
Outline

Background and Results

Sketch of the proof of . . .

Sketch of the proof of . . .

Regularizing the drift

Stochastic transport . . .

�¯Ì�

I K �

JJ II

J I

1 1� 14

� £

�¶w«

' 4

ò Ñ

�5th Workshop on Markov Processes

July 14th, 2007

Regularity of Solutions to Differential

Equations with non-Lipschitz Coefficients

Dejun Luo

luodejun@mail.bnu.edu.cn

Beijing Normal University



Outline

Background and Results

Sketch of the proof of . . .

Sketch of the proof of . . .

Regularizing the drift

Stochastic transport . . .

�¯Ì�

I K �

JJ II

J I

1 2� 14

� £

�¶w«

' 4

ò Ñ

1 Outline

• Background.

• Our results.

• Sketch of Proofs.
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2 Background

Equations
Let A0, A1, · · · , AN be vector fields on Rd and wt = (w1

t , · · · , wN
t ) a stan-

dard Brownian motion on RN . Consider the ODE

dXt = A0(Xt)dt, X0 = x (1)

and the Itô SDE

dYt =

N∑
k=1

Ak(Yt)dw
k
t + A0(Yt)dt, Y0 = x. (2)

The classical theory of ODE (resp. SDE) requires that A0 (resp.
A0, · · · , AN ) satisfies global Lipschitz condition. Recently the conditions
have been weakened in two directions: divergence-type conditions and
non-Lipschitz conditions.
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First direction: Divergence-type conditions
λ: Lebesgue measure on Rd.
σ: Standard Gaussian measure on Rd.

Diperna and Lions (1989): If A0 ∈ W 1,1
loc (Rd,Rd) and div(A0) is

bounded, then ODE (1) defines a flow of measurable maps, which leaves
λ quasi-invariant, i.e. the push-forward λt = λ ◦X−1

t � λ.

Cipriano and Cruzeiro (2005): Similar result holds if A0 ∈ W 1,1
loc (σ) and

there exists δ > 0 such that∫
Rd
eδ|divσ(A0)|dσ <∞, (3)

where divσ(A0) = div(A0) + x · A0 is the divergence with respect to σ.

Note that although the second result allows divσ(A0) to be unbounded, it
does not cover that of the first completely. For example, let A0 =

(
(x −

y)2, (x− y)2
)
, then div(A0) = 0 but (3) is not satisfied.
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Second direction: Non-Lipschitz Condition
For some β ∈ (0, 1], there exist C, c0 > 0 such that for all x, yRd with
|x− y| ≤ c0,

N∑
k=1

|Ak(x)− Ak(y)|2 ≤ C|x− y|2
(

log
1

|x− y|

)β

, (i)

|A0(x)− A0(y)| ≤ C|x− y|
(

log
1

|x− y|

)β

. (ii)

c0 is small enough so that s → s
(

log 1
s

)β is increasing and concave on
(0, c0).

We always assume the linear growth condition

N∑
k=1

|Ak(x)|2 ≤ C0(1 + |x|2), |A0(x)| ≤ C0(1 + |x|), (iii)

C0 is a constant.
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Known results and question
Shizan Fang and Tusheng Zhang (2005): Under the conditions (i), (ii)

with β = 1 and (iii), Itô equation (2) has a unique strong solution which
is continuous on [0,∞)× Rd.

Xicheng Zhang (2005): Under slightly stronger conditions: (i), (ii) hold
with β = 1 and with log 1

|x−y| being replaced by 1 ∨ log 1
|x−y|, then Yt is a

stochastic flow of homeomorphisms on Rd.

Our question: What are the regular properties of Xt (or Yt), i.e. to which
extent Xt (or Yt) is continuously dependent on the initial value x.
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3 Our results

Proposition 1. (ODE) (a) Assume (ii) with β ∈ (0, 1) and (iii). Then for
all t > 0, Xt : Rd → Rd is α-Hölder continuous for any α ∈ (0, 1).

(b) Assume (ii) with β = 1 and (iii), then Xt is Hölder continuous of
order e−Ct.

Proposition 2. (SDE) Assume Ai, 0 ≤ i ≤ N satisfy (i), (ii) with β ∈
(0, 1) and (iii). Then Yt has a version Ỹt such that a.s., for all t ≥ 0 and
α ∈ (0, 1), Ỹt is α-Hölder continuous on any ball B(R).
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Comparison of Results
ODE (1):

• A0 is globally Lipschitz continuous, then so is Xt;

• A0 satisfies (ii) with β < 1 and (iii), then Xt ∈ Cα for any α ∈ (0, 1);

• A0 satisfies (ii) with β = 1 and (iii), then the order of Hölder continu-
ity of Xt decreases exponentially fast along the time.

SDE (2):

• If A0, · · · , AN satisfy global Lipschitz condition, using Kolmogorov’s
modification theorem, we can only prove that a.s. ∀ t > 0, Yt is α-
Hölder continuous for any α ∈ (0, 1).

• If (i), (ii) hold with β < 1 and (iii), then we also have a.s. ∀ t > 0, Yt
is α-Hölder continuous for any α ∈ (0, 1).

Hence in the situation of SDE, we may say

β < 1, (i) + (ii) + (iii) ≈ global Lipschitz condition.
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Corollary
dimH(E): the Hausdorff dimension of E ⊂ Rd.

For ODE (1), the inverse of Xt satisfies the following equation

dX−1
t = −A0

(
X−1
t

)
dt, X−1

0 = x.

Since −A0 has exactly the same properties as those of A0, the results in
Proposition 1 also hold for the map X−1

t : Rd → Rd. Therefore we have

Corollary. (a) Under the conditions of Proposition 1 (a), for any E ⊂ Rd

and t > 0,
dimH(Xt(E)) = dimH(E).

(b) Under the conditions of Proposition 2, for any E ⊂ Rd, a.s. for all
t > 0,

dimH(Yt(E,w)) ≤ dimH(E).
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An estimate of div(A0)

Suppose div(A0) exists in the sense of distribution, i.e. for every ψ ∈
C∞

0 (Rd), ∫
Rd
〈A0,∇ψ〉dλ = −

∫
Rd

div(A0)ψ dλ. (4)

This is weaker than the requirement that A0 ∈ W 1,1
loc (Rd,Rd). We have a

simple estimate:

Proposition 3. Assume (ii) and div(A0) ∈ L1
loc(Rd) exists in the sense of

(4), then ∃Cd > 0 such that ∀ ball B(x, r), we have∣∣∣∣ ∫
B(x,r)

div(A0)dλ

∣∣∣∣ ≤ Cdλ(B(x, r))

(
log

1

λ(B(x, r))

)β

. (5)

Remark. If B(x, r) is replaced by d-dimensional small cubes, the esti-
mate (5) also holds with another constant Cd.
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Main Result
Theorem. Assume (ii) with β = 1, (iii) and div(A0) ∈ L1

loc(Rd) exists in
the distribution sense.

(i) If div(A0) is bounded, then the Lebesgue measure is quasi-invariant
under the flow Xt.

(ii) If there exist γ ∈ (0, 1) and C > 0 such that for any small connected
open subset O ⊂ Rd, we have∣∣∣∣ ∫

O

div(A0)(x)dλ

∣∣∣∣ ≤ Cλ(O)

(
log

1

λ(O)

)γ

, (6)

then for any subset E ⊂ Rd with dimH(E) < d, it holds that λt(E) = 0

for all t ≥ 0.

Remark. We do not require that A0 ∈ W 1,1
loc (Rd,Rd). In the proof of (ii),

the ”connected open set” is X−1
t (B(x, r)). Since X−1

t is a homeomor-
phism, when the radius r is small enough, X−1

t (B(x, r)) are very close to
standard balls.
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4 Sketch of the proof of Theorem (i).

If A0 ∈ C1
b and θ0 ∈ C1, then the solution θ(t, x) to the transport equation

∂tθ + A0 · ∇θ = 0, θ(0, ·) = θ0

can be expressed by θ(t, x) = θ0

(
X−1
t (x)

)
, where X−1

t (x) is the inverse
flow of the solution to the following ODE

dXt = A0(Xt)dt, X0 = x.

Now under the non-Lipschitz condition

|A0(x)− A0(y)| ≤ C|x− y| log
1

|x− y|
,

∀ t > 0, Xt : x→ Xt(x) is a homeomorphism of Rd. Approximating A0

by smooth vector fields, we can prove θ(t, x) = θ0

(
X−1
t (x)

)
still solves the

transport equation, but in the distribution sense, i.e. for any ψ ∈ C∞
c (Rd),∫

Rd
θ(t, x)ψ(x)dx =

∫
Rd
θ0(x)ψ(x)dx−

∫ t

0

∫
Rd
θ(s, x)div(ψA0)(x)dx.
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Fix T > 0 and θ0 ∈ Cc(Rd). Choose ψ ∈ C∞
c (Rd) such that ψ ≡ 1 on the

union
⋃

0≤t≤T X
−1
t

(
supp(θ0)

)
. Then ∀ t ≤ T ,∫

Rd
θ(t, x)dx =

∫
Rd
θ0(x)dx−

∫ t

0

∫
Rd
θ(s, x)div(A0)(x)dxds

⇐⇒
∫

Rd
θ0 dλt =

∫
Rd
θ0 dλ−

∫ t

0

∫
Rd
θ0 div(A0)

(
X−1
s (x)

)
dλsds.

Now let U be a ”regular” subset of Rd. Approximating 1U by θ0 ∈ Cc(Rd),
we get

λt(U) = λ(U)−
∫ t

0

∫
U

div(A0)
(
X−1
s (x)

)
dλs(x)ds.

Therefore

λt(U) ≤ λ(U) + ‖div(A0)‖∞
∫ t

0

λs(U)ds.

And Gronwall’s inequality gives us

λt(U) ≤ λ(U)e‖ div(A0)‖t.
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Thank you very much!
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