SLE and α **-SLE driven by Lévy processes**

Qingyang Guan

Institute of Applied Mathematics, CAS Department of Mathematics Imperial College London

Beijing Normal University, 15 July 2007

Beijing Normal University, 15 July 2007 – p.

Based on a joint work with Matthias Winkel.

Beijing Normal University, 15 July 2007 – p.2

•

1. Introduction of SLE

Introduction of SLE SLE driven by Lévy processes

Introduction of SLE SLE driven by Lévy processes α-SLE

Introduction of SLE
 SLE driven by Lévy processes
 α-SLE

4. Further problems

1. Introduction of SLE

SLE: Stochastic(Schramm) Loewner Evolution

A new way to understand conformal invariant random increasing curves(sets) in complex plane.

Self-avoiding random walk, from Google

Beijing Normal University, 15 July 2007 - p.:

Interface of Ising model, from Google

Study curve by conformal map

$$\mathbb{H} = \{(x, y) : y > 0\}$$

(0,0)

(0,0)

Beijing Normal University, 15 July 2007 – p.

$$\mathbb{H} = \{(x, y) : y > 0\}$$

 $\gamma[0,t] = \{\gamma(s) : 0 \le s \le t\}$

Beijing Normal University, 15 July 2007 – p.7

 g_t is a unique conformal map if

$$\lim_{|z|\to\infty} (g_t(z) - z) = 0.$$

Beijing Normal University, 15 July 2007 - p.

 g_t is a unique conformal map if

 $\lim_{|z|\to\infty} (g_t(z) - z) = 0.$

Beijing Normal University, 15 July 2007 - p.

Loewner equation

Theorem If $(\gamma(t))_{t\geq 0}$ is a simple curve on \mathbb{H} , then $(g_t)_{t\geq 0}$ satisfies the following Loewner equation

$$\partial_t g_t(z) = \frac{2}{g_t(z) - U_t}, \qquad g_0(z) = z, \qquad z \in \overline{\mathbb{H}},$$

where $U_t = g_t(\gamma(t))$ is a continuous real valued function.

Loewner equation

Theorem If $(\gamma(t))_{t\geq 0}$ is a simple curve on \mathbb{H} , then $(g_t)_{t\geq 0}$ satisfies the following Loewner equation

$$\partial_t g_t(z) = \frac{2}{g_t(z) - U_t}, \qquad g_0(z) = z, \qquad z \in \overline{\mathbb{H}},$$

where $U_t = g_t(\gamma(t))$ is a continuous real valued function.

For $z \in \overline{\mathbb{H}}$, function $g_{\cdot}(z)$ above can be solved on $[0, \zeta(z))$. Here

$$\zeta(z) = \sup\{t : |g_s(z) - U_s| > 0, \ s \in [0, t]\}$$

Loewner equation

Theorem If $(\gamma(t))_{t\geq 0}$ is a simple curve on \mathbb{H} , then $(g_t)_{t\geq 0}$ satisfies the following Loewner equation

$$\partial_t g_t(z) = \frac{2}{g_t(z) - U_t}, \qquad g_0(z) = z, \qquad z \in \overline{\mathbb{H}},$$

where $U_t = g_t(\gamma(t))$ is a continuous real valued function.

For each t ≥ 0, Kt is defined by the set of 'broken points' before time t, i.e.

$$K_t = \{ z \in \overline{\mathbb{H}} : \zeta(z) \le t \}.$$

In 1999, O. Schramm observed that if $(\gamma_t)_{t\geq 0}$ is conformal invariant(Markovian), then $(U_t)_{t\geq 0}$ is Brownian motion.

In 1999, O. Schramm observed that if $(\gamma_t)_{t\geq 0}$ is conformal invariant (Markovian), then $(U_t)_{t\geq 0}$ is Brownian motion.

Stochastic Loewner equation

$$\partial_t g_t(z) = \frac{2}{g_t(z) - \sqrt{\kappa}B_t}, \qquad g_0(z) = z, \qquad z \in \overline{\mathbb{H}},$$

where $(B_t)_{t\geq 0}$ is a Brownian motion.

In 1999, O. Schramm observed that if $(\gamma_t)_{t\geq 0}$ is conformal invariant(Markovian), then $(U_t)_{t\geq 0}$ is Brownian motion.

Stochastic Loewner equation

$$\partial_t g_t(z) = \frac{2}{g_t(z) - \sqrt{\kappa}B_t}, \qquad g_0(z) = z, \qquad z \in \overline{\mathbb{H}},$$

where $(B_t)_{t\geq 0}$ is a Brownian motion.

Similarly to the determined case, we can define stochastic increasing sets $(K_t)_{t\geq 0}$:

$$K_t = \{ z \in \overline{\mathbb{H}} : \zeta(z) \le t \}.$$

In 1999, O. Schramm observed that if $(\gamma_t)_{t\geq 0}$ is conformal invariant(Markovian), then $(U_t)_{t\geq 0}$ is Brownian motion.

Stochastic Loewner equation

$$\partial_t g_t(z) = \frac{2}{g_t(z) - \sqrt{\kappa}B_t}, \qquad g_0(z) = z, \qquad z \in \overline{\mathbb{H}},$$

where $(B_t)_{t\geq 0}$ is a Brownian motion.

• $(K_t)_{t\geq 0}$ is called Schramm Loewner Evolution.

2. SLE driven by Lévy processes

In what follows we consider driven processes

$$U_t = \sqrt{\kappa}B_t + \theta^{1/\alpha}S_t,$$

where (B_t) and (S_t) are Brownian motion and symmetric α -stable process, respectively.

Vector fields of Stochastic Loewner equation

Beijing Normal University, 15 July 2007 – p.1

Example of continuous driven function

$$g_t = \sqrt{4t + z^2}$$

(0,0) $U_t \equiv 0, \ t \ge 0$

Beijing Normal University, 15 July 2007 – p.12

Example of cádlág driven function

(0,0) $U_t = 0, \ t \in (0,1); \quad U_t = 1, \ t \in [1,\infty)$

Example of cádlág driven function

(0,0) $U_t = 0, \ t \in (0,1); \quad U_t = 1, \ t \in [1,\infty)$

Simulation in [ROKG]

Take from I. Rushkin, P. Oikonomou, L.P. Kadanoff and I.A.Gruzberg,

Stochastic Loewner evolution driven by Levy processes.

Beijing Normal University, 15 July 2007 - p.14

Simulation in [ROKG]

Phase transition

Theorem [GW,2006]

For each $z \in \overline{\mathbb{H}}$, denote the lifetime of the stochastic Loewner equation by $\zeta(z) = \inf\{t \ge 0 : z \in K_t\}$. Then

- (i) if $0 \le \kappa \le 4$ and $U \ne 0$, then for all $z \in \overline{\mathbb{H}} \setminus \{0\}$, we have $\mathbb{P}(\zeta(z) = \infty) = 1$;
- (ii) if $\kappa > 4$ and $1 \le \alpha < 2$, then for all $z \in \overline{\mathbb{H}} \setminus \{0\}$, we have $\mathbb{P}(\zeta(z) < \infty) = 1$;

Phase transition

Theorem [GW,2006]

For each $z \in \overline{\mathbb{H}}$, denote the lifetime of the stochastic Loewner equation by $\zeta(z) = \inf\{t \ge 0 : z \in K_t\}$. Then

- (i) if $0 \le \kappa \le 4$ and $U \ne 0$, then for all $z \in \overline{\mathbb{H}} \setminus \{0\}$, we have $\mathbb{P}(\zeta(z) = \infty) = 1$;
- (ii) if $\kappa > 4$ and $1 \le \alpha < 2$, then for all $z \in \overline{\mathbb{H}} \setminus \{0\}$, we have $\mathbb{P}(\zeta(z) < \infty) = 1$;
- (iii) if $\kappa > 4$ and $0 < \alpha < 1$, then for all $z \in \overline{\mathbb{H}} \setminus \{0\}$, we have $0 < \mathbb{P}(\zeta(z) < \infty) < 1$ and $\lim_{z \to 0, z \in \overline{\mathbb{H}} \setminus \{0\}} \mathbb{P}(\zeta(z) < \infty) = 1$.

Let

$$\partial_t g_t(z) = \frac{2|g_t(z) - U(t)|^{2-\alpha}}{g_t(z) - U(t)},$$

$$g_0(z) = z,$$

$$z \in \overline{\mathbb{H}} = \{(x, y) \in \mathbb{R}^2 : y \ge 0\}$$

Beijing Normal University, 15 July 2007 – p.17

Let

$$\partial_t g_t(z) = \frac{2|g_t(z) - U(t)|^{2-\alpha}}{g_t(z) - U(t)},$$

$$g_0(z) = z,$$

$$z \in \overline{\mathbb{H}} = \{(x, y) \in \mathbb{R}^2 : y \ge 0\}$$

• Similarly to the Loewner equation, for each $t \ge 0$, we can define compact set K_t .

Let

$$\partial_t g_t(z) = \frac{2|g_t(z) - U(t)|^{2-\alpha}}{g_t(z) - U(t)},$$

$$g_0(z) = z,$$

$$z \in \overline{\mathbb{H}} = \{(x, y) \in \mathbb{R}^2 : y \ge 0\}$$

- Similarly to the Loewner equation, for each $t \ge 0$, we can define compact set K_t .
- If we take $U_t = \theta^{1/\alpha} S_t$, then

 $(K_{at})_{t\geq 0} = (a^{1/\alpha}K_t)_{t\geq 0}$, in distribution.

In this case we call $(K_t)_{t\geq 0}$ the α -SLE

Phase transition

Theorem [GW,2006] Let $1 < \alpha < 2$ and $(K_t)_{t \ge 0}$ the α -SLE driven by $U_t = \theta^{1/\alpha} S_t$ for a symmetric α -stable process S. Set

 $\theta_0(\alpha) = 2/(\mathcal{A}(1, -\alpha)|\gamma(\alpha, 1)|).$

(i) if $0 < \theta < \theta_0(\alpha)$, then for all $z \in \overline{\mathbb{H}} \setminus \{0\}$, we have $\mathbb{P}(\zeta(z) = \infty) = 1;$

(ii) if $\theta > \theta_0(\alpha)$, then for all $z \in \overline{\mathbb{H}} \setminus \{0\}$, we have $\mathbb{P}(\zeta(z) < \infty) = 1$.

Transform

Let $h_t(z) = g_t(z) - \theta^{1/\alpha}S_t$, then we have

$$dh_t(z) = \frac{2|h_t(z)|^{2-\alpha}}{h_t(z)} dt - \theta^{1/\alpha} dS_t, \qquad h_0(z) = z, \quad z \in \overline{\mathbb{H}} \setminus \{0\}.$$

Here $(h_t(z))_{t\geq 0}$ is again a well defined stochastic process up to hitting zero.

Transform

Let $h_t(z) = g_t(z) - \theta^{1/\alpha} S_t$, then we have

$$dh_t(z) = \frac{2|h_t(z)|^{2-\alpha}}{h_t(z)} dt - \theta^{1/\alpha} dS_t, \qquad h_0(z) = z, \quad z \in \overline{\mathbb{H}} \setminus \{0\}.$$

Here $(h_t(z))_{t\geq 0}$ is again a well defined stochastic process up to hitting zero.

When $x \in \mathbb{R}$, $(h_t(x))_{t \ge 0}$ is an \mathbb{R} -valued Markov process and its generator $A^{\alpha,\theta}$ acting on C^2 function f is

$$A^{\alpha,\theta}f(y) = \frac{|y|^{2-\alpha}}{y} \partial_y f(y) + \theta \Delta_y^{\alpha/2} f(y), \quad \text{for all } y \neq 0.$$

Harmonic function

Lemma[GW,2006] For $p \in \mathbb{R}$, define a function $w_p : \mathbb{R} \to \mathbb{R}$ by $w_p(0) = 0$ and

 $w_p(x) = |x|^{p-1}, \ x \in \mathbb{R} \setminus \{0\}, p \neq 1; \quad w_1(x) = \ln |x|, \ x \in \mathbb{R} \setminus \{0\}.$

Then,

 $\Delta_x^{\alpha/2} w_p(x) = \mathcal{A}(1, -\alpha) \gamma(\alpha, p) |x|^{p-\alpha-1}, \ x \in \mathbb{R} \setminus \{0\}, \ p \in (0, \alpha+1),$

where $\gamma(\alpha, p) = \alpha^{-1}(p-1) \int_0^\infty v^{p-2}(|v-1|^{\alpha-p} - (v+1)^{\alpha-p}) dv$ for $p \neq 1$ and $\gamma(\alpha, 1) = \alpha^{-1} \int_0^\infty v^{-1}(|v-1|^{\alpha-1} - (v+1)^{\alpha-1}) dv$. •

4. Further Problems

Theorem [G1,2007]

Let $0 < \alpha < 2$, $\theta \ge 0$, $\kappa \in [0, 4) \cup (4, 8) \cup (8, \infty)$ and $f_t = g_t^{-1}$. Then, almost surely, the conformal maps $(f_t)_{t>0}$ extend to $\overline{\mathbb{H}}$

continuously and $(K_t)_{t\geq 0}$ is generated by right continuous curve with left limit.

Theorem [G1,2007]

Let $0 < \alpha < 2$, $\theta \ge 0$, $\kappa \in [0, 4) \cup (4, 8) \cup (8, \infty)$ and $f_t = g_t^{-1}$.

Then, almost surely, the conformal maps $(f_t)_{t\geq 0}$ extend to $\overline{\mathbb{H}}$ continuously and $(K_t)_{t\geq 0}$ is generated by right continuous curve with left limit.

Are these curves transient.

Theorem [G1,2007]

Let $0 < \alpha < 2$, $\theta \ge 0$, $\kappa \in [0, 4) \cup (4, 8) \cup (8, \infty)$ and $f_t = \overline{g_t^{-1}}$. Then, almost surely, the conformal maps $(f_t)_{t>0}$ extend to $\overline{\mathbb{H}}$

continuously and $(K_t)_{t\geq 0}$ is generated by right continuous curve with left limit.

- Are these curves transient.
- Are these properties true for α -SLE.

Theorem [G1,2007]

Let $0 < \alpha < 2$, $\theta \ge 0$, $\kappa \in [0, 4) \cup (4, 8) \cup (8, \infty)$ and $f_t = g_t^{-1}$. Then, almost surely, the conformal maps $(f_t)_{t\ge 0}$ extend to $\overline{\mathbb{H}}$ continuously and $(K_t)_{t\ge 0}$ is generated by right continuous curve with left limit.

- Are these curves transient.
- Are these properties true for α -SLE.
- How about the high dimensional cases.

References

[GW] Q.Y. Guan and M. Winkel, SLE and α -SLE driven by Lévy processes, accepted by Annals of Probability. [G1] Q.Y. Guan, A note on SLE curves, submitted. [G2] Q.Y. Guan, Càdlàg curves of SLE driven by Lévy processes, submitted. [LSW] G.F. Lawler, O. Schramm and W. Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 (2004), no. 1B, 939–995. [MR] D.E. Marshall and S. Rohde, The Loewner differential equation and slit mappings. J. Amer. Math. Soc. 18, no.4, (2005) 763–778 (electronic). [PO] Ch. Pommerenke, Boundary Behavior of Comformal Maps.

Springer-Verlag, New York, (1992).

References

[RS] S. Rohde and O. Schramm, Basic properties of SLE. Ann. of Math. (2) 161 (2005), no. 2, 883–924.
[ROKG] I. Rushkin, P. Oikonomou, L.P. Kadanoff and I.A.Gruzberg, Stochastic Loewner evolution driven by Levy processes. J. Stat. Mech. Theory Exp. (1): P01001 electric, (2006).

• Beijing Normal University, 15 July 2007 – p.2:

۲