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0.Introduction; catalytic CBIl-processes

® Dawson-Fleishmann ('97) introduced catalytic branching pro-
cesses in the measure-valued setting.

® Modeling of catalytic reactions.
the reactant only branches in the presence of the catalyst.

® Dawson-Li ('06) defined catalytic CBl-processes (without
spatial motion) by a system of stochastic integral equations.

the catalyst process is a CBl-process.

the reactant process is a ‘CBI-process’ with random branch-
ing rate proportional to the catalyst.



An example of catalytic CBl-processes

® For real constants o,, o2, and two one-dimensional Brow-
nain motions By (-) and Bs(-)

dX(t) = o1/X(0)dB(t), 1)
dY (t) = o2/X @)Y (£)dBs(t). )

B;(-) and B, (-) may not be independent!

® From the modeling perspective, the catalyst and the reac-
tant may involve dependent mechanisms.

® Duffie et al. ('03): affine processes.

Dawson-Li ('06): regular affine processes arise in some
fluctuation limit theorems of catalytic CBI-processes.



Our questions.
® To find the discrete state counterpart: catalytic DBI-processes.
the ‘discrete particle’ picture may be a guide to our intuition

@ Diffusion approximations.

catalytic DBI- | ,cauy> |catalytic CBI-
—
processes processes

fluctuate

® Li ('00): DBI-processes ° ——  OU-processes.

catalytic DBI- | how to rescate? |Affine markov
—_—
processes processes

A discrete-state version of Dawson-Li ('06).



1. Catalytic discrete state branching processes

® A discrete state branching process (DB) is an N-valued
Markov chain {£(t) } with Q-matrix of the form

Litpj_it1 ifj ><¢—1landj # ¢,
0 others,

where l; > 0, {p; : ¢ = 0, - - - } a discrete distribution on N.
® Let £(0) € N. Arealization of {£(t)} is given by

=0+ [ [ [ - nnwsana, @

where J;(ds, dz, du) a Poissonr.m.on (0, 0c0) X N x (0, co)
with intensity dsp1(dz)du and p1 ({¢}) = p;.



® Letl, > 0 and let u, be another probability on N. Suppose
that J»(ds, dz, du) is another Poisson r.m. on (0, 00) X N X
(0, co) with intensity dsps(dz)du.

® Given any n(0) € N, define another process n(t) by
t 12&(s—)n(s—)

n®=n@+ [ [ [ (= — 1) Ta(a R
0 N JO

Intuitively, n(¢) is a branching process with branching rate
l.¢(s—) at time s > 0. Then we call (&£(t), n(t)) a catalytic
branching system or catalytic DB-process, where £(t) is the
catalyst and n(t) is the reactant.



Reformulation of catalytic branching processes

® Let N, (ds,dz,du) be a Poisson r.m. on (0,00) X N? X
(0, o0) such that J; and J, can be given by the projections of
Nj.

t l1&(s—)
£(t) =g(o)+/0 /N/O (21 — )Ny (doy R

t 12&(s—)n(s—)
n(t) = n(0) + / / / (22 — 1) Ny (dey =i IREE
0 N2 Jo

where z = (21, 22) € N? and (£(0),1(0)) € N2

&(+) and n(-) may involve dependent branching mechanism.



Introduce immigration structure

® Suppose that Ny(ds, dz) is a Poisson r.m. on (0, co) x N?
independent of IN;. Consider the stochastic equations:

€0 = £+ [ [ zNo(ds,az)
t l1&(s—)
— 1)Ny(ds, dz, du), (8
—|—/0/N2/0 (z1 — 1)Ny1(ds, dz,du), (8)

n®) = )+ [ [ zNods,dz)

t 12€(s—)n(s—)
+ / / / (22 = ].)N]_(dS, dZ, dU).
0 JN2 Jo



Introduce additional mechanism for the reactant

® Let r > 0. Suppose that Ny (ds, dz2, du) is a Poisson r.m.
on (0,00) X N x (0, co) independent of Ny and IN;.

e 0) + /0 t /N 2 No(ds, d)

t 12€(s—)n(s—)
- / / / (zo — 1)N1(ds, dz, du)
o JnzJo
t rn(s—)
—|—/ / / (z2 — 1)N2(ds, dz2, du). )
o JnJo

® some reactant particles are not catalyzed by the catalyst.

® We call (&(-),n(-)) defined by (8) and (9) a catalytic DBI-
process.



2. Diffusion approximation: a simple case
® Consider a sequence of catalytic DB-processes (without

immigration) given by

o0 =60+ [ [ [ - s, az,aw),

t €n(s—)mn(s—)

() = ) +/ / / (z2 — 1) Na(day D)
0 N2 Jo

where IV, is a Poisson r.m. with intensity dsu(dz)du.

® the offspring distribution w is defined by the generating
function g(A1, Az) = (A1 + Az2)%, which means the depen-
dent branching mechanisms.



® Consider (£,.(t), nn(t)) in the natural scaling :

€n( ) nn( )

T, (t) =
Theorem 1 /f (:cn(o), yn(0)) converges in distribution to
(z(0),y(0)), then (x,(-), yn(+)) converges in distribution on
D([0, ), R?%) to a process (z(-), y(-)), which solves

and y,(t) =

(10)

t prx(s)
w(t)zm(0)+// o, Wi{da i) (11)
0 0

t  rx(s)y(s)
O (0) -+ / / e Wi(ds, du),  NUE
0 0

where W (ds, du) is a white noise with intensity dsdu.



Some remarks

® The diffusion limit can not always represented by (1)-(2).
The difficulty comes from dependent branching mechanism.

® a proper representation should be (11) and (12).

EL Karoui-Méléard ('90): vector square-integrable martingales
as stochastic integrals of orthogonal martingale measures.

the pathwise uniqueness of solutions of (11)-(12) can be easily
proved by the method similar to the Yamada-Watanabe one.

® To get (1)-(2), we have to choose another different scaling
to erase the effect of the dependent branching mechanisms.



t nén (s—)
En(t) = £€,(0) —i—/o /1\12/0 (z1 — 1)N1(ds, dz, du),
t 1nEn (8—)Mn (5—)
@) =@+ [ [ [ (52 — )N (ds, dz, du).

° (fn(), Mn(*)

n n2

but where B; () and Bs(-) are independent!

) = («(-),y(-)), which is solved by (1)-(2),



Diffusion approximation with jumps

® Consider catalytic DBI-processes in the natural scaling:

fn( ) and  y.(t) := nn(t)

T (t) =

® The offspring distribution u., is given by the p.g.f. g,,.

For 0 < A1, A2 < n, set

Bau = o121 22) - (1-2) (- 2)]

n n n

(A) The sequence {R,} is uniformly Lipschitz in (A1, A2) on
each bounded rectangle and R,, — R as n — oc;



Theorem 2 Under (A) and some other technical conditions,
(zn(+), yn(+)) converges in distribution on D([0, o0), R2) to
a process (x(+), y(-)), which defined by

t t rx(s—)
z(t) = =(0) —|—/0 (b1 —|—[311:c(s))d.s—l—/0 /0 011 Wi(ds, du)

t rax(s—) t
—l—/ / o12Wa(ds, du) +/ / z1No(ds, dz)
o Jo 0 JRZ

t z(s—) )
+/ / / z1N1(ds, dz, du)
o JR? Jo



y(t)

t
= y(0) + /0 (by + Bar(s)y(s) + Baay(s))ds

t ry(s—) t rx(s—)y(s—)
+/ / ooWo(ds,du) + / / 021 W1 (ds, du)
0 0 JO 0

t re(s—)y(s—) t
+ / / 0'22W2(d8, du) —+ / / ZzN()(dS, dZ)
0 JO 0 Rﬁ_

t z(s—)y(s—)  _
+ / / / zoN1(ds,dz,du),
0 JR3 Jo

where N (ds, dz, du) = Ny(ds, dz,du) — dsp(dz)du.

® (x(:),y(-)) can be naturally regarded as a general catalytic
CBIl-process.



2. Fluctuation limits and affine Markov processes

®letD =R, xRandU = C_ x (zR). A Markov semigroup
(P:)+>0 on D is said to be affine if

/D exp{(ts, £)} Py(, df) = exp{ (e, H(t, ) - Sy t)IIE)

forallu € U.

® Duffie-Filipovic-Schachermayer ('03) showed that affine pro-
cesses have a wide range of applications in finance.



® The affine diffusion (X (), Y (+)) is described by the follow-
ing stochastic equations

X0 = X© + [ 1+ fuX@)dt+ [ ouyX@ dBi()
+/OtalzJWde(t),

Y(t) = Y(O)—|—/Ot(b2—|—[5'21X(t)+622Y(t))dt+/0t\/EdBo(t)
+ [ConVX@ B0 + [ onyX@ aBao)

where a,b; > 0 and bz, B11, (821, (o), and where B(:) =
(Bo(+), Bi(+), Ba(-)) is a three-dimensional Brownian motion.
See Dawson and Li ('06) for a general case.



The high density fluctuation limit

® Consider another sequence of catalytic DBI-processes by

t
&) = £a0)+ | [ 21Nno(ds, d2)
t 'Yngn(s_)
+/0 /0 /Nz(zl — 1} N (@S ia et

malt) = (@) + [ [ zaNoo(ds, )

t 3 (s—)mm(s—)
—|—/ / (z2 —1)N,1(ds,du,dz)
o Jo N2

t On M (s—)
+ / / / (22 — 1) N, 2(ds, dzs, du).
o JnJo



na(t) — n®
= :

® Letz,(t) =

E”T(Lt) and y,(t) =

Theorem 3 Under suitable conditions, (x,(t), y.(t)) converges
as n — oo to an affine process with non-negative jumps
(z(t),y(t)) with state space Rt x R.

Conversely, any affine process with non-negative jumps arise
in a fluctuation limit for some sequence of catalytic DBI-processes.

® |dea: The main feature of catalytic DBI-processes is a non-
linearity. Re-scale this non-linearity to affine linearity.
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