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The Markov process

Consider
@ State space: X is Polish
@ Invariant probability measure: 1 € Px
@ Markov generator: £
o L[ self-adjoint in L?(1)
o the semigroup (P; = e'X)>q is p-ergodic :

Pif = f,u-ae ,Vt = f = c, p-ae.
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The Markov process

Consider

@ State space: X is Polish
@ Invariant probability measure: 1 € Px
@ Markov generator: £

o L[ self-adjoint in L?(1)

o the semigroup (P; = e'X)>q is p-ergodic :

Pif = f,u-ae ,Vt = f = c, p-ae.
@ Dirichlet form:
E(9) =(-Lg.9) 2, 9€D2AL) C L2(p).
& is closable in L2(1) and D(E) = Da(v/—L) C L3(p).
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The Markov process

Consider

@ State space: X is Polish
@ Invariant probability measure: 1 € Px
@ Markov generator: £

o L[ self-adjoint in L?(1)

o the semigroup (P; = e'X)>q is p-ergodic :

Pif = f,u-ae ,Vt = f = c, p-ae.
@ Dirichlet form:
E(9) =(-Lg.9) 2, 9€D2AL) C L2(p).

& is closable in L2(1) and D(E) = Da(v/—L) C L3(p).
@ Fisher-Donsker-Varadhan information

dv f dv .
o) = £(\/%), it\/% ene)
400, otherwise.
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Optimal transport cost

Let v, u € Px be probability measures on X'.

Definition (Optimal transport cost)

Te(v,n) = |nf // c(x, y) m(dxdy)
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Optimal transport cost

Let v, u € Px be probability measures on X'.

Definition (Optimal transport cost)

T = int [[ elx.y)m(anay)

P(v,1)

@ P(v,p)=A{m € Pye;m =v,m2 = pu}
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Optimal transport cost

Let v, u € Px be probability measures on X'.

Definition (Optimal transport cost)

Te(v,p) = |nf // c(x, y) m(dxdy)

@ P(v,p) ={m € Pxe;m =v,m2 = pu}
@ c(x,y)is a0, o0)-valued lower semicontinuous function
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Optimal transport cost

Let v, u € Px be probability measures on X'.

Definition (Optimal transport cost)

T = ot [ [ elx.y)m(anay)

@ P(v,p) ={m € Pxe;m =v,m2 = pu}
@ c(x,y)is a0, o0)-valued lower semicontinuous function

Theorem (Kantorovich duality)

Tvow) = sup {u(u) — u(v)}

(u,v)edc

@ . := {(u, v) functions; u(x) — v(y) < c(x,y),Vx,y € X}.
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Optimal transport cost

Let v, u € Px be probability measures on X'.

Definition (Optimal transport cost)

T = ot [ [ elx.y)m(anay)

@ P(v,p) ={m € Pxe;m =v,m2 = pu}
@ c(x,y)is a0, o0)-valued lower semicontinuous function

Theorem (Kantorovich duality)

Tvon) = sup {u(u) — p(v)}

(u,v)ede

@ . := {(u, v) functions; u(x) — v(y) < c(x,y),Vx,y € X}.
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Optimal transport cost

Definition (Wasserstein’s metric)

Let d be a lower semicontinuous metric on X, the cost c(x, y) = d°(x, y)
with 1 < p < oo, gives

Wo(p, v) := Tar (1, V)1/p'
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Optimal transport cost

Definition (Wasserstein’s metric)

Let d be a lower semicontinuous metric on X, the cost c(x, y) = d°(x, y)
with 1 < p < oo, gives

Wo(p, v) := Tar (1, V)1/p'

Result: It is a metric on (a subset of) Px.
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Optimal transport cost

Definition (Wasserstein’s metric)

Let d be a lower semicontinuous metric on X, the cost c(x, y) = d°(x, y)
with 1 < p < oo, gives

Wo(p, v) := Tar (1, V)1/p'

Result: It is a metric on (a subset of) Px.
With ¢ = d we have 7. = W;.

Theorem (Kantorovich-Rubinstein)

Ullip < 1} = [lv — |

Wi (v, ) = sup {r(u) — p(u); |

where [|ul|Li, 1= sup,_, %_
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Optimal transport cost

Definition (Wasserstein’s metric)

Let d be a lower semicontinuous metric on X, the cost c(x, y) = d°(x, y)
with 1 < p < oo, gives

Wo(p, v) := Tar (1, V)1/p'

Result: It is a metric on (a subset of) Px.
With ¢ = d we have 7. = W;.

Theorem (Kantorovich-Rubinstein)

Wi (v, 1) = sup {w(u) — p(u); [|ullip < 1} = [lv = |-

where ||u||up := sup,., %.
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The generalized transport cost

Definition (The generalized transport cost)

%(V7 ,LL) ‘= Ssup {I/(U) - [L(V)}, v, pb € Px.
(u,v)eo
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The generalized transport cost

Definition (The generalized transport cost)

%(V7 ,LL) ‘= Ssup {I/(U) - [L(V)}, v, pb € Px.
(u,v)eo

@ ¢ = d, = {(u, V) functions; u(x) — v(y) < c(x, y),vx,y € X}, gives
To =Tc.
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The generalized transport cost

Definition (The generalized transport cost)

%(V7 ,LL) ‘= Ssup {I/(U) - [L(V)}, v, pb € Px.
(u,v)eo

@ ¢ = d, = {(u, V) functions; u(x) — v(y) < c(x, y),vx,y € X}, gives
To =Tc.

@ &= = {(u,u)u: X =R, [lul| <1}, gives To(v, ) = [lv — p"
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The generalized transport cost

Definition (The generalized transport cost)

%(V7 ,LL) ‘= Ssup {I/(U) - [L(V)}, v, pb € Px.
(u,v)eo

@ ¢ = d, = {(u, V) functions; u(x) — v(y) < c(x, y),vx,y € X}, gives
To =Tc.

@ &= = {(u,u)u: X =R, [lul| <1}, gives To(v, ) = [lv — p"

With ¢ = Py ord = q)”'HLip’

To(v, ) = Wi(v, 1) = [lv — plltsp-
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Transport-Information Inequalities

Definition (The class C)

The function « : [0, co] — [0, o] is in the class C if it is
convex increasing left continuous and «(0) = 0.
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Transport-Information Inequalities

Definition (The class C)

The function « : [0, co] — [0, o] is in the class C if it is
convex increasing left continuous and «(0) = 0.

Definition (Transport-Information Inequality)

The probability measure y satisfies To /(o) with o € C if

o(To(v, ) < I(v|p), forallv € Px Tol(c)
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Transport-Information Inequalities

Definition (The class C)

The function « : [0, co] — [0, o] is in the class C if it is
convex increasing left continuous and «(0) = 0.

Definition (Transport-Information Inequality)

The probability measure y satisfies To /(o) with o € C if
a(To(v, ) < I(v|p), forall v € Px Tol(c)

Example (Wi 1, Wa)

The probability measure p satisfies WsI(c) or Wal(c) if

Ty pP = Worp) < 4cl(vin), Vv Wi i(c)
Te(vp) = Wo(vp) < 4¢H(vin), Vv Wal(c)

C. Léonard Transport Inequalities For Markov Processes



Setting And Definitions The Markov Process
Optimal Transport
Inequalities

Transport-Information Inequalities

Definition (The class C)

The function « : [0, co] — [0, o] is in the class C if it is
convex increasing left continuous and «(0) = 0.

Definition (Transport-Information Inequality)

The probability measure y satisfies To /(o) with o € C if
a(To(v, ) < I(v|p), forall v € Px Tol(c)

Example (Wi 1, Wa)

The probability measure p satisfies WsI(c) or Wal(c) if

Ty pP = Worp) < 4cl(vin), Vv Wi i(c)
Te(vp) = Wo(vp) < 4¢H(vin), Vv Wal(c)

Corresponds to a(r) = r?/(4c?) and az(r) = r/(4¢?), r > 0.
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Transport-Entropy Inequalities

@ Relative entropy: Hw|p) = [, Iog( ) dv.

Definition (Transport-Entropy Inequality)

The probability measure . satisfies To H(«) if

a(To(v, 1)) < H(v|p), forallv € Px ToH(c)

C. Léonard Transport Inequalities For Markov Processes



Setting And Definitions The Markov Process
Optimal Transport
Inequalities

Transport-Entropy Inequalities

@ Relative entropy: Hw|p) = [, Iog( ) dv.

Definition (Transport-Entropy Inequality)

The probability measure . satisfies To H(«) if

a(To(v, 1)) < H(v|p), forallv € Px ToH(c)

Example ((WsH, W>H)

Ty == WA(w,u) < CH(vln), W WiH
Te(u) = WEwu) < cH(vlu), W WeH
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Transport-Entropy Inequalities

@ Relative entropy: Hw|p) = [, Iog( ) dv.

Definition (Transport-Entropy Inequality)

The probability measure . satisfies To H(«) if

a(To(v, 1)) < H(v|p), forallv € Px ToH(c)

Example ((WsH, W>H)

To,uff = We(n,p) < cH(vlw), W WiH
Te(v,p) = Wi(v,p) < cH(v|w), Vv WoH

@ W:H is Talagrand’s T, inequality.
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Transport-Entropy Inequalities

@ Relative entropy: Hw|p) = [, Iog( ) dv.

Definition (Transport-Entropy Inequality)

The probability measure . satisfies To H(«) if

a(To(v, 1)) < H(v|p), forallv € Px ToH(c)

Example ((WsH, W>H)

Ty == WA(w,u) < CH(vln), W WiH
Te(u) = WEwu) < cH(vlu), W WeH

@ W:rH is Talagrand’s T, inequality.
@ Ty H(«) is investigated by N. Gozlan and CL (PTRF online).
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Transport-Entropy Inequalities

@ Relative entropy: Hw|p) = [, Iog( ) dv.

Definition (Transport-Entropy Inequality)

The probability measure . satisfies To H(«) if

a(To(v, 1)) < H(v|p), forallv € Px ToH(c)

Example ((WsH, W>H)

Ty == WA(w,u) < CH(vln), W WiH
Te(u) = WEwu) < cH(vlu), W WeH

@ W:rH is Talagrand’s T, inequality.
@ TsH(«) is investigated by N. Gozlan and CL (PTRF online).
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The occupation measure

The main actor is the random probability measure

Definition (Occupation measure of the process X)

t
Lt::l/&(sds, tZO
t 0

Lt(A) = ratio of time spent by X in A during [0,{], AC X.
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The occupation measure

The main actor is the random probability measure

Definition (Occupation measure of the process X)

t
Lt::l/&(sds, tZO
t 0

Lt(A) = ratio of time spent by X in A during [0,{], AC X.
Let
@ (= Law(Xp) is the initial law and
@ P is the corresponding law of (X;):>o.
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The occupation measure

The main actor is the random probability measure

Definition (Occupation measure of the process X)

t
Lt::l/&(sds, tZO
t 0

Lt(A) = ratio of time spent by X in A during [0,{], AC X.
Let
@ (= Law(Xp) is the initial law and
@ P is the corresponding law of (X;):>o.

Theorem (Ergodic theorem)

tlim Lt = p, Pg-a.s. with respect to o(Px, Bx).
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Large deviations of {L;}+~o

Theorem (Ergodic theorem)

tlim Li = u, Pg-a.s. with respect to o(Px, Bx).

Theorem (Donsker-Varadhan, Deuschel-Stroock)

Under mixing assumptions,
{L:} obeys the Large Deviation Principle as t — oo

Ps(Li€ A) = exp ( —tinf /(um)), AC Px

“uniformly” in the initial law (3.
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Large deviations of {L;}+~o

Theorem (Ergodic theorem)

tlim Li = u, Pg-a.s. with respect to o(Px, Bx).

Theorem (Donsker-Varadhan, Deuschel-Stroock)

Under mixing assumptions,
{L:} obeys the Large Deviation Principle as t — oo

Ps(Li€ A) = exp ( —tinf /(um)), AC Px

“uniformly” in the initial law .

Remark: I(v|p) = 0iff v = p.
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Large deviations of {L;}+~o

Theorem (Wu Liming)

Assume that 3 < p with d3/du € L2(u).
{Lt}t>0 obeys the LDP in Px with rate function v — I(v|u) : For all
measurable subset A of Px,

— inf I(v|p) < liminf + logPs(Ls € A)
veint A t—oo [
< lim sup 1 logPs(L: € A) < — inf I(v|p)
t— o0 t veel A

where int A and cl A are the interior and closure of A with respect to the
topology o(Px, Bx).
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Large deviations of {L;}+~o

Theorem (Wu Liming)

Assume that 3 < p with d3/du € L2(u).
{Lt}t>0 obeys the LDP in P with rate function v — I(v|u) : For all
measurable subset A of Px,

— inf I(v|p) < liminf + logPs(Ls € A)
veEint A t—oo [
< lim sup 1 logPs(L: € A) < — inf I(v|p)
t— o0 t veel A

where int A and cl A are the interior and closure of A with respect to the
topology o(Px, Bx).
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Large deviations of {L;}+~o

Theorem (Wu Liming)

Assume that 3 < p with d3/du € L2(u).
{Lt}t>0 obeys the LDP in P with rate function v — I(v|u) : For all
measurable subset A of Px,

— inf I(v|p) < liminf + logPs(Ls € A)
veint A t—oo [
< lim sup 1 logPs(L: € A) < — inf I(v|p)
t— o0 t veel A

where int A and cl A are the interior and closure of A with respect to the
topology o(Px, Bx).
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Large deviations of {L;}+~o

Theorem (Wu Liming)

Assume that 3 < p with d3/du € L2(u).
{Lt}t>0 obeys the LDP in P with rate function v — I(v|u) : For all
measurable subset A of Px,

— inf I(v|p) < liminf + logPs(Ls € A)
veint A t—oo [
< lim sup 1 logPs(L: € A) < — inf I(v|p)
t— o0 t veel A

where int A and cl A are the interior and closure of A with respect to the
topology o(Px, Bx).

Shortly and approximately: Ps(L: € A) s exp[—tinf,ea l(v|n)]
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Large deviations of {L;}+~o

Theorem (Wu Liming)

Assume that 3 < p with d3/du € L2(u).
{Lt}t>0 obeys the LDP in P with rate function v — I(v|u) : For all
measurable subset A of Px,

— inf I(v|p) < liminf + logPs(Ls € A)
veint A t—oo [
< lim sup 1 logPs(L: € A) < — inf I(v|p)
t— o0 t veel A

where int A and cl A are the interior and closure of A with respect to the
topology o(Px, Bx).

Shortly and approximately: Ps(L: € A) s exp[—tinf,ea l(v|n)]

@ Remark: Ps = 2(X0)P,..
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Large deviations of {L;}+~o

Theorem (Wu Liming)

Assume that 3 < p with d3/du € L2(u).
{Lt}t>0 obeys the LDP in P with rate function v — I(v|u) : For all
measurable subset A of Px,

— inf I(v|p) < liminf + logPs(Ls € A)
veint A t—oo [
< lim sup 1 logPs(L: € A) < — inf I(v|p)
t— o0 t veel A

where int A and cl A are the interior and closure of A with respect to the
topology o(Px, Bx).

Shortly and approximately: Ps(L: € A) s exp[—tinf,ea l(v|n)]

@ Remark: Ps = 2(X0)P,..
@ No mixing assumptions.
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Large Deviations Of The Occupation Measure
A Connection With Large deviations The Basic Result
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Statement of the basic result

The following statements are equivalent.
(@) a(To(v,w) < I(vlp), Vv € Pa.
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Large Deviations Of The Occupation Measure
A Connection With Large deviations The Basic Result

Tensorization

Statement of the basic result

Fora € C, define:  o”()) :=sup,o{rA —a(r)}, A>0.

Theorem
The following statements are equivalent.
(@) a(Tolv,p)) < l(vlp), Vv e Pa.
(b) YA >0,Y(u,v) € &,

t
lim sup 1 log E,, exp (A/ u(Xs) ds) < Ap+a® ()
0

t—oo t
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Large Deviations Of The Occupation Measure
A Connection With Large deviations The Basic Result

Tensorization

Statement of the basic result

Fora € C, define:  a®(X) :=sup,5o{rA —a(r)}, A>0.

Theorem
The following statements are equivalent.
a) To(v, 1)) < I(vlp), Vv € Pa.
(b) YA >0,Y(u,v) € &,

t
Ilmsup + logE, exp( /u(Xs) ds) <A+ a®(N)
0

t—oo
(c) Vr,t>0,Y(u,v) € ®,Y3 € Px such that d3/du € L*(u),

pa (3 [ wxrao ) <[22

—to(r)

L2(p)
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Large Deviations Of The Occupation Measure
A Connection With Large deviations The Basic Result

Tensorization

Statement of the basic result

Fora € C, define:  a®(X) :=sup,5o{rA —a(r)}, A>0.

Theorem
The following statements are equivalent.
a) To(v, 1)) < I(vlp), Vv € Pa.
(b) YA >0,Y(u,v) € &,

t
Ilmsup + logE, exp( /u(Xs) ds) <A+ a®(N)
0

t—oo
(c) Vr,t>0,Y(u,v) € ®,Y3 € Px such that d3/du € L*(u),

pa (3 [ wxrao ) <[22

—to(r)

L2(p)

@ Remark: 1 [fu(Xs)ds = [, udL: = Li(u).
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Large Deviations Of The Occupation Measure
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Tensorization

An immediate corollary

Specializing with W; one obtains the

Corollary

The following statements are equivalent.
() WR(v,p) < 4c2I(v|p), Vo;
(b) VA >0,Vu € Crip : ||ullip < 1, u(u) =0,
t
lim sup 1 log E,, exp (/\/ u(Xs) ds) < AN?
0

t—oo t

(c) Vr,t>0,Yu € Cuyp, VB € Px such that d3/du € L?(u),

L2(p) 4c|\uliz,
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Large Deviations Of The Occupation Measure
A Connection With Large deviations The Basic Result

Tensorization

An immediate corollary

Specializing with W; one obtains the

Corollary

The following statements are equivalent.
() WR(v,p) < 4c2I(v|p), Vo;
(b) VA >0,Vu € Crip : ||ullip < 1, u(u) =0,
t
lim sup 1 log E,, exp (/\/ u(Xs) ds) < AN?
0

t—oo t

(c) Vr,t>0,Yu € Cuyp, VB € Px such that d3/du € L?(u),

L2(p) 4c|\uliz,
@ Interest: Estimation of u(u) by Li(u).
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Large Deviations Of The Occupation Measure
A Connection With Large deviations The Basic Result

Tensorization

An immediate corollary

Specializing with W; one obtains the

Corollary

The following statements are equivalent.
() WR(v,p) < 4c2I(v|p), Vo;
(b) VA >0,Vu € Cup : [|ulluip < 1, pu(u) =0,

t
lim sup1 log E,, exp (/\/ u(XS)ds) < AN?
0

t—oo t

t
Ps (1?/0 u(Xs) ds > p(u) + r) < HZ—ﬁ

(c) Vr,t>0,Yu € Cuyp, VB € Px such that d3/du € L?(u),
L2(p) 4c|\uliz,
@ Interest: Estimation of u(u) by Li(u).
@ Analogous result for Wa /.
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Large Deviations Of The Occupation Measure
A Connection With Large deviations The Basic Result
Tensorization

Deviation functions, Transport functions

Definition (Transport function)

A function « in C is a transport function if u satisfies Te /()

o(To(p,v)) < I(v|p), forall v
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Large Deviations Of The Occupation Measure
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Tensorization

Deviation functions, Transport functions

Definition (Transport function)
A function « in C is a transport function if u satisfies Te /()

o(To(p,v)) < I(v|p), forall v

Denote
T(Lt) = To(Lt, 1)

Definition (Deviation function)

A function « in C is a deviation function if for all r > 0

limsup 1 logPs(7 (L) > r) < —a(r)

t—oo t
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Tensorization

A deviation function is a transport function

Borrowed from [Gozlan-Léonard].

Any deviation function « is a transport function.
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Large Deviations Of The Occupation Measure
A Connection With Large deviations The Basic Result
Tensorization

A deviation function is a transport function

Borrowed from [Gozlan-Léonard].

Recipe
Any deviation function « is a transport function.

Idea of proof.

@ Suppose 7 is regular enough for the sets A, = {v € Px; 7 (v) > r} to
be good sets. For all r > 0,

Ps(7(Lt) > r) = Ps(Lt € Ar) =< exp[—ti(r)]
with i(r) = inf{/(v|p);v € Px : T(v) > r}.
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Tensorization

A deviation function is a transport function

Borrowed from [Gozlan-Léonard].

Recipe
Any deviation function « is a transport function.

Idea of proof.

@ Suppose 7 is regular enough for the sets A, = {v € Px; 7 (v) > r} to
be good sets. For all r > 0,

Ps(7(Lt) > r) = Ps(Lt € Ar) < exp[—ti(r)]

with i(r) = inf{/(v|p);v € Px : T(v) > r}.

@ Let o be a deviation function. Then, exp[—ti(r)] < exp[—ta(r)],Vr > 0
i.e. ar) <i(r),vr>0.
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A deviation function is a transport function

Borrowed from [Gozlan-Léonard].

Recipe
Any deviation function « is a transport function.

Idea of proof.

@ Suppose 7 is regular enough for the sets A, = {v € Px; 7 (v) > r} to
be good sets. For all r > 0,

Ps(7(Lt) > r) = Ps(Lt € Ar) < exp[—ti(r)]

with i(r) = inf{/(v|p);v € Px : T(v) > r}.

@ Let o be a deviation function. Then, exp[—ti(r)] < exp[—ta(r)],Vr > 0
i.e. ar) <i(r),vr>0.

@ Taking r = 7(v) leads to: (7 (v)) < (7T (v)) < I(v|p), Vv € Px. O
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A deviation function is a transport function

Borrowed from [Gozlan-Léonard].

Recipe
Any deviation function « is a transport function.

Idea of proof.

@ Suppose 7 is regular enough for the sets A, = {v € Px; 7 (v) > r} to
be good sets. For all r > 0,

Ps(7(Lt) > r) = Ps(Lt € Ar) < exp[—ti(r)]

with i(r) = inf{I(v|p); v € Px : T(v) > r}.

@ Let o be a deviation function. Then, exp[—ti(r)] < exp[—ta(r)],Vr > 0
i.e. a(r) <i(r),vr>0.

@ Taking r = 7(v) leads to: a(7 (v)) < i(7(v)) < I(v|p), Vv € Px. O
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A deviation function is a transport function

Borrowed from [Gozlan-Léonard].

Recipe
Any deviation function « is a transport function.

Idea of proof.

@ Suppose 7 is regular enough for the sets A, = {v € Px; 7 (v) > r} to
be good sets. For all r > 0,

Ps(7(Lt) > r) = Ps(Lt € Ar) < exp[—ti(r)]

with i(r) = inf{/(v|p);v € Px : T(v) > r}.

@ Let o be a deviation function. Then, exp[—ti(r)] < exp[—ta(r)],Vr > 0
i.e. a(r) <i(r),vr>0.

@ Taking r = 7(v) leads to: (7 (v)) < i(T(v)) < I(v|p), Vv € Px. O
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A Connection With Large deviations The Basic Result
Tensorization

A deviation function is a transport function

Borrowed from [Gozlan-Léonard].

Recipe
Any deviation function « is a transport function.

Idea of proof.

@ Suppose 7 is regular enough for the sets A, = {v € Px; 7 (v) > r} to
be good sets. For all r > 0,

Ps(7(Lt) > r) = Ps(Lt € Ar) < exp[—ti(r)]

with i(r) = inf{/(v|p);v € Px : T(v) > r}.

@ Let o be a deviation function. Then, exp[—ti(r)] < exp[—ta(r)],Vr > 0
i.e. a(r) <i(r),vr>0.

@ Taking r = 7(v) leads to: (7 (v)) < i(T(v)) < I(v|p), Vv € Px. O

Mostly based on the LD lower bound.

C. Léonard Transport Inequalities For Markov Processes



Large Deviations Of The Occupation Measure
A Connection With Large deviations The Basic Result
Tensorization

Outline

o A Connection With Large deviations

@ Tensorization
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A Connection With Large deviations The Basic Result
Tensorization

TcI(«) for product measures

The ingredients
@ (X1, 1), (X2, p2), (X1 X Xz, 1 ® po2)
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Large Deviations Of The Occupation Measure
A Connection With Large deviations The Basic Result
Tensorization

TcI(«) for product measures

The ingredients
@ (X1, 1), (X, p2), (X1 X Xo, pi1 @ pz)
Q@ ¢, ((X1,Xz), (y1,y2)) = c1(x1, 1) + ca(x2, y2)
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Tensorization

TcI(«) for product measures

The ingredients
@ (X1, 1), (X, p2), (X1 X Xo, pi1 @ pz)
Q@ ¢, ((X1,Xz), (y1,y2)) = ci(x1, 1) + c2(X2, y2)

Theorem (Tensorization)

Suppose that the following TcIs hold:

a1 (T, (v1, 1)) < l(v1 | 1), Yor € P(X5)
a2(Ze, (v2, p2)) < I(v2 | p2), Yo € P(X2)

Then, on Xy x X», we have:

ar0az (Teyae, (v, 1 ® p2)) < (v | 1 @ p2), Vv € P(X1 x Az)
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Tensorization

TcI(«) for product measures

The ingredients
@ (X1, 1), (X, p2), (X1 X Xo, pi1 @ pz)
Q@ ¢, ((X1,Xz), (y1,y2)) = ci(x1, 1) + c2(X2, y2)

Theorem (Tensorization)

Suppose that the following TcIs hold:

a1 (T, (v1, 1)) < l(v1 | 1), Yor € P(X5)
a2(Ze, (v2, p2)) < I(v2 | p2), Yo € P(X2)

Then, on Xy x X», we have:

a10az (T ae (v 1 ® p2)) < I(v |t ® p2), Vv € P(X x A2)

@ aUao(r) =inf{ai(n) + az(r);n,r>0:n+r=r}
is the inf-convolution of a1 and aw.
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A Connection With Large deviations The Basic Result

Tensorization

TcI(«) for product measures

Typical LD result

Let {Z'}: and {Z?}; be two independent LD systems on R with respective

rate functions a4 and ae. Then, {Z; := Z' + Z?}: obeys the LDP with rate
function o = ayOexp.
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n-Tensorization

On X" define the sum-cost
° @C(X1,...,Xn;y1,...,yn) = Z1§i§nc(xi;yf)’ X1, 5 Yn ex
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n-Tensorization

On X" define the sum-cost

° @C(X1,...,Xn;y1,...,yn) = Z1§i§nc(xf;yf)’ X1, -, ¥n € X
and the sum-Dirichlet form

@ DE(9) = [un D 1<icn&(G) TTi<icn n(d)

where g,.X"(x,-) =9(X1,...,Xn) With X; = (X1, -+, Xi—1, Xig1, = , Xn).
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n-Tensorization

On X" define the sum-cost

@ Poelxt,.... Xy, ¥n) =2 cicnC(Xi i), Xi,oo  Yn€X
and the sum-Dirichlet form

@ Pé(g) = an E1§f§n5(g;(i) H1§,‘§n p(ax;)

where gf"(x,-) =9(X1,...,Xn) With X; = (X1, -+, Xi—1, Xig1, = , Xn).
It is the Dirichlet form of (X}, --- , X/")>0 with X", ..., X" independent
copies of X.
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n-Tensorization

If u satisfies T.l, then u®" satisfies

®n
na (M) < lpe(W|u®"), Vv e P(X")
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n-Tensorization

If u satisfies T.l, then u®" satisfies
®n
na (M) < lpe(W|u®"), Vv e P(X")
In particular, for all (u,v) € &¢, 8 € P(X"), t,r >0,

Tt 1 ds
Ps (n;,/o u(X) ds > u(V)+f> <| 5%

e—nta(r)

12(u®n)
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n-Tensorization

If u satisfies T.l, then u®" satisfies
®n
na (M) < lpe(W|u®"), Vv e P(X")
In particular, for all (u,v) € &¢, 8 € P(X"), t,r >0,

Tt 1 ds
Ps (n;,/o u(X) ds > u(V)+f> <| 5%

e—nta(r)

12(u®n)

an(r) =0"(r) = na(r/n), r > 0.
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Tensorization

n-Tensorization

As Wil(c) : W2(v, u) < 4¢®I(v|p) corresponds to a1(r) = r?/(4c?) we have

WE (v, n®") < 4c2ni(v]u®")
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n-Tensorization

As Wil(c) : W2(v, u) < 4¢®I(v|p) corresponds to a1(r) = r?/(4c?) we have

WE (v, n®") < 4c2ni(v]u®")

@ The constant 4¢nin W,/ explodes as n.
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Tensorization

n-Tensorization

As Wil(c) : W2(v, u) < 4¢®I(v|p) corresponds to a1(r) = r?/(4c?) we have

WE (v, n®") < 4c2ni(v]u®")

As Wal(c) : Wa(v, 1) < 4¢2I(v|p) corresponds to ax(r) = r/(4c?) we have

We(v, u®") < 4c®I(v|u®")

@ The constant 4¢nin W,/ explodes as n.
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A Connection With Large deviations The Basic Result
Tensorization

n-Tensorization

As Wil(c) : W2(v, u) < 4¢®I(v|p) corresponds to a1(r) = r?/(4c?) we have

WE (v, n®") < 4c2ni(v]u®")

As Wal(c) : Wa(v, 1) < 4¢2I(v|p) corresponds to ax(r) = r/(4c?) we have

We(v, u®") < 4c®I(v|u®")

@ The constant 4¢nin W,/ explodes as n.
@ The constant is dimension-free in Wa|.
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Tensorization

n-Tensorization

As Wil(c) : W2(v, u) < 4¢®I(v|p) corresponds to a1(r) = r?/(4c?) we have

WE (v, n®") < 4c2ni(v]u®")

As Wal(c) : Wa(v, 1) < 4¢2I(v|p) corresponds to ax(r) = r/(4c?) we have

We(v, u®") < 4c®I(v|u®")

@ The constant 4¢nin W,/ explodes as n.
@ The constant is dimension-free in Wa|.

@ Beautiful applications of Wa/ for Gibbs measures in situations where
log-Sobolev is unknown (Gao and Wu, 2007).
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Poincaré and log-Sobolev
Poincaré implies Pinsker

-0
Criteria Spectral gap in G ™

Lyapunov function condition

e Criteria

@ Poincaré and log-Sobolev
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Poincaré and log-Sobolev
Poincaré implies Pinsker

in o0
Spectral gap in C, 5
Lyapunov function condition

Criteria

Poincaré and log-Sobolev

Definition (Poincaré inequality)
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Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in CI‘"”

3

Criteria

Poincaré and log-Sobolev

Lyapunov function condition

Definition (Poincaré inequality)

Var,, (\/?Z) <cl(v|p), W P(c)

Definition (log-Sobolev inequality)

H(v|p) < 2cl(v|p), Wv LS(c)
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Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in CI‘"”

3

Criteria

Poincaré and log-Sobolev

Lyapunov function condition

Definition (Poincaré inequality)

Var,, (\/?Z) <cl(v|p), W P(c)

Definition (log-Sobolev inequality)

H(v|p) < 2cl(v|p), Wv LS(c)

cp(p) < ewyi(p) < cis(p)-
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Poincaré and log-Sobolev
Poincaré implies Pinsker

in o0
Spectral gap in C, 5
Lyapunov function condition

Criteria

Poincaré and log-Sobolev

Definition (Poincaré inequality)

Var,, (\/?Z) <cl(v|p), W P(c)

Definition (log-Sobolev inequality)

H(v|p) < 2cl(v|p), Wv LS(c)

cp(p) < ewyi(p) < cis(p)-

Follow Otto and Villani (JFA, 2000). O
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Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in CIU‘p

Criteria Lyapunov function condition

Outline

e Criteria

@ Poincaré implies Pinsker
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Poincaré and log-Sobolev
Poincaré implies Pinsker

H 0
Criteria Spectral gap in C, 5

Lyapunov function condition

Poincaré implies a Pinsker type inequality

If u satisfies P(c), then

lv — plifv < 4cl(v|u), Vv.

exp <_7”2 )
L2() co(u)?

In particular, V't, r, 3, u,

Ps (1; / u(Xs) ds > u(u)+r> < H%ﬁ

where 6(u) := sup(u) — inf(u).
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Poincaré and log-Sobolev
Poincaré implies Pinsker

H 0
Criteria Spectral gap in C, 5

Lyapunov function condition

Poincaré implies a Pinsker type inequality

If u satisfies P(c), then
v — pllfv < 4cl(vlp), Vv
In particular, V't, r, 3, u,

1 dag

Ps <? /01 u(Xs) ds > p(u) + r) < HCTM oy exp <—$2)2)

where 6(u) := sup(u) — inf(u).

Idea of proof.

® [lv— pillrv = [[v — il with d(x, y) = 2.

O
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Poincaré and log-Sobolev
Poincaré implies Pinsker

H 0
Criteria Spectral gap in C, 5

Lyapunov function condition

Poincaré implies a Pinsker type inequality

If v satisfies P(c), then
v — pllfv < 4cl(vlp), Vv
In particular, V't, r, 3, u,

1 dag

Ps <? /01 u(Xs) ds > p(u) + r) < HCTM oy exp <—$2)2)

where 6(u) := sup(u) — inf(u).
Idea of proof.
® ||y — pllry = v — i, With d(x,¥) = 24z
@ |v— |3y < 4Var, (,/g—;) < 4cl(v|p).

O
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Poincaré and log-Sobolev
Poincaré implies Pinsker

H 0
Criteria Spectral gap in C, 5

Lyapunov function condition

Poincaré implies a Pinsker type inequality

If u satisfies P(c), then
v — pllfv < 4cl(vlp), Vv
In particular, V't, r, 3, u,

1 dag

Ps <? /01 u(Xs) ds > p(u) + r) < HCTM oy exp <—$2)2)

where 6(u) := sup(u) — inf(u).
Idea of proof.
® ||y — pllry = v — i, With d(x,¥) = 24z
@ |v— |3y < 4Var, (,/g—;) < 4cl(v|p).

O
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Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in Cl‘"‘p

Criteria Lyapunov function condition

Poincaré implies a Pinsker type inequality

dv
llv — |y < 4Var, ( d,u> , Vu,v.
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Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in C7,

Criteria Lyapunov function condition

Poincaré implies a Pinsker type inequality

dv
llv — |3y < 4Var, (\ / d,u> , Vu,v.

Idea of proof.

This is W; I with
@ d(x,y) =2« sothat:  Wi(v,u) = [lv — pllrv;
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Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in C°,

Criteria Lyapunov function condition

Poincaré implies a Pinsker type inequality

dv
llv — |3y < 4Var, (\ / d,u> , Vu,v.

Idea of proof.

This is W; I with
@ d(x,y) =2« sothat:  Wi(v,u) = [lv — pllrv;

@ the process X defined as follows. Take

5 _ dv
so that: I(v|p) = Var, (,/@) , V.
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Poincaré and log-Sobolev
Poincaré implies Pinsker

i 0
Criteria Spectral gap in C, b

Lyapunov function condition

Poincaré implies a Pinsker type inequality

dv
llv — |3y < 4Var, (\ / d,u> , Vu,v.

Idea of proof.

This is W; I with
@ d(x,y) =2« sothat:  Wi(v,u) = [lv — pllrv;

@ the process X defined as follows. Take
@ (Yn)n>0 independent with common law ;

5 _ dv
sothat:  /(v|u) = Var, (, /@) , V.
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Poincaré and log-Sobolev
Poincaré implies Pinsker

i 0
Criteria Spectral gap in C, b

Lyapunov function condition

Poincaré implies a Pinsker type inequality

dv
llv — |3y < 4Var, (\ / d,u> , Vu,v.

Idea of proof.

This is W; I with
@ d(x,y) =2« sothat:  Wi(v,u) = [lv — pllrv;

@ the process X defined as follows. Take

@ (Yn)n>0 independent with common law ;
@ (Ni)i>o a Poisson(1) process;

5 _ dv
sothat:  /(v|u) = Var, (, /@) , V.
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Poincaré and log-Sobolev
Poincaré implies Pinsker

i 0
Criteria Spectral gap in C, b

Lyapunov function condition

Poincaré implies a Pinsker type inequality

dv
llv — |3y < 4Var, (\ / d,u> , Vu,v.

Idea of proof.

This is W; I with
@ d(x,y) =2« sothat:  Wi(v,u) = [lv — pllrv;

@ the process X defined as follows. Take

@ (Yn)n>0 independent with common law ;
@ (Ni)i>o a Poisson(1) process;
@ (Yn)n>o0 and N independent;

5 _ dv
sothat:  /(v|u) = Var, (, /@) , V.
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Poincaré and log-Sobolev
Poincaré implies Pinsker

i 0
Criteria Spectral gap in C, b

Lyapunov function condition

Poincaré implies a Pinsker type inequality

dv
llv — |3y < 4Var, (\ / d,u> , Vu,v.

Idea of proof.

This is W; I with
@ d(x,y) =2y sothat:  Wi(v,p) = [lv — pllrv;
@ the process X defined as follows. Take

(Yn)n>0 independent with common law y;
(Nt)t>0 a Poisson(1) process;

(Yn)n>0 and N independent;
Xi:=Yn,t>0

5 _ dv
sothat:  /(v|u) = Var, (, /@) , V.
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Criteria

Outline

Poincaré and log-Sobolev
Poincaré implies Pinsker

Spectral gap in C_,

Lyapunov function condition

e Criteria

@ Spectral gap in G,

Léonard

Transport Inequali

s For Markov Processes



Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in C_,

Criteria Lyapunov function condition

Spectral gap in CP;

Definition (Spectral gap in C&p)
There exists ¢ < oo such that for all g € Cui, N L3(1), there exists f € L3(u)
such that

@ Lf=g;

@ ||f|lup < cllgllup, F: version of f.

C. Léonard Transport Inequalities For Markov Processes



Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in C_,

Criteria Lyapunov function condition

Spectral gap in CP;

Definition (Spectral gap in C; ;)
There exists ¢ < oo such that for all g € Cui, N L3(1), there exists f € L3(u)
such that

@ Lf=g;

@ ||f|lup < cllgllup, F: version of f.
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Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in C_,

Criteria Lyapunov function condition

Spectral gap in CP;

Definition (Spectral gap in C&p)
There exists ¢ < oo such that for all g € Cui, N L3(1), there exists f € L3(u)
such that

@ Lf=g;

@ ||f|lup < cllgllup, F: version of f.

@ gap(—L)=1/c.
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Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in C_,
Lyapunov function condition

Criteria

Spectral gap in CP;

Definition (Spectral gap in C&p)
There exists ¢ < oo such that for all g € Cui, N L3(1), there exists f € L3(u)
such that

@ Lf=g;

@ ||f|lup < cllgllup, F: version of f.

@ gap(—L)=1/c.

With L = A — V'V -V, the spectral gap in Cﬁip implies Wi l(c).
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Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in C_,
Lyapunov function condition

Criteria

Spectral gap in CP;

Definition (Spectral gap in C&p)
There exists ¢ < oo such that for all g € Cui, N L3(1), there exists f € L3(u)
such that

@ Lf=g;

@ ||f|lup < cllgllup, F: version of f.

@ gap(—L)=1/c.

With L = A — V'V -V, the spectral gap in Cﬁip implies Wi l(c).

@ Remark: = e " dx.
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Application
With £ = A — VV-V, we have: Ric+ V2V >K >0= Wil(K").

Remark: By Bakry-Emery criterion log-Sob holds.
Proof without log-Sob.

Application

With dX; = v20(X:) dB; + b(X;) dt and

{ trace[(a(y) — o(x))(a(y) — o(x))"]+ (¥ — x, b(y) — b(x)) < —dly —x[*,¥x{y
(Pt) is symmetric in L2 ()

then W;I(]|o||/0) holds true.
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then W;I(]|o||/0) holds true.

@ unique invariant measure p, unknown to be estimated,;
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Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in C_,
Lyapunov function condition

Criteria

Spectral gap in CP;

Application
With £ = A — VV-V, we have: Ric+ V2V >K >0= Wil(K").

Remark: By Bakry-Emery criterion log-Sob holds.
Proof without log-Sob.

Application

With dX; = v20(X:) dB; + b(X;) dt and

{ trace[(a(y) — o(x))(a(y) — o(x))"]+ (¥ — x, b(y) — b(x)) < —dly —x[*,¥x{y
(Pt) is symmetric in L2 ()

then W;I(]|o||/0) holds true.

@ unique invariant measure p, unknown to be estimated,;
@ log-Sob unknown.
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Poincaré and log-Sobolev
Poincaré implies Pinsker

o A
Criteria Spectral gap in G T

Lyapunov function condition

e Criteria

@ Lyapunov function condition
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Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in Cl‘"‘p

Criteria Lyapunov function condition

Lyapunov function condition

Definition (Lyapunov function condition)
With U : X — [1, o) continuous; ¢ : X — [0,00); b > 0,

—ﬁ—ljj >¢—b, p-ae.
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Lyapunov function condition

Definition (Lyapunov function condition)
With U : X — [1, o) continuous; ¢ : X — [0,00); b > 0,

—E—ljj >¢—b, p-ae.

Theorem
Under this Lyapunov function condition, if i satisfies Poincaré inequality, then

l¢-(v = v < € (VIWIk) + Iwlw)) - v

C. Léonard Transport Inequalities For Markov Processes



Poincaré and log-Sobolev
Poincaré implies Pinsker
Spectral gap in CPm
Lyapunov function condition

Criteria

Lyapunov function condition

Definition (Lyapunov function condition)
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Lyapunov function condition

Definition (Lyapunov function condition)
With U : X — [1, o) continuous; ¢ : X — [0,00); b > 0,

—ﬁ—ljj >¢—b, p-ae.

Theorem
Under this Lyapunov function condition, if i satisfies Poincaré inequality, then

(v = v < € (VIwlk) + Iwlw)) .

@ d(x,y) = [¢(x) + o(¥)xzy;
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Lyapunov function condition

Definition (Lyapunov function condition)
With U : X — [1, o) continuous; ¢ : X — [0,00); b > 0,

—ﬁ—ljj >¢—b, p-ae.

Theorem
Under this Lyapunov function condition, if i satisfies Poincaré inequality, then

(v = v < € (VIwlk) + Iwlw)) .

@ d(x,y) = [¢(x) + o(¥)Txryi
@ a(r) = Ormo(r?) and a(r) = Ormsoo(r)
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Poincaré and log-Sobolev
Poincaré implies Pinsker

i 0
Criteria Spectral gap in G 5

Lyapunov function condition

Lyapunov function condition

With =A—-VV-V:pu=e"Vadx If

@ |[x — X2 < c(1+|VV(x)), Vx;

@ limsup, ... AV(x)/|[VV]A(x) <1,
then W;I(1/(4c)) holds and for all t,r > 0

t
Py (1?/0 U(Xs) ds > u(u)+r) < H%

7lr2/c

L2(p)
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