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C. Léonard Transport Inequalities For Markov Processes



Setting And Definitions
A Connection With Large deviations

Criteria

The Markov Process
Optimal Transport
Inequalities

Outline

1 Setting And Definitions
The Markov Process
Optimal Transport
Inequalities

2 A Connection With Large deviations
Large Deviations Of The Occupation Measure
The Basic Result
Tensorization

3 Criteria
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The Markov process
Consider

State space: X is Polish
Invariant probability measure: µ ∈ PX
Markov generator: L

L self-adjoint in L2(µ)
the semigroup (Pt = etL)t≥0 is µ-ergodic :

Pt f = f , µ-a.e.,∀t ⇒ f = c, µ-a.e.

Dirichlet form:

E(g) := 〈−Lg, g〉L2(µ), g ∈ D2(L) ⊂ L2(µ).

E is closable in L2(µ) and D(E) = D2(
√
−L) ⊂ L2(µ).

Fisher-Donsker-Varadhan information

I(ν|µ) =

(
E
“q

dν
dµ

”
, if

q
dν
dµ
∈ D(E);

+∞, otherwise.
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Poincaré and log-Sobolev
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Optimal transport cost
Let ν, µ ∈ PX be probability measures on X .

Definition (Optimal transport cost)

Tc(ν, µ) = inf
P(ν,µ)

ZZ
X 2

c(x , y) π(dxdy)

P(ν, µ) = {π ∈ PX 2 ; π1 = ν, π2 = µ}
c(x , y) is a [0,∞)-valued lower semicontinuous function

Theorem (Kantorovich duality)

Tc(ν, µ) = sup
(u,v)∈Φc

{ν(u)− µ(v)}

Φc := {(u, v) functions; u(x)− v(y) ≤ c(x , y),∀x , y ∈ X}.
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Optimal transport cost

Definition (Wasserstein’s metric)

Let d be a lower semicontinuous metric on X , the cost c(x , y) = dp(x , y)
with 1 ≤ p < ∞, gives

Wp(µ, ν) := Tdp (µ, ν)1/p.

Result: It is a metric on (a subset of) PX .

With c = d we have Tc = W1.

Theorem (Kantorovich-Rubinstein)

W1(ν, µ) = sup {ν(u)− µ(u); ‖u‖Lip ≤ 1} := ‖ν − µ‖∗Lip.

where ‖u‖Lip := supx 6=y
|u(x)−u(y)|

d(x,y)
.
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The generalized transport cost

Definition (The generalized transport cost)

TΦ(ν, µ) := sup
(u,v)∈Φ

{ν(u)− µ(v)}, ν, µ ∈ PX .

Φ = Φc = {(u, v) functions; u(x)− v(y) ≤ c(x , y),∀x , y ∈ X}, gives
TΦ = Tc .

Φ = Φ‖·‖ := {(u, u); u : X → R, ‖u‖ ≤ 1}, gives TΦ(ν, µ) = ‖ν − µ‖∗.

Example

With Φ = Φd or Φ = Φ‖·‖Lip ,

TΦ(ν, µ) = W1(ν, µ) = ‖ν − µ‖∗Lip.
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C. Léonard Transport Inequalities For Markov Processes



Setting And Definitions
A Connection With Large deviations

Criteria

The Markov Process
Optimal Transport
Inequalities

The generalized transport cost

Definition (The generalized transport cost)

TΦ(ν, µ) := sup
(u,v)∈Φ

{ν(u)− µ(v)}, ν, µ ∈ PX .

Φ = Φc = {(u, v) functions; u(x)− v(y) ≤ c(x , y),∀x , y ∈ X}, gives
TΦ = Tc .

Φ = Φ‖·‖ := {(u, u); u : X → R, ‖u‖ ≤ 1}, gives TΦ(ν, µ) = ‖ν − µ‖∗.

Example

With Φ = Φd or Φ = Φ‖·‖Lip ,

TΦ(ν, µ) = W1(ν, µ) = ‖ν − µ‖∗Lip.
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Transport-Information Inequalities

Definition (The class C)

The function α : [0,∞] 7→ [0,∞] is in the class C if it is
convex increasing left continuous and α(0) = 0.

Definition (Transport-Information Inequality)

The probability measure µ satisfies TΦI(α) with α ∈ C if

α
`
TΦ(ν, µ)

´
≤ I(ν|µ), for all ν ∈ PX TΦI(α)

Example (W1I, W2I)

The probability measure µ satisfies W1I(c) or W2I(c) if

Td(ν, µ)2 := W 2
1 (ν, µ) ≤ 4c2I(ν|µ), ∀ν W1I(c)

Td2(ν, µ) := W 2
2 (ν, µ) ≤ 4c2I(ν|µ), ∀ν W2I(c)

Corresponds to α1(r) = r 2/(4c2) and α2(r) = r/(4c2), r ≥ 0.
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Transport-Entropy Inequalities

Relative entropy: H(ν|µ) =
R
X log

“
dν
dµ

”
dν.

Definition (Transport-Entropy Inequality)

The probability measure µ satisfies TΦH(α) if

α
`
TΦ(ν, µ)

´
≤ H(ν|µ), for all ν ∈ PX TΦH(α)

Example ([W1H, W2H)

Td(ν, µ)2 := W 2
1 (ν, µ) ≤ cH(ν|µ), ∀ν W1H

Td2(ν, µ) := W 2
2 (ν, µ) ≤ cH(ν|µ), ∀ν W2H

W2H is Talagrand’s T2 inequality.

TΦH(α) is investigated by N. Gozlan and CL (PTRF online).
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The occupation measure

The main actor is the random probability measure

Definition (Occupation measure of the process X )

Lt :=
1
t

Z t

0
δXs ds, t ≥ 0

Lt(A) = ratio of time spent by X in A during [0, t ], A ⊂ X .

Let

β = Law(X0) is the initial law and

Pβ is the corresponding law of (Xt)t≥0.

Theorem (Ergodic theorem)

lim
t→∞

Lt = µ, Pβ-a.s. with respect to σ(PX , BX ).
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Large deviations of {Lt}t≥0

Theorem (Ergodic theorem)

lim
t→∞

Lt = µ, Pβ-a.s. with respect to σ(PX , BX ).

Theorem (Donsker-Varadhan, Deuschel-Stroock)

Under mixing assumptions,
{Lt} obeys the Large Deviation Principle as t →∞:

Pβ(Lt ∈ A) �
t→∞

exp
“
− t inf

ν∈A
I(ν|µ)

”
, A ⊂ PX

”uniformly” in the initial law β.

Remark: I(ν|µ) = 0 iff ν = µ.
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Large deviations of {Lt}t≥0

Theorem (Wu Liming)

Assume that β ≺ µ with dβ/dµ ∈ L2(µ).
{Lt}t≥0 obeys the LDP in PX with rate function ν 7→ I(ν|µ) : For all
measurable subset A of PX ,

− inf
ν∈int A

I(ν|µ) ≤ lim inf
t→∞

1
t

log Pβ(Lt ∈ A)

≤ lim sup
t→∞

1
t

log Pβ(Lt ∈ A) ≤ − inf
ν∈cl A

I(ν|µ)

where int A and cl A are the interior and closure of A with respect to the
topology σ(PX , BX ).

Shortly and approximately: Pβ(Lt ∈ A) �
t→∞

exp[−t infν∈A I(ν|µ)]

Remark: Pβ = dβ
dµ

(X0)Pµ.

No mixing assumptions.
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Statement of the basic result

For α ∈ C, define: α~(λ) := supr≥0{rλ− α(r)}, λ ≥ 0.

Theorem

The following statements are equivalent.

(a) α(TΦ(ν, µ)) ≤ I(ν|µ), ∀ν ∈ PX .

(b) ∀λ ≥ 0,∀(u, v) ∈ Φ,

lim sup
t→∞

1
t

log Eµ exp
„

λ

Z t

0
u(Xs) ds

«
≤ λµ + α~(λ)

(c) ∀r , t > 0,∀(u, v) ∈ Φ,∀β ∈ PX such that dβ/dµ ∈ L2(µ),

Pβ

„
1
t

Z t

0
u(Xs) ds ≥ µ(v) + r

«
≤
‚‚‚‚dβ

dµ

‚‚‚‚
L2(µ)

e−tα(r)

Remark: 1
t

R t
0 u(Xs) ds =

R
X u dLt = Lt(u).
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An immediate corollary
Specializing with W1 one obtains the

Corollary

The following statements are equivalent.

(a) W 2
1 (ν, µ) ≤ 4c2I(ν|µ), ∀ν;

(b) ∀λ ≥ 0,∀u ∈ CLip : ‖u‖Lip ≤ 1, µ(u) = 0,

lim sup
t→∞

1
t

log Eµ exp
„

λ

Z t

0
u(Xs) ds

«
≤ c2λ2

(c) ∀r , t > 0,∀u ∈ CLip,∀β ∈ PX such that dβ/dµ ∈ L2(µ),

Pβ

„
1
t

Z t

0
u(Xs) ds ≥ µ(u) + r

«
≤
‚‚‚‚dβ

dµ

‚‚‚‚
L2(µ)

exp

 
− tr 2

4c2‖u‖2
Lip

!

Interest: Estimation of µ(u) by Lt(u).

Analogous result for W2I.
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Deviation functions, Transport functions

Definition (Transport function)

A function α in C is a transport function if µ satisfies TΦI(α)

α
`
TΦ(µ, ν)

´
≤ I(ν|µ), for all ν

Denote
T (Lt) = TΦ(Lt , µ)

Definition (Deviation function)

A function α in C is a deviation function if for all r ≥ 0

lim sup
t→∞

1
t

log Pβ(T (Lt) ≥ r) ≤ −α(r)
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A deviation function is a transport function
Borrowed from [Gozlan-Léonard].

Recipe

Any deviation function α is a transport function.

Idea of proof.

Suppose T is regular enough for the sets Ar = {ν ∈ PX ; T (ν) ≥ r} to
be good sets. For all r ≥ 0,

Pβ(T (Lt) ≥ r) = Pβ(Lt ∈ Ar ) � exp[−ti(r)]

with i(r) = inf{I(ν|µ); ν ∈ PX : T (ν) ≥ r}.
Let α be a deviation function. Then, exp[−ti(r)] / exp[−tα(r)],∀r ≥ 0
i.e. α(r) ≤ i(r),∀r ≥ 0.

Taking r = T (ν) leads to: α(T (ν)) ≤ i(T (ν)) ≤ I(ν|µ), ∀ν ∈ PX .

Mostly based on the LD lower bound.
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be good sets. For all r ≥ 0,

Pβ(T (Lt) ≥ r) = Pβ(Lt ∈ Ar ) � exp[−ti(r)]

with i(r) = inf{I(ν|µ); ν ∈ PX : T (ν) ≥ r}.
Let α be a deviation function. Then, exp[−ti(r)] / exp[−tα(r)],∀r ≥ 0
i.e. α(r) ≤ i(r),∀r ≥ 0.

Taking r = T (ν) leads to: α(T (ν)) ≤ i(T (ν)) ≤ I(ν|µ), ∀ν ∈ PX .

Mostly based on the LD lower bound.
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TcI(α) for product measures
The ingredients

(X1, µ1), (X2, µ2), (X1 ×X2, µ1 ⊗ µ2)

c1, c2, c1 ⊕ c2

“
(x1, x2), (y1, y2)

”
= c1(x1, y1) + c2(x2, y2)

Theorem (Tensorization)

Suppose that the following Tc Is hold:

α1(Tc1(ν1, µ1)) ≤ I(ν1 | µ1), ∀ν1 ∈ P(X1)

α2(Tc2(ν2, µ2)) ≤ I(ν2 | µ2), ∀ν2 ∈ P(X2)

Then, on X1 ×X2, we have:

α1�α2
`
Tc1⊕c2(ν, µ1 ⊗ µ2)

´
≤ I(ν | µ1 ⊗ µ2), ∀ν ∈ P(X1 ×X2)

α1�α2(r) = inf{α1(r1) + α2(r2); r1, r2 ≥ 0 : r1 + r2 = r}
is the inf-convolution of α1 and α2.
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TcI(α) for product measures

Typical LD result

Let {Z 1
t }t and {Z 2

t }t be two independent LD systems on R with respective
rate functions α1 and α2. Then, {Zt := Z 1

t + Z 2
t }t obeys the LDP with rate

function α = α1�α2.
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n-Tensorization

On X n define the sum-costL
c(x1, . . . , xn; y1, . . . , yn) :=

P
1≤i≤n c(xi ; yi), x1, · · · , yn ∈ X

and the sum-Dirichlet formL
E(g) :=

R
X n

P
1≤i≤n E(g x̂i

i )
Q

1≤i≤n µ(dxi)

where g x̂i
i (xi) = g(x1, . . . , xn) with x̂i = (x1, · · · , xi−1, xi+1, · · · , xn).

It is the Dirichlet form of (X 1
t , · · · , X n

t )t≥0 with X 1, . . . , X n independent
copies of X .
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Theorem

If µ satisfies Tc I, then µ⊗n satisfies

nα

„
T⊕c(ν, µ⊗n)

n

«
≤ I⊕E(ν|µ⊗n), ∀ν ∈ P(X n)

In particular, for all (u, v) ∈ Φc , β ∈ P(X n), t , r > 0,

Pβ

 
1
n

nX
i=1

1
t

Z t

0
u(X i

s) ds ≥ µ(v) + r

!
≤
‚‚‚‚ dβ

dµ⊗n

‚‚‚‚
L2(µ⊗n)

e−ntα(r).

Proof.

αn(r) = �nα(r) = nα(r/n), r ≥ 0.
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Example (W1I)

As W1I(c) : W 2
1 (ν, µ) ≤ 4c2I(ν|µ) corresponds to α1(r) = r 2/(4c2) we have

W 2
1 (ν, µ⊗n) ≤ 4c2nI(ν|µ⊗n)

Example (W2I)

As W2I(c) : W2(ν, µ) ≤ 4c2I(ν|µ) corresponds to α2(r) = r/(4c2) we have

W2(ν, µ⊗n) ≤ 4c2I(ν|µ⊗n)

The constant 4c2n in W1I explodes as n.

The constant is dimension-free in W2I.

Beautiful applications of W2I for Gibbs measures in situations where
log-Sobolev is unknown (Gao and Wu, 2007).
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A Connection With Large deviations

Criteria

Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in C0

Lip
Lyapunov function condition

Poincaré and log-Sobolev

Definition (Poincaré inequality)

Varµ

 s
dν

dµ

!
≤ cI(ν|µ), ∀ν P(c)

Definition (log-Sobolev inequality)

H(ν|µ) ≤ 2cI(ν|µ), ∀ν LS(c)

Theorem

cP(µ) ≤ cW2I(µ) ≤ cLS(µ).

Proof.

Follow Otto and Villani (JFA, 2000).
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Poincaré implies Pinsker
Spectral gap in C0

Lip
Lyapunov function condition
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C. Léonard Transport Inequalities For Markov Processes



Setting And Definitions
A Connection With Large deviations

Criteria
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Poincaré implies a Pinsker type inequality

Theorem

If µ satisfies P(c), then

‖ν − µ‖2
TV ≤ 4cI(ν|µ), ∀ν.

In particular, ∀t , r , β, u,

Pβ

„
1
t

Z t

0
u(Xs) ds ≥ µ(u) + r

«
≤
‚‚‚‚dβ

dµ

‚‚‚‚
L2(µ)

exp
„
− tr 2

cδ(u)2

«
where δ(u) := sup(u)− inf(u).

Idea of proof.

‖ν − µ‖TV = ‖ν − µ‖∗Lip with d(x , y) = 2x 6=y .

‖ν − µ‖2
TV ≤ 4Varµ

“q
dν
dµ

”
≤ 4cI(ν|µ).
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Poincaré implies Pinsker
Spectral gap in C0

Lip
Lyapunov function condition
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Poincaré implies a Pinsker type inequality

Theorem

If µ satisfies P(c), then

‖ν − µ‖2
TV ≤ 4cI(ν|µ), ∀ν.

In particular, ∀t , r , β, u,

Pβ

„
1
t

Z t

0
u(Xs) ds ≥ µ(u) + r

«
≤
‚‚‚‚dβ

dµ

‚‚‚‚
L2(µ)

exp
„
− tr 2

cδ(u)2

«
where δ(u) := sup(u)− inf(u).

Idea of proof.

‖ν − µ‖TV = ‖ν − µ‖∗Lip with d(x , y) = 2x 6=y .

‖ν − µ‖2
TV ≤ 4Varµ

“q
dν
dµ

”
≤ 4cI(ν|µ).
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Theorem

‖ν − µ‖2
TV ≤ 4Varµ

 s
dν

dµ

!
, ∀µ, ν.

Idea of proof.

This is W1I with

d(x , y) = 2x 6=y so that: W1(ν, µ) = ‖ν − µ‖TV;

the process X defined as follows. Take

(Yn)n≥0 independent with common law µ;
(Nt)t≥0 a Poisson(1) process;
(Yn)n≥0 and N independent;
Xt := YNt , t ≥ 0

so that: I(ν|µ) = Varµ
“q

dν
dµ

”
, ∀ν.
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the process X defined as follows. Take

(Yn)n≥0 independent with common law µ;
(Nt)t≥0 a Poisson(1) process;
(Yn)n≥0 and N independent;
Xt := YNt , t ≥ 0

so that: I(ν|µ) = Varµ
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C. Léonard Transport Inequalities For Markov Processes



Setting And Definitions
A Connection With Large deviations

Criteria
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Spectral gap in C0
Lip

Definition (Spectral gap in C0
Lip)

There exists c < ∞ such that for all g ∈ CLip ∩ L2
0(µ), there exists f ∈ L2

0(µ)
such that

−Lf = g;

‖f̃‖Lip ≤ c‖g‖Lip, f̃ : version of f .

gap(−L) = 1/c.

Theorem

With L = ∆−∇V ·∇, the spectral gap in C0
Lip implies W1I(c).

Remark: µ = e−V dx .
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C. Léonard Transport Inequalities For Markov Processes



Setting And Definitions
A Connection With Large deviations

Criteria
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Lip

Application

With L = ∆−∇V ·∇, we have: Ric +∇2V ≥ K > 0 ⇒ W1I(K−1).

Remark: By Bakry-Emery criterion log-Sob holds.
Proof without log-Sob.

Application

With dXt =
√

2σ(Xt) dBt + b(Xt) dt and
trace[(σ(y)− σ(x))(σ(y)− σ(x))T ] + 〈y − x , b(y)− b(x)〉 ≤ −δ|y − x |2,∀x , y
(Pt) is symmetric in L2(µ)

then W1I(‖σ‖∞/δ) holds true.

unique invariant measure µ, unknown to be estimated;

log-Sob unknown.
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Poincaré and log-Sobolev
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Lyapunov function condition

Definition (Lyapunov function condition)

With U : X → [1,∞) continuous; φ : X → [0,∞); b > 0,

−LU
U

≥ φ− b, µ-a.e.

Theorem

Under this Lyapunov function condition, if µ satisfies Poincaré inequality, then

‖φ.(ν − µ)‖TV ≤ C
“p

I(ν|µ) + I(ν|µ)
”

, ∀ν.

d(x , y) = [φ(x) + φ(y)]1x 6=y ;

α(r) = Or'0(r 2) and α(r) = Or'+∞(r)

C. Léonard Transport Inequalities For Markov Processes



Setting And Definitions
A Connection With Large deviations

Criteria
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Corollary

With L = ∆−∇V ·∇ : µ = e−V dx . If

|x − xo|2 ≤ c(1 + |∇V |2(x)),∀x ;

lim sup|x|→∞ ∆V (x)/|∇V |2(x) < 1,

then W1I(1/(4c)) holds and for all t , r > 0

Pβ

„
1
t

Z t

0
u(Xs) ds ≥ µ(u) + r

«
≤
‚‚‚‚dβ

dµ

‚‚‚‚
L2(µ)

e−tr2/c .
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