution to the following SPDE on
R_|_ X R

0X(t,x)
ot
More precisely X solves

X(t,x) = St Xo(x)
0 — S. )0 S S
+/0pr (t — 5,2)0(X(s,0))dB(s)

where S;,t > 0 is the semigroup generated by
Ag.

= QDX (t,z)+ do(z)o(X(t,2))B(t). (9)

EXistence: easy by tightness argument.

Let Xg(-) = 29 = const. Then

X((t,x) = Xo—l—/ope(t—s,x)a(X(s,O))dB(s)

In particular for x = 0 we have

X(t,0) = :z:o—l—/o co(t —s) “o(X(s,0))dB(s).(10)

Remark 4 Uniqueness for (10) follows from
uniqueness for (9).
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X1 X2 — two solutions, X = X1 — X2

3)(575515) = A¢Xi(z) + 6o(x)(c( X} (z)) — (X2 (x)))B(t).

Take again the functions ¢n:

én(z) 1 [z], asn — oo,

P! — 8o asn — oo.

Denote

5(s,x) = o(X1(2)) — o(X2(x)).
Ito:

B [6n(S(/))] = E [ /O & (R()) Ko (Do f) ds]

1 ! NaR% ~ 2 2
+8 (5 [ 00D, 027 (0)%as]
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Let f= f' — 6.
B [on(R(f1))] = B [ /O & (R (F1) Ko (Do f™) ds]

1 [ .
+8 15 [ o0R.0DDas, 07272007 ds
— Il’n—I_IQ’n.
Again

t
limsup It g/ DB [| Xs(2)|] ds
0

n—00

For I?" crucial:
Regularity of Xs(z) for = close to 0.
Suppose for all |z| small:

Xs(2)| < |2
Then we can show:
1
°" =0, ify>= +—£

— E[|X()] < /Ot DE [|Ro(@)|] ds

— E:|X't(a:)|:=0 if v > = +—5
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We got condition for PU:

J1,1
T o

Proposition 5
At times s where Xs(0) = 0, we have

K@) < Claff,

§<l<1/2_a/\1>
a\ 1—v

for any

By condition on PU we get

v—1/2
Y

a <

and this finishes the proof of Theorem 3.
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Proof of Proposition 5
t

£,(0) = X,(0) = / (¢ = )™ — (¢ — 5)~*)5(s,0) dB,
0

Y
+ / (' —s)"“5(s,0) dBs.
!

We assume that X (¢,0) = 0, and
X (t,0) is Holder with exponent n. Then

5(s,0)] <|X(s,0)[7 < c(t—s)T.
Formally

%:(0) — Xi(0)] < \/ /O ((t' = 5)~ = (t — 5)"*)?5(s,0)? ds

"
+ C\// (t' — s)7225(s,0)?% ds
t

C\//O (' —s)™ %= (t —s) )2t —s)?"ds

+ C\//t/(t' — )72t — §)M ds

< C|t/ . t|(1/2—a—|—77”y)/\1

IA

Iterate to get
[ Xy (0) — X4 (0)] < cft! —tf"
for any
1/2 — «

< A
n 1—~
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Similarly

t
K@) — X(0)| = | /O (of_o(x) — p_)5(s,0) dB,
t
< c\/ / (0!, () — p!_(0)2(t — 5)>" ds
0
< ‘x|n/a
for any
1/2 —
n < / “ A 1.
1—~

23



Theorem 4 Forany a < 1/2, weak uniqueness
holds for non-negative solutions of

t
thXO—I—/O(t—s)_C" | Xs|dBs .

Proof Duality argument.
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