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Based on a joint work with Matthias Winkel.
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1. Introduction of SLE

SLE: Stochastic(Schramm) Loewner Evolution

A new way to understand conformal invariant ran-

dom increasing curves(sets) in complex plane.
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Self-avoiding random walk, from Google
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Interface of Ising model, from Google
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Increasing curve and conformal map

Study curve by conformal map
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γ[0, t] = {γ(s) : 0 ≤ s ≤ t}

•

H \ γ[0, t]

gt

H-

gt is a unique conformal map if

lim|z|→∞(gt(z) − z) = 0.

Ut = gt(γ(t))

•
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Loewner equation

Theorem If (γ(t))t≥0 is a simple curve on H, then (gt)t≥0 satisfies the
following Loewner equation

∂tgt(z) =
2

gt(z) − Ut
, g0(z) = z, z ∈ H,

where Ut = gt(γ(t)) is a continuous real valued function.
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Theorem If (γ(t))t≥0 is a simple curve on H, then (gt)t≥0 satisfies the
following Loewner equation

∂tgt(z) =
2

gt(z) − Ut
, g0(z) = z, z ∈ H,

where Ut = gt(γ(t)) is a continuous real valued function.

• For z ∈ H, function g·(z) above can be solved on [0, ζ(z)). Here

ζ(z) = sup{t : |gs(z) − Us| > 0, s ∈ [0, t]}
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Loewner equation

Theorem If (γ(t))t≥0 is a simple curve on H, then (gt)t≥0 satisfies the
following Loewner equation

∂tgt(z) =
2

gt(z) − Ut
, g0(z) = z, z ∈ H,

where Ut = gt(γ(t)) is a continuous real valued function.

• For each t ≥ 0, Kt is defined by the set of ‘broken points’ before
time t, i.e.

Kt = {z ∈ H : ζ(z) ≤ t}.
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Breakthrough

• In 1999, O. Schramm observed that if (γt)t≥0 is conformal

invariant(Markovian), then (Ut)t≥0 is Brownian motion.

Beijing Normal University, 15 July 2007 – p.9



Breakthrough

• In 1999, O. Schramm observed that if (γt)t≥0 is conformal

invariant(Markovian), then (Ut)t≥0 is Brownian motion.

• Stochastic Loewner equation

∂tgt(z) =
2

gt(z) −√
κBt

, g0(z) = z, z ∈ H,

where (Bt)t≥0 is a Brownian motion.

Beijing Normal University, 15 July 2007 – p.9



Breakthrough

• In 1999, O. Schramm observed that if (γt)t≥0 is conformal

invariant(Markovian), then (Ut)t≥0 is Brownian motion.

• Stochastic Loewner equation

∂tgt(z) =
2

gt(z) −√
κBt

, g0(z) = z, z ∈ H,

where (Bt)t≥0 is a Brownian motion.

• Similarly to the determined case, we can define stochastic
increasing sets (Kt)t≥0:

Kt = {z ∈ H : ζ(z) ≤ t}.
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Breakthrough

• In 1999, O. Schramm observed that if (γt)t≥0 is conformal

invariant(Markovian), then (Ut)t≥0 is Brownian motion.

• Stochastic Loewner equation

∂tgt(z) =
2

gt(z) −√
κBt

, g0(z) = z, z ∈ H,

where (Bt)t≥0 is a Brownian motion.

• (Kt)t≥0 is called Schramm Loewner Evolution.
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2. SLE driven by Lévy processes

• In what follows we consider driven processes

Ut =
√

κBt + θ1/αSt,

where (Bt) and (St) are Brownian motion and symmetric
α-stable process, respectively.
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Vector fields of Stochastic Loewner equation
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Example of continuous driven function

(0,0)

gt =
√

4t + z2

Ut ≡ 0, t ≥ 0
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Example of cádlág driven function

(0,0)

Ut = 0, t ∈ (0, 1); Ut = 1, t ∈ [1,∞)
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Simulation in [ROKG]

Take from I. Rushkin, P. Oikonomou, L.P. Kadanoff and I.A.Gruzberg,

Stochastic Loewner evolution driven by Levy processes.
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Simulation in [ROKG]
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Phase transition

Theorem [GW,2006]
For each z ∈ H, denote the lifetime of the stochastic Loewner equation
by ζ(z) = inf{t ≥ 0 : z ∈ Kt}. Then

(i) if 0 ≤ κ ≤ 4 and U 6≡ 0, then for all z ∈ H \ {0}, we have
P(ζ(z) = ∞) = 1;

(ii) if κ > 4 and 1 ≤ α < 2, then for all z ∈ H \ {0}, we have
P(ζ(z) < ∞) = 1;
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by ζ(z) = inf{t ≥ 0 : z ∈ Kt}. Then

(i) if 0 ≤ κ ≤ 4 and U 6≡ 0, then for all z ∈ H \ {0}, we have
P(ζ(z) = ∞) = 1;

(ii) if κ > 4 and 1 ≤ α < 2, then for all z ∈ H \ {0}, we have
P(ζ(z) < ∞) = 1;

(iii) if κ > 4 and 0 < α < 1, then for all z ∈ H \ {0}, we have
0 < P(ζ(z) < ∞) < 1 and limz→0,z∈H\{0} P(ζ(z) < ∞) = 1.
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3. α-Loewner equation (1 < α ≤ 2)[GW,2006]
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3. α-Loewner equation (1 < α ≤ 2)[GW,2006]

• Let

∂tgt(z) =
2|gt(z) − U(t)|2−α

gt(z) − U(t)
,

g0(z) = z,

z ∈ H = {(x, y) ∈ R
2 : y ≥ 0}

• Similarly to the Loewner equation, for each t ≥ 0, we can define
compact set Kt.

• If we take Ut = θ1/αSt, then

(Kat)t≥0 = (a1/αKt)t≥0, in distribution.

In this case we call (Kt)t≥0 the α-SLE
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Phase transition

Theorem [GW,2006] Let 1 < α < 2 and (Kt)t≥0 the α-SLE driven by
Ut = θ1/αSt for a symmetric α-stable process S. Set

θ0(α) = 2/(A(1,−α)|γ(α, 1)|).

(i) if 0 < θ < θ0(α), then for all z ∈ H \ {0}, we have
P(ζ(z) = ∞) = 1;

(ii) if θ > θ0(α), then for all z ∈ H \ {0}, we have P(ζ(z) < ∞) = 1.
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Transform

• Let ht(z) = gt(z) − θ1/αSt, then we have

dht(z) =
2|ht(z)|2−α

ht(z)
dt − θ1/αdSt, h0(z) = z, z ∈ H \ {0}.

Here (ht(z))t≥0 is again a well defined stochastic process up to
hitting zero.
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Transform

• Let ht(z) = gt(z) − θ1/αSt, then we have

dht(z) =
2|ht(z)|2−α

ht(z)
dt − θ1/αdSt, h0(z) = z, z ∈ H \ {0}.

Here (ht(z))t≥0 is again a well defined stochastic process up to
hitting zero.

• When x ∈ R, (ht(x))t≥0 is an R-valued Markov process and its
generator Aα,θ acting on C2 function f is

Aα,θf(y) =
|y|2−α

y
∂yf(y) + θ∆α/2

y f(y), for all y 6= 0.
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Harmonic function

• Lemma[GW,2006] For p ∈ R, define a function wp : R → R by
wp(0) = 0 and

wp(x) = |x|p−1, x ∈ R \ {0}, p 6= 1; w1(x) = ln |x|, x ∈ R \ {0}.

Then,

∆α/2

x wp(x) = A(1,−α)γ(α, p)|x|p−α−1, x ∈ R \ {0}, p ∈ (0, α + 1),

where γ(α, p) = α−1(p − 1)
∫ ∞

0
vp−2(|v − 1|α−p − (v + 1)α−p) dv

for p 6= 1 and γ(α, 1) = α−1
∫ ∞

0
v−1(|v − 1|α−1 − (v + 1)α−1) dv.
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4. Further Problems
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Random càdlàg curves

• Theorem [G1,2007]

Let 0 < α < 2, θ ≥ 0, κ ∈ [0, 4) ∪ (4, 8) ∪ (8,∞) and ft = g−1

t .

Then, almost surely, the conformal maps (ft)t≥0 extend to H

continuously and (Kt)t≥0 is generated by right continuous curve

with left limit.
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Random càdlàg curves

• Theorem [G1,2007]

Let 0 < α < 2, θ ≥ 0, κ ∈ [0, 4) ∪ (4, 8) ∪ (8,∞) and ft = g−1

t .

Then, almost surely, the conformal maps (ft)t≥0 extend to H

continuously and (Kt)t≥0 is generated by right continuous curve

with left limit.

• Are these curves transient.

• Are these properties true for α-SLE.

• How about the high dimensional cases.
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Thank you!

Beijing Normal University, 15 July 2007 – p.25


	$ $
	Outline
	
ormalsize 1. Introduction of SLE
	
ormalsize Self-avoiding random walk, from Google
	 
ormalsize Interface of Ising model, from Google 
	
ormalsize Increasing curve and conformal map 
	 
ormalsize Loewner equation
	
ormalsize Breakthrough
	
ormalsize 2. SLE driven by L'evy processes
	
ormalsize Vector fields of Stochastic Loewner equation
	
ormalsize Example of continuous driven function
	
ormalsize Example of c'adl'ag driven function 
	 
ormalsize Simulation in [ROKG]
	
ormalsize Simulation in [ROKG]
	
ormalsize Phase transition
	
ormalsize 3. $alpha $-Loewner equation ($1<alpha leq 2$)[GW,2006]
	small Phase transition
	small Transform 
	small Harmonic function
	
ormalsize 4. Further Problems
	 
ormalsize Random c`adl`ag curves 
	
ormalsize References
	
ormalsize References
	

