Catalytic Discrete State Branching Models and Related Limit Theorems

Chunhua Ma

Beijing Normal University

(A joint work with Zenghu Li)

0.Introduction; catalytic CBI-processes

- Dawson-Fleishmann ('97) introduced catalytic branching processes in the measure-valued setting.
- Modeling of catalytic reactions.
 the reactant only branches in the presence of the catalyst.
- Dawson-Li ('06) defined catalytic CBI-processes (without spatial motion) by a system of stochastic integral equations.

the catalyst process is a CBI-process.

the reactant process is a 'CBI-process' with random branching rate proportional to the catalyst.

An example of catalytic CBI-processes

ullet For real constants σ_1 , σ_2 , and two one-dimensional Brownain motions $B_1(\cdot)$ and $B_2(\cdot)$

$$dX(t) = \sigma_1 \sqrt{X(t)} dB_1(t), \tag{1}$$

$$dY(t) = \sigma_2 \sqrt{X(t)Y(t)} dB_2(t). \tag{2}$$

$B_1(\cdot)$ and $B_2(\cdot)$ may not be independent!

- From the modeling perspective, the catalyst and the reactant may involve dependent mechanisms.
- Duffie et al. ('03): affine processes.

Dawson-Li ('06): regular affine processes arise in some fluctuation limit theorems of catalytic CBI-processes.

Our questions.

- To find the discrete state counterpart: catalytic DBI-processes.
 the 'discrete particle' picture may be a guide to our intuition
- Diffusion approximations.

• Li ('00): DBI-processes $\stackrel{fluctuate}{\longrightarrow}$ OU-processes.

```
catalytic DBI-
processes

how to rescale?
Affine markov
processes
```

A discrete-state version of Dawson-Li ('06).

1. Catalytic discrete state branching processes

ullet A discrete state branching process (DB) is an \mathbb{N} -valued Markov chain $\{\xi(t)\}$ with Q-matrix of the form

$$q_{ij} = \begin{cases} l_1 i p_{j-i+1} & \text{if } j \geq i-1 \text{ and } j \neq i, \\ l_1 i (p_1-1) & \text{if } j=i, \\ 0 & \text{others,} \end{cases}$$
 (3)

where $l_1 > 0$, $\{p_i : i = 0, \dots\}$ a discrete distribution on \mathbb{N} .

ullet Let $\xi(0)\in\mathbb{N}$. A realization of $\{\xi(t)\}$ is given by

$$\xi(t) = \xi(0) + \int_0^t \int_{\mathbb{N}} \int_0^{l_1 \xi(s-)} (z-1) J_1(ds, dz, du), \quad (4)$$

where $J_1(ds,dz,du)$ a Poisson r.m. on $(0,\infty)\times \mathbb{N}\times (0,\infty)$ with intensity $ds\mu_1(dz)du$ and $\mu_1(\{i\})=p_i$.

- Let $l_2>0$ and let μ_2 be another probability on $\mathbb N$. Suppose that $J_2(ds,dz,du)$ is another Poisson r.m. on $(0,\infty)\times\mathbb N\times (0,\infty)$ with intensity $ds\mu_2(dz)du$.
- ullet Given any $\eta(0)\in\mathbb{N},$ define another process $\eta(t)$ by

$$\eta(t) = \eta(0) + \int_0^t \int_{\mathbb{N}} \int_0^{l_2 \xi(s-) \eta(s-)} (z-1) J_2(ds, dz, du).$$
 (5)

Intuitively, $\eta(t)$ is a branching process with branching rate $l_2\xi(s-)$ at time $s\geq 0$. Then we call $(\xi(t),\eta(t))$ a catalytic branching system or catalytic DB-process, where $\xi(t)$ is the catalyst and $\eta(t)$ is the reactant.

Reformulation of catalytic branching processes

ullet Let $N_1(ds,dz,du)$ be a Poisson r.m. on $(0,\infty) imes \mathbb{N}^2 imes (0,\infty)$ such that J_1 and J_2 can be given by the projections of N_1 .

$$\xi(t) = \xi(0) + \int_0^t \int_{\mathbb{N}^2} \int_0^{l_1 \xi(s-)} (z_1-1) N_1(ds,dz,du),$$
 (6)

where $z=(z_1,z_2)\in\mathbb{N}^2$ and $(\xi(0),\eta(0))\in\mathbb{N}^2$.

 $\xi(\cdot)$ and $\eta(\cdot)$ may involve dependent branching mechanism.

Introduce immigration structure

• Suppose that $N_0(ds, dz)$ is a Poisson r.m. on $(0, \infty) \times \mathbb{N}^2$ independent of N_1 . Consider the stochastic equations:

$$\xi(t) = \xi(0) + \int_0^t \int_{\mathbb{N}^2} z_1 N_0(ds, dz) + \int_0^t \int_{\mathbb{N}^2} \int_0^{l_1 \xi(s-)} (z_1 - 1) N_1(ds, dz, du),$$
(8)

$$egin{array}{lll} \eta(t) &=& \eta(0) + \int_0^t \int_{\mathbb{N}^2} oldsymbol{z_2} oldsymbol{N_0}(ds,dz) \ &+ \int_0^t \int_{\mathbb{N}^2} \int_0^{l_2 \xi(s-) \eta(s-)} (z_2-1) N_1(ds,dz,du). \end{array}$$

Introduce additional mechanism for the reactant

ullet Let $r\geq 0$. Suppose that $N_2(ds,dz_2,du)$ is a Poisson r.m. on $(0,\infty)\times \mathbb{N}\times (0,\infty)$ independent of N_0 and N_1 .

$$\eta(t) = \eta(0) + \int_{0}^{t} \int_{\mathbb{N}^{2}} z_{2} N_{0}(ds, dz)$$

$$+ \int_{0}^{t} \int_{\mathbb{N}^{2}} \int_{0}^{l_{2} \xi(s-)\eta(s-)} (z_{2}-1) N_{1}(ds, dz, du)$$

$$+ \int_{0}^{t} \int_{\mathbb{N}} \int_{0}^{r\eta(s-)} (z_{2}-1) N_{2}(ds, dz_{2}, du). \tag{9}$$

- some reactant particles are not catalyzed by the catalyst.
- We call $(\xi(\cdot), \eta(\cdot))$ defined by (8) and (9) a catalytic DBI-process.

2. Diffusion approximation: a simple case

 Consider a sequence of catalytic DB-processes (without immigration) given by

$$\xi_n(t) = \xi_n(0) + \int_0^t \int_{\mathbb{N}^2} \int_0^{n \xi_n(s-)} (z_1-1) N_1(ds,dz,du),$$

$$\eta_n(t) = \eta_n(0) + \int_0^t \int_{\mathbb{N}^2} \int_0^{m{\xi_n(s-)}\eta_n(s-)} (z_2-1) N_1(ds,dz,du),$$

where N_1 is a Poisson r.m. with intensity $ds\mu(dz)du$.

• the offspring distribution μ is defined by the generating function $g(\lambda_1, \lambda_2) = \frac{1}{4}(\lambda_1 + \lambda_2)^2$, which means the dependent branching mechanisms.

ullet Consider $(\xi_n(t),\eta_n(t))$ in the natural scaling :

$$x_n(t) = rac{\xi_n(t)}{n}$$
 and $y_n(t) = rac{\eta_n(t)}{n}$. (10)

Theorem 1 If $(x_n(0), y_n(0))$ converges in distribution to (x(0), y(0)), then $(x_n(\cdot), y_n(\cdot))$ converges in distribution on $D([0, \infty), \mathbb{R}^2_+)$ to a process $(x(\cdot), y(\cdot))$, which solves

$$x(t) = x(0) + \int_0^t \int_0^{x(s)} \sigma_1 W(ds, du), \tag{11}$$

$$y(t) = y(0) + \int_0^t \int_0^{x(s)y(s)} \sigma_2 W(ds, du), \tag{12}$$

where W(ds, du) is a white noise with intensity dsdu.

Some remarks

- The diffusion limit can not always represented by (1)-(2). The difficulty comes from dependent branching mechanism.
- a proper representation should be (11) and (12).

EL Karoui-Méléard ('90): vector square-integrable martingales as stochastic integrals of orthogonal martingale measures.

the pathwise uniqueness of solutions of (11)-(12) can be easily proved by the method similar to the Yamada-Watanabe one.

● To get (1)-(2), we have to choose another different scaling to erase the effect of the dependent branching mechanisms.

$$egin{aligned} \xi_n(t) &= \xi_n(0) + \int_0^t \int_{\mathbb{N}^2} \int_0^{n \xi_n(s-)} (z_1-1) N_1(ds,dz,du), \ \eta_n(t) &= \eta_n(0) + \int_0^t \int_{\mathbb{N}^2} \int_0^{n \xi_n(s-) \eta_n(s-)} (z_2-1) N_1(ds,dz,du). \end{aligned}$$

$$\bullet \ (\frac{\xi_n(\cdot)}{n}, \frac{\eta_n(\cdot)}{n^2}) \Longrightarrow (x(\cdot), y(\cdot)), \text{ which is solved by (1)-(2)},$$

but where $B_1(\cdot)$ and $B_2(\cdot)$ are independent!

Diffusion approximation with jumps

Consider catalytic DBI-processes in the natural scaling:

$$x_n(t) := rac{\xi_n(t)}{n} \quad ext{and} \quad y_n(t) := rac{\eta_n(t)}{n}.$$

ullet The offspring distribution μ_n is given by the p.g. f. g_n .

For $0 \leq \lambda_1, \lambda_2 \leq n$, set

$$R_n(\lambda_1,\lambda_2) = n\gamma_n \Big[g_n\Big(1-rac{\lambda_1}{n},1-rac{\lambda_2}{n}\Big) - \Big(1-rac{\lambda_1}{n}\Big)\Big(1-rac{\lambda_2}{n}\Big)\Big].$$

(A) The sequence $\{R_n\}$ is uniformly Lipschitz in (λ_1, λ_2) on each bounded rectangle and $R_n \to R$ as $n \to \infty$;

Theorem 2 Under (A) and some other technical conditions, $(x_n(\cdot), y_n(\cdot))$ converges in distribution on $D([0, \infty), \mathbb{R}^2_+)$ to a process $(x(\cdot), y(\cdot))$, which defined by

$$egin{aligned} x(t) &= x(0) + \int_0^t (b_1 + eta_{11} x(s)) ds + \int_0^t \int_0^{x(s-)} \sigma_{11} W_1(ds,du) \ &+ \int_0^t \int_0^{x(s-)} \sigma_{12} W_2(ds,du) + \int_0^t \int_{\mathbb{R}^2_+} z_1 N_0(ds,dz) \ &+ \int_0^t \int_{\mathbb{R}^2_+} \int_0^{x(s-)} z_1 ilde{N}_1(ds,dz,du) \end{aligned}$$

$$\begin{split} y(t) &= y(0) + \int_0^t (b_2 + \beta_{21} x(s) y(s) + \beta_{22} y(s)) ds \\ &+ \int_0^t \int_0^{y(s-)} \sigma_0 W_0(ds, du) + \int_0^t \int_0^{x(s-)y(s-)} \sigma_{21} W_1(ds, du) \\ &+ \int_0^t \int_0^{x(s-)y(s-)} \sigma_{22} W_2(ds, du) + \int_0^t \int_{\mathbb{R}^2_+} z_2 N_0(ds, dz) \\ &+ \int_0^t \int_{\mathbb{R}^2_+} \int_0^{x(s-)y(s-)} z_2 \tilde{N}_1(ds, dz, du), \end{split}$$

where $ilde{N}_1(ds,dz,du) = N_1(ds,dz,du) - ds\mu(dz)du.$

ullet $(x(\cdot),y(\cdot))$ can be naturally regarded as a general catalytic CBI-process.

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

2. Fluctuation limits and affine Markov processes

ullet Let $D=\mathbb{R}_+ imes\mathbb{R}$ and $U=\mathbb{C}_- imes(i\mathbb{R}).$ A Markov semigroup $(P_t)_{t\geq 0}$ on D is said to be affine if

$$\int_{D} \exp\{\langle u, \xi \rangle\} P_{t}(x, d\xi) = \exp\{\langle x, \psi(t, u) \rangle + \phi(t, u)\}$$
(13)

for all $u \in U$.

■ Duffie-Filipović-Schachermayer ('03) showed that affine processes have a wide range of applications in finance.

 \bullet The affine diffusion $(X(\cdot),Y(\cdot))$ is described by the following stochastic equations

$$X(t) = X(0) + \int_0^t (b_1 + \beta_{11}X(t)) dt + \int_0^t \sigma_{11}\sqrt{X(t)} dB_1(t)$$
 $+ \int_0^t \sigma_{12}\sqrt{X(t)} dB_2(t),$
 $Y(t) = Y(0) + \int_0^t (b_2 + \beta_{21}X(t) + \beta_{22}Y(t)) dt + \int_0^t \sqrt{a} dB_0(t)$
 $+ \int_0^t \sigma_{21}\sqrt{X(t)} dB_1(t) + \int_0^t \sigma_{22}\sqrt{X(t)} dB_2(t),$

where $a,b_1\geq 0$ and $b_2,\beta_{11},\beta_{21},(\sigma_{ij})$, and where $B(\cdot)=\big(B_0(\cdot),B_1(\cdot),B_2(\cdot)\big)$ is a three-dimensional Brownian motion. See Dawson and Li ('06) for a general case.

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

The high density fluctuation limit

Consider another sequence of catalytic DBI-processes by

$$egin{align} \xi_n(t) &= \xi_n(0) + \int_0^t \int_{\mathbb{N}^2} z_1 N_{n,0}(ds,dz) \ &+ \int_0^t \int_0^{\gamma_n \xi_n(s-)} \int_{\mathbb{N}^2} (z_1-1) N_{n,1}(ds,du,dz), \end{aligned}$$

$$egin{align} \eta_n(t) &= \eta_n(0) + \int_0^t \int_{\mathbb{N}^2} z_2 N_{n,0}(ds,dz) \ &+ \int_0^t \int_0^{rac{\gamma_n}{n^2} \xi_n(s-) \eta_n(s-)} \int_{\mathbb{N}^2} (z_2-1) N_{n,1}(ds,du,dz) \ &+ \int_0^t \int_{\mathbb{N}} \int_0^{ heta_n \eta_n(s-)} (z_2-1) N_{n,2}(ds,dz_2,du). \end{aligned}$$

$$ullet$$
 Let $x_n(t)=rac{\xi_n(t)}{n}$ and $y_n(t)=rac{\eta_n(t)-n^2}{n}.$

Theorem 3 Under suitable conditions, $(x_n(t), y_n(t))$ converges as $n \to \infty$ to an affine process with non-negative jumps (x(t), y(t)) with state space $\mathbb{R}^+ \times \mathbb{R}$.

Conversely, any affine process with non-negative jumps arise in a fluctuation limit for some sequence of catalytic DBI-processes.

● Idea: The main feature of catalytic DBI-processes is a non-linearity. Re-scale this non-linearity to affine linearity.

Some references

- 1. Dawson; Fleischmann: J. Theoret. Probab. 10 ('97).
- 2. Dawson, D.A. and Li, Z.H.: Ann. Probab. 34 ('06).
- 3. Duffie; Filipović; Schachermayer: Ann. Appl. Probab. 13 ('03).
- El Karoui, N.and Méléard, S.: Martingale measures and stochastic calculus. *Probab. Theory Related Fields.* 84 (1990), 83–101.
- 5. Kawazu, K. and Watanabe, S.: Branching processes with immigration and related limit theorems. *Theory Probab. Appl.* **16** (1971), 36-54.

6. Li, Z.H.: Ornstein-Uhlenbeck type processes and branching processes with immigration. *J. Appl. Probab.* **37** (2000), 627-634.

Thanks!