5th Workshop on Markov Processes July 14th, 2007

Regularity of Solutions to Differential Equations with non-Lipschitz Coefficients

Dejun Luo

luodejun@mail.bnu.edu.cn

Beijing Normal University

Outline

Background and Results Sketch of the proof of . . . Sketch of the proof of . . . Regularizing the drift Stochastic transport . . .

访问主页

第1页14

全屏显示

关闭

退出

返回

Background and Results Sketch of the proof of ... Sketch of the proof of ... Regularizing the drift Stochastic transport ...

Outline

1 Outline

- Background.
- Our results.
- Sketch of Proofs.

2 Background

Equations

Let A_0, A_1, \dots, A_N be vector fields on \mathbb{R}^d and $w_t = (w_t^1, \dots, w_t^N)$ a standard Brownian motion on \mathbb{R}^N . Consider the ODE

$$dX_t = A_0(X_t)dt, \quad X_0 = x \tag{1}$$

and the Itô SDE

$$dY_t = \sum_{k=1}^{N} A_k(Y_t) dw_t^k + A_0(Y_t) dt, \quad Y_0 = x.$$
 (2)

The classical theory of ODE (resp. SDE) requires that A_0 (resp. A_0, \dots, A_N) satisfies global Lipschitz condition. Recently the conditions have been weakened in two directions: divergence-type conditions and non-Lipschitz conditions.

Outline

访问主页
标题页
•• ••
• •
第 3 页 14
返回
全屏显示
关闭
退出

First direction: Divergence-type conditions

 λ : Lebesgue measure on \mathbb{R}^d .

 σ : Standard Gaussian measure on \mathbb{R}^d .

Diperna and Lions (1989): If $A_0 \in W^{1,1}_{loc}(\mathbb{R}^d, \mathbb{R}^d)$ and $\operatorname{div}(A_0)$ is bounded, then ODE (1) defines a flow of measurable maps, which leaves λ quasi-invariant, i.e. the push-forward $\lambda_t = \lambda \circ X_t^{-1} \ll \lambda$.

Cipriano and Cruzeiro (2005): Similar result holds if $A_0 \in W_{loc}^{1,1}(\sigma)$ and there exists $\delta > 0$ such that

$$\int_{\mathbb{R}^d} e^{\delta |\operatorname{div}_{\sigma}(A_0)|} d\sigma < \infty, \tag{3}$$

where $\operatorname{div}_{\sigma}(A_0) = \operatorname{div}(A_0) + x \cdot A_0$ is the divergence with respect to σ .

Note that although the second result allows $\operatorname{div}_{\sigma}(A_0)$ to be unbounded, it does not cover that of the first completely. For example, let $A_0 = ((x - y)^2, (x - y)^2)$, then $\operatorname{div}(A_0) = 0$ but (3) is not satisfied.

Outline

访问	主页
标题	页
••	••
•	►
第 <mark>4</mark> 页	त् 14
返	▣
全屏	显示
关	闭
退	出

Second direction: Non-Lipschitz Condition

For some $\beta \in (0,1]$, there exist $C, c_0 > 0$ such that for all $x, y \mathbb{R}^d$ with $|x - y| \leq c_0$,

$$\sum_{k=1}^{N} |A_k(x) - A_k(y)|^2 \le C|x - y|^2 \left(\log\frac{1}{|x - y|}\right)^{\beta}, \qquad (i)$$

$$|A_0(x) - A_0(y)| \le C|x - y| \left(\log \frac{1}{|x - y|}\right)^{\beta}.$$
 (ii)

 c_0 is small enough so that $s \to s \left(\log \frac{1}{s} \right)^{\beta}$ is increasing and concave on $(0, c_0)$.

We always assume the linear growth condition

$$\sum_{k=1}^{N} |A_k(x)|^2 \le C_0(1+|x|^2), \quad |A_0(x)| \le C_0(1+|x|), \qquad (iii)$$

Background and Results Sketch of the proof of . . . Sketch of the proof of . . . Regularizing the drift Stochastic transport . . .

Outline

访问主页	
标 题 页	
44 >>	
• •	
第 <mark>5</mark> 页 14	
返回	
关闭	
退 出	

 C_0 is a constant.

Known results and question

Shizan Fang and Tusheng Zhang (2005): Under the conditions (i), (ii) with $\beta = 1$ and (iii), Itô equation (2) has a unique strong solution which is continuous on $[0, \infty) \times \mathbb{R}^d$.

Xicheng Zhang (2005): Under slightly stronger conditions: (i), (ii) hold with $\beta = 1$ and with $\log \frac{1}{|x-y|}$ being replaced by $1 \vee \log \frac{1}{|x-y|}$, then Y_t is a stochastic flow of homeomorphisms on \mathbb{R}^d .

Our question: What are the regular properties of X_t (or Y_t), i.e. to which extent X_t (or Y_t) is continuously dependent on the initial value x.

Outline

访问主页
标题页
•• ••
• •
第 <mark>6</mark> 页 14
返回
全屏显示
关闭
退出

3 Our results

Proposition 1. (ODE) (a) Assume (ii) with $\beta \in (0, 1)$ and (iii). Then for all t > 0, $X_t : \mathbb{R}^d \to \mathbb{R}^d$ is α -Hölder continuous for any $\alpha \in (0, 1)$.

(b) Assume (ii) with $\beta = 1$ and (iii), then X_t is Hölder continuous of order e^{-Ct} .

Proposition 2. (SDE) Assume A_i , $0 \le i \le N$ satisfy (i), (ii) with $\beta \in (0, 1)$ and (iii). Then Y_t has a version \tilde{Y}_t such that a.s., for all $t \ge 0$ and $\alpha \in (0, 1)$, \tilde{Y}_t is α -Hölder continuous on any ball B(R).

Outline

Background and Results Sketch of the proof of . . . Sketch of the proof of . . . Regularizing the drift Stochastic transport . . .

访问主页
标题页
4< →
4< →
第7页14
返回
全屏显示
关闭
退出

Comparison of Results

ODE (1):

- A_0 is globally Lipschitz continuous, then so is X_t ;
- A_0 satisfies (*ii*) with $\beta < 1$ and (*iii*), then $X_t \in C^{\alpha}$ for any $\alpha \in (0, 1)$;
- A_0 satisfies (ii) with $\beta = 1$ and (iii), then the order of Hölder continuity of X_t decreases exponentially fast along the time.

SDE (2):

- If A₀, · · · , A_N satisfy global Lipschitz condition, using Kolmogorov's modification theorem, we can only prove that a.s. ∀t > 0, Y_t is α-Hölder continuous for any α ∈ (0, 1).
- If (i), (ii) hold with $\beta < 1$ and (iii), then we also have a.s. $\forall t > 0, Y_t$ is α -Hölder continuous for any $\alpha \in (0, 1)$.

Hence in the situation of SDE, we may say

 $\beta < 1, (i) + (ii) + (iii) \approx$ global Lipschitz condition.

Outline

Background and Results Sketch of the proof of . . . Sketch of the proof of . . . Regularizing the drift Stochastic transport . . .

访问主页

标题页

第8页14

返回

全屏显示

关闭

退出

••

Corollary

 $\dim_H(E)$: the Hausdorff dimension of $E \subset \mathbb{R}^d$.

For ODE (1), the inverse of X_t satisfies the following equation

$$dX_t^{-1} = -A_0(X_t^{-1})dt, \quad X_0^{-1} = x.$$

Since $-A_0$ has exactly the same properties as those of A_0 , the results in Proposition 1 also hold for the map $X_t^{-1} : \mathbb{R}^d \to \mathbb{R}^d$. Therefore we have

Corollary. (a) Under the conditions of Proposition 1 (a), for any $E \subset \mathbb{R}^d$ and t > 0,

 $\dim_H(X_t(E)) = \dim_H(E).$

(b) Under the conditions of Proposition 2, for any $E \subset \mathbb{R}^d$, a.s. for all t > 0,

 $\dim_H(Y_t(E,w)) \le \dim_H(E).$

Outline

Background and Results Sketch of the proof of . . . Sketch of the proof of . . . Regularizing the drift Stochastic transport . . .

访问主页

标题页

第9页14

返回

全屏显示

关闭

退出

••

An estimate of $div(A_0)$

Suppose div (A_0) exists in the sense of distribution, i.e. for every $\psi \in C_0^{\infty}(\mathbb{R}^d)$,

$$\int_{\mathbb{R}^d} \langle A_0, \nabla \psi \rangle d\lambda = - \int_{\mathbb{R}^d} \operatorname{div}(A_0) \, \psi \, d\lambda.$$
(4)

This is weaker than the requirement that $A_0 \in W^{1,1}_{loc}(\mathbb{R}^d, \mathbb{R}^d)$. We have a simple estimate:

Proposition 3. Assume (ii) and $\operatorname{div}(A_0) \in L^1_{loc}(\mathbb{R}^d)$ exists in the sense of (4), then $\exists C_d > 0$ such that \forall ball B(x, r), we have

$$\left| \int_{B(x,r)} \operatorname{div}(A_0) d\lambda \right| \le C_d \lambda(B(x,r)) \left(\log \frac{1}{\lambda(B(x,r))} \right)^{\beta}.$$
 (5)

Remark. If B(x, r) is replaced by *d*-dimensional small cubes, the estimate (5) also holds with another constant C_d .

Outline

访问主	页
标题〕	页
••	••
•	•
第 10 页	14
返回	1
全屏显	示
关闭	1
退出	!

Main Result

Theorem. Assume (*ii*) with $\beta = 1$, (*iii*) and div(A_0) $\in L^1_{loc}(\mathbb{R}^d)$ exists in the distribution sense.

(i) If $div(A_0)$ is bounded, then the Lebesgue measure is quasi-invariant under the flow X_t .

(ii) If there exist $\gamma \in (0, 1)$ and C > 0 such that for any small connected open subset $O \subset \mathbb{R}^d$, we have

$$\left| \int_{O} \operatorname{div}(A_0)(x) d\lambda \right| \le C\lambda(O) \left(\log \frac{1}{\lambda(O)} \right)^{\gamma}, \tag{6}$$

then for any subset $E \subset \mathbb{R}^d$ with $\dim_H(E) < d$, it holds that $\lambda_t(E) = 0$ for all $t \ge 0$.

Remark. We do not require that $A_0 \in W_{loc}^{1,1}(\mathbb{R}^d, \mathbb{R}^d)$. In the proof of (ii), the "connected open set" is $X_t^{-1}(B(x,r))$. Since X_t^{-1} is a homeomorphism, when the radius r is small enough, $X_t^{-1}(B(x,r))$ are very close to standard balls.

Outline

访问	主页
标题	题 页
••	••
	•
第 11	页 14
返	回
全屏	显示
关	闭
退	出

4 Sketch of the proof of Theorem (i).

If $A_0 \in C_b^1$ and $\theta_0 \in C^1$, then the solution $\theta(t, x)$ to the transport equation

 $\partial_t \theta + A_0 \cdot \nabla \theta = 0, \quad \theta(0, \cdot) = \theta_0$

can be expressed by $\theta(t, x) = \theta_0(X_t^{-1}(x))$, where $X_t^{-1}(x)$ is the inverse flow of the solution to the following ODE

$$dX_t = A_0(X_t)dt, \quad X_0 = x.$$

Now under the non-Lipschitz condition

$$|A_0(x) - A_0(y)| \le C|x - y|\log \frac{1}{|x - y|},$$

 $\forall t > 0, X_t : x \to X_t(x)$ is a homeomorphism of \mathbb{R}^d . Approximating A_0 by smooth vector fields, we can prove $\theta(t, x) = \theta_0(X_t^{-1}(x))$ still solves the transport equation, but in the distribution sense, i.e. for any $\psi \in C_c^{\infty}(\mathbb{R}^d)$,

$$\int_{\mathbb{R}^d} \theta(t, x) \psi(x) dx = \int_{\mathbb{R}^d} \theta_0(x) \psi(x) dx - \int_0^t \int_{\mathbb{R}^d} \theta(s, x) \operatorname{div}(\psi A_0)(x) dx.$$

Outline

Background and Results Sketch of the proof of . . . Sketch of the proof of . . . Regularizing the drift Stochastic transport . . .

访问主页

标题页

第12页14

返回

全屏显示

关闭

退出

Fix T > 0 and $\theta_0 \in C_c(\mathbb{R}^d)$. Choose $\psi \in C_c^{\infty}(\mathbb{R}^d)$ such that $\psi \equiv 1$ on the union $\bigcup_{0 \le t \le T} X_t^{-1}(\operatorname{supp}(\theta_0))$. Then $\forall t \le T$,

$$\int_{\mathbb{R}^d} \theta(t, x) dx = \int_{\mathbb{R}^d} \theta_0(x) dx - \int_0^t \int_{\mathbb{R}^d} \theta(s, x) \operatorname{div}(A_0)(x) dx ds$$
$$\iff \int_{\mathbb{R}^d} \theta_0 d\lambda_t = \int_{\mathbb{R}^d} \theta_0 d\lambda - \int_0^t \int_{\mathbb{R}^d} \theta_0 \operatorname{div}(A_0) \big(X_s^{-1}(x) \big) d\lambda_s ds$$

Now let U be a "regular" subset of \mathbb{R}^d . Approximating $\mathbf{1}_U$ by $\theta_0 \in C_c(\mathbb{R}^d)$, we get

$$\lambda_t(U) = \lambda(U) - \int_0^t \int_U \operatorname{div}(A_0) \big(X_s^{-1}(x) \big) d\lambda_s(x) ds.$$

Therefore

$$\lambda_t(U) \leq \lambda(U) + \|\operatorname{div}(A_0)\|_{\infty} \int_0^t \lambda_s(U) ds.$$

And Gronwall's inequality gives us

$$\lambda_t(U) \le \lambda(U) e^{\|\operatorname{div}(A_0)\|t}$$

Outline

Thank you very much!

Outline

Background and Results Sketch of the proof of . . . Sketch of the proof of . . . Regularizing the drift

退出