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1. Introduction and description of the model

Branching random walk (BRW) on R (or Z) in random environment:

a system of particles on R (or Z), where each particle reproduces
new ones moving on R (or Z); the offspring distribution and the mov-
ing law of a particle depend on an environment in time and/or in
locations. Different models have been studied according to the de-
pendence on the environment in time and/or in locations.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Our model: Branching random walk on R with random environment
in time:

the offspring distribution of a particle of generation n, and the dis-
tributions of the displacements of their children depend on an envi-
ronment ξn, indexed by the time n, supposed to be stationary and
ergodic.

The difference with the classical BRW:
the distributions are realizations of a stochastic process, rather than
fixed ones.
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Description of the model:

Random environment (in time):

modeled as a sequence of stationary and ergodic random variables
with values in some measurable space (Θ, F ).

Each value of ξn corresponds to point distribution µn = µ(ξn) on
R.
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At generation 0, there is one initial particle located at S∅ = 0 ∈ R.

Each particle u of gen. n located at Su is replaced by Nu new
particles ui of gen. n + 1, located at

Sui = Su + Lui (1 ≤ i ≤ Nu);

the point process formulated by the the number of offspring and their
displacements, (Nu; Lu1, ..., LuNu), is of distribution µn = µ(ξn)

(given the environment ξ).

All particles behave independently: given ξ, (Nu; Lu1, ..., LuNu)

are independent of each other.
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Closely related topics: Classical Branching Random Walks: Biggins
(1977, 1978), R. Lyons (1997), ...
Branching processes: Harris (1963), Smith, W.L. and Wilkinson, W.
(1969), Athreya and Karlin (1971), ...
Mandelbrot’s multiplicative cascades: J. P. Kahane and J. Peyriére
(1976), Y. Guivarc’h (1990), Q. Liu (2000), ... ;
Infinite particle systems: Durrett and Liggett (1983), ...
Quicksort algorithms: Rösler (1993), ...
Random fractals: Mauldin and Williams (1986), Falconer (1986), Q.
Liu (1993) ...
Weighted branching processes: D. Kuhlbusch (2004), ...
Other topics: see Q. Liu (1998), and D. J. ALDOUS AND A. BANDY-
OPADHYAY (2005).
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Quenched and annealed laws:

Let (Γ, Pξ) be the probability space under which the process is
defined when the environment ξ is fixed. As usual, Pξ is called
quenched law.

The total probability space can be formulated as the product space
(ΘN×Γ, P ), where P = Pξ⊗τ in the sense that for all measurable
and positive g we have∫

gdP =

∫ ∫
g(ξ, y)dPξ(y)dτ (ξ),

where τ is the law of the environment ξ. P is called annealed law.
Pξ may be considered to be the conditional probability of P given ξ.
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Related models: random walks on Z in random environment:

(1) Many authors considered the case where the offspring distribu-
tion of a particle situated at z ∈ Z depends on a random environ-
ment indexed by z, while the moving mechanism is controlled by a
fixed deterministic law. See for example Greven and der Hollander
(1992), Baillon, Clement, Greven and den Hollander (1992), Fleis-
chmann and Greven (1992), and Révśz (1998).

(2) Devulder (2005) considered the case where the offspring distribu-
tion is fixed, while the moving law of a particle situated at z depends
on a random environment indexed by z.
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(3) Comets, Menshikov and Popop (1998), and Machado and Popov
(2000) considered a branching random walk on N rather then Z,
where both offspring distributions and the moving laws depend on
a random environment (ωz) indexed by locations.

(4) Xu Li, Yingqiu Li and Quansheng Liu (2007) considered a branch-
ing random walk on Z where the offspring distribution of a particle of
generation n and located at z ∈ Z depend on the environment in
time ξn, while the moving laws of its children depend on an environ-
ment in locations, ωz.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Main problems that we study:

Recall that Su denotes the position of a particle u. For n ∈ N, let
Tn be the set of particles of generation n, and let

Zn =
∑

u∈Tn

δSu

be the counting measure of particles of gen. n, so that for A ⊂ R,
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Zn(A) = number of particles of gen. n located inA.

Let

Ln = min
u∈Tn

Su (resp.Rn = max
u∈Tn

Su)

be the position of leftmost (resp. rightmost) particles of gen. n.

We consider the case where the corresponding branching process
in random environment, (Zn(R)), is supercritical, and we want to
know asymptotic properties of

Zn(A), Ln and Rn
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2. The mean of Zn(nA)

For n ∈ N and t ∈ R, let

mn(t) = Eξ

Nu∑
i=1

etLui, (1)

where u is a sequence of length n; by convention, ∅ is of length 0,
and ∅i = i. Notice that the expectation does not depend on the
choice of u. Then
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m0(t) = Eξ

N∑
i=1

etLi, m0(0) = EξN.

Throughout the paper we will always assume that

E log m0(0) > 0 and E| log m0(t)| < ∞ (2)

for all t ∈ R, so that the corresponding BPRE Zn(R) is supercritical:

Zn(R) → ∞

with positive probability. For simplicity, assume also that a.s.

N ≥ 1.
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Let

Λ(t) := E log m0(t),

and let

Λ∗(x) = sup
t∈R

{xt − Λ(t)} (3)

be its Legendre transform. Then Λ is differentiable on R,

Λ∗(x) =

{
tΛ′(t) − Λ(t) if x = Λ′(t) for some t ∈ R,
+∞ if x > Λ′(+∞) or x < Λ′(−∞),

(4)
and

min
x

Λ∗(x) = Λ∗(Λ′(0)) = −Λ(t) = −E log m0(0) < 0.
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Theorem 1 (Large Deviation Principle for quenched mean). For al-
most every ξ, the sequence of finite measures A 7→ EξZn(nA)

satisfies a principle of large deviation with rate function Λ∗: for each
measurable subset A of R,

− inf
x∈Ao

Λ∗(x) ≤ lim inf
n→∞

1

n
log EξZn(nA)

≤ lim sup
n→∞

1

n
log EξZn(nA) ≤ − inf

x∈Ā
Λ∗(x),

where Ao denotes the interior of A, and Ā its closure.
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Proof. Let qn(A) = EξZn(A). Show that

q̃n(t) :=

∫
etxdqn(x) = Eξ

∑
u∈Tn

etSu = m0(t)...mn−1(t),

(5)

lim
n→∞

1

n
log q̃n(t) = Λ(t) := E log m0(t) a.s. (6)

and apply Gärtner-Ellis’ theorem to the sequence of normalized prob-
ability measures qn(nA)/qn(R).
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Let Λa(t) = log Em0(t) and Λ∗
a be its Legendre transform. Simi-

larly, we have:

Theorem 2 (Large Deviation Principle for annealed mean). Assume
that ξn are iid. Then the sequence of finite measures A 7→ EZn(nA)

satisfies a principle of large deviation with rate function Λ∗
a: for each

measurable subset A of R,

− inf
x∈Ao

Λ∗
a(x) ≤ lim inf

n→∞
1

n
log EZn(nA)

≤ lim sup
n→∞

1

n
log EZn(nA) ≤ − inf

x∈Ā
Λ∗

a(x),

where Ao denotes the interior of A, and Ā its closure.
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Remark:

Λa(t) ≥ Λ(t) and Λ∗
a(x) ≤ Λ∗(x),

so that the growth rate of the annealed mean EZn[an, ∞) is greater
than that of the quenched mean EξZn[an, ∞).
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3. Convergence of the free energy

Let

Z̃n(t) :=

∫
etxdZn(x) =

∑
u∈Tn

etSu

be the Laplace transform of Zn, also called the partition function.

We are interested to the convergence of the free energy log Z̃n(t)
n ,

and the asymptotic properties of Zn(nA).
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Definition of t− and t+

Let

ρ(t) = tΛ′(t) − λ(t), t ∈ R.

Then

ρ′(t) = tΛ”(t),

ρ(t) decreases on R−, increases on R+, and attains its minimum at
0:

min
t

ρ(t) = ρ(0) = −λ(0) < 0.
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Let

t− = inf{t ∈ R : tΛ′(t) − λ(t) ≤ 0},

t+ = sup{t ∈ R : tΛ′(t) − λ(t) ≤ 0}.

Then −∞ ≤ t− < 0 < t+ ≤ ∞, t− and t+ are two solutions of
tΛ′(t) − λ(t) = 0 if they are finite.

Theorem 3 (Convergence of the free energy). A.s.

lim
n→∞

log Z̃n(t)

n
= Λ̃(t) :=

 Λ(t) if t ∈ (t−, t+)
tΛ′(t+) if t ≥ t+
tΛ′(t−) if t ≤ t−

Deterministic environment case: B. Chauvin and A. Rouault (1997),
J. Franchi (1993).
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4. Almost sure asymptotic properties of Zn(nA):

Let Λ̃∗(x) be the Legendre transform of Λ̃(t). By Theorem 3 and
Gärtner- Ellis’ theorem, we obtain:

Theorem 4 (LDP for Zn(nA)). A.s. the sequence of finite mea-
sures A 7→ Zn(nA) satisfies a principle of large deviation with rate
function Λ̃∗: for each measurable subset A of R,

− inf
x∈Ao

Λ̃∗(x) ≤ lim inf
n→∞

1

n
log Zn(nA)

≤ lim sup
n→∞

1

n
log Zn(nA) ≤ − inf

x∈Ā
Λ̃∗(x),

where Ao denotes the interior of A, and Ā its closure.
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Corollary A.s.

lim
n

1

n
log Zn[nx, ∞) = −Λ∗(x) > 0 if x ∈ (Λ′(0), Λ′(t+),

lim
n

1

n
log Zn(−∞, nx] = −Λ∗(x) > 0 if x ∈ (Λ′(t−), Λ′(0)).

Remark.

x ∈ (Λ′(0), Λ′(t+) iff x > Λ′(0) and Λ∗(x) < 0.

x ∈ (Λ′(t−), Λ′(0) iff x < Λ′(0) and Λ∗(x) < 0.

For deterministic branching random walk: see Biggins (1977).
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5. Positions of the rightmost and leftmost particles of gen. n

Theorem 5 (Asymptotic properties of Ln and Rn) It is a.s. that

lim
n

Ln

n
= Λ′(t−),

lim
n

Rn

n
= Λ′(t+).

For deterministic branching random walk: see Biggins (1977).
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6 Proof of theorems 3 and 5

Observation:

Wn(t) :=
Z̃n(t)

EξZ̃n(t)
=

∑
u∈Tn

etSu

m0(t)...mn−1(t)

is a martingale, therefore converges a.s. to a r.v. W (t) ∈ [0, ∞).

Remark: In the constant environment case, this martingale has been
studied by J. P. Kahane - J. Peyrière (1976), J. Biggins (1977), Durrett-
Liggett (1983), Y. Guivarc’h (1990), R. Lyons (1997) and Q. Liu (1997,
1998, 2000, 2001), etc. in different contexts.
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Lemma 1 If t ∈ (t−, t+) and EW1(t) log+ W1(t) < ∞, then

W (t) > 0 a.s.

If t ≤ t− or t ≥ t+), then

W (t) = 0 a.s.

Proof. Use a result by Dirk Kuhlbusch (2004) on weighted branching
processes in random environment.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Lemma 2 A.s.

lim sup
n

Rn

n
≤ Λ′(t+)

Proof. For a > Λ′(t+), use asymptotic properties of EξZn[an, ∞)

to show that ∑
n

Pξ(Zn[an, ∞) ≥ 1) < ∞,

and apply Borel-Cantelli’s lemma to conclude that Pξ a.s.

Zn[an, ∞) = 0 for n large enough.

Lemma 3 If t ≥ t+, then

lim sup
n

log Z̃n(t)

n
≤ tΛ′(t+)
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————————
Thank you!

Quansheng.Liu@univ-ubs.fr
————————


