Random Continued Fractions

A. Goswami
Indian Statistical Institute, Kolkata - India

Workshop on Markov Processes and Related Topics
 Research Center for Stochastics, Beijing Normal
 University
 Beijing : July 2007

Continued Fractions: Quick Review

Given a non-negative integer a_{0} and a finite sequence of positive integers $a_{0}, a_{1}, \ldots, a_{n}$, consider the expression

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot+\frac{1}{a_{n}}}}}
$$

This is called a Continued Fraction. Standard Notation is

$$
\left[a_{0} ; a_{1}, \ldots, a_{n}\right]
$$

What if we have an infinite sequence a_{1}, a_{2}, \ldots of positive integers? Can one define a Continued Fraction? How?

Natural course is to define $x_{n}=\left[a_{0}: a_{1}, \ldots, a_{n}\right]$, for each $n \geq 1$, and then ask if the sequence x_{n} converges.

There is an elegant way of doing this. Given any finite or nonterminating sequence a_{0}, a_{1}, \ldots of integers with $a_{0} \geq 0$ and $a_{i}>0, i \geq 1$, one constructs two sequences p_{0}, p_{1}, \ldots and q_{0}, q_{1}, \ldots as follows:

$$
p_{0}=a_{0}, q_{0}=1 ; \quad p_{1}=a_{0} a_{1}+1, q_{1}=a_{1}
$$

and
for $k \geq 2, \quad p_{k}=a_{k} p_{k-1}+p_{k-2}, q_{k}=a_{k} q_{k-1}+q_{k-2}$.
It is then easy to see that $x_{k}=\left[a_{0} ; a_{1}, \ldots, a_{k}\right]=\frac{p_{k}}{q_{k}}$. It
is also easy to see that
$x_{0}<x_{2}<\cdots \cdots<x_{3}<x_{1}$, that is, $\left\{x_{2 k}\right\} \uparrow,\left\{x_{2 k+1}\right\} \downarrow$.
In case the sequence a_{0}, a_{1}, \ldots is non-terminating, convergence of the sequence $\left\{x_{n}\right\}$ follows from

- $p_{n} \geq p_{n-2}, q_{n} \geq q_{n-2}$; in particular, $q_{2 n} \geq 1$ and $q_{2 n+1} \geq a_{1} \geq 1$ for all n.
- $q_{n} q_{n-1}=a_{n} q_{n-1}^{2}+q_{n-1} q_{n-2}=\cdots$

$$
=a_{n} q_{n-1}^{2}+a_{n-1} q_{n-2}^{2}+\cdots+a_{1} q_{0}^{2} \geq \sum_{2}^{n} a_{k} \uparrow \infty
$$

$$
\begin{aligned}
x_{n}-x_{n-1} & =\frac{p_{n} q_{n-1}-p_{n-1} q_{n}}{q_{n} q_{n-1}}=-\frac{p_{n-1} q_{n-2}-p_{n-2} q_{n-1}}{q_{n} q_{n-1}} \\
& =\cdots=(-1)^{n} \frac{p_{1} q_{0}-p_{0} q_{1}}{q_{n} q_{n-1}} \rightarrow 0 .
\end{aligned}
$$

The limit $x=\lim x_{n}$ is referred to as the infinte (nonterminating) continued fraction denoted by

$$
x=\left[a_{0} ; a_{1}, \ldots\right]
$$

and the x_{n} as defined above is called the nth convergent of x.

When $a_{0}=0$, one writes $\left[a_{1}, a_{2}, \ldots\right]$ for $\left[0 ; a_{1}, a_{2}, \ldots\right]$ in both the terminating as well as non-terminating cases. It is clear that terminating continued fractions are rationals. In particular, the convergents x_{n} for an infinte contiunued fraction x (which is always an irrational) give a sequence of rationals converging to x.

Fact: Any positive real x can be expressed as a (terminating or non-terminating) continued fraction.

Clearly $a_{0}=[x]$. So it is enough to do this for $x \in(0,1)$. It is done through the Gauss map defined as
$T:[0,1) \longrightarrow[0,1), T 0=0$ and, for $0<x<1, T x=\frac{1}{x}-\left[\frac{1}{x}\right]$.
For any $x \in(0,1)$, consider the orbit of x :
$y_{0}=x, y_{1}=T y_{0}=T x, y_{2}=T y_{1}=T^{2} x, \ldots$, and so on.
Two possibilities:

- There is $n \geq 1$ such that $y_{n}=0$ but y_{0}, \ldots, y_{n-1} are all >0. Taking $a_{k}=\left[\frac{1}{y_{k-1}}\right], k=1, \ldots, n$, one gets $x=\left[a_{1}, \ldots, a_{n}\right]$.
- $y_{n}>0$ for all n. Taking the non-terminating positive integer sequence $a_{k}=\left[\frac{1}{y_{k-1}}\right]$, one gets $x=\left[a_{1}, a_{2}, \ldots\right]$.

Thus the above algorithm produces, for every $x \in(0,1)$, a (finite or infinite) positive integer sequence a_{1}, a_{2}, \ldots such that $x=\left[a_{1}, a_{2}, \ldots\right]$. Constructing (p_{k}, q_{k}) and the k th convergent x_{k} as before one gets

$$
x_{2} \leq x_{4} \leq \cdots \leq x \leq \cdots \leq x_{3} \leq x_{1} \text { and } x_{k} \rightarrow x .
$$

Well-known facts:

- Terminating sequence \Leftrightarrow Finite continued Fraction $\Leftrightarrow 0$ is in the orbit $\Leftrightarrow x$ rational.
- Periodic or eventually periodic orbit $\Leftrightarrow x$ quadratic irrational. [Ex: $[1,1, \ldots]=(\sqrt{5}-1) / 2$ (Golden number).
- [Gauss - 1812]: $m_{n}=\lambda\left(T^{n}\right)^{-1}$ where λ is lebesgue measure on $[0,1)$. For $0<y<1, \quad$ (Kuzmin-1928) $m_{n}[(0, y]]=\lambda\left\{x: T^{n} x \leq y\right\} \longrightarrow \frac{\log (1+y)}{\log 2}$.

$$
d \mu(y)=\frac{1}{\log 2} \frac{1}{1+y} d y, \quad 0<y<1,
$$

is the unique (abs conts) invariant measure for the dynamical system. The system is ergodic and ϕ mixing.

- Khinchin - Levy - Doeblin - Billingsley :

$$
\frac{a_{1}+\cdots+a_{n}}{n} \rightarrow \infty, \text { and, } \frac{\log q_{n}}{n} \rightarrow \pi^{2} /(12 \log 2), \text { a.e. }
$$

In defining the continued fractions $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$, one can take non-integer inputs as well. p_{k}, q_{k} and x_{k} will still be well-defined, as long as $a_{0} \geq 0$ and $a_{k}>0, k \geq 1$. For convergence in the non-terminating case, a sufficient condition now will be that $\sum a_{k}$ diverges.

For defining infinite continued fractions, it is not even necessary to start with $a_{k}>0$ for all $k \geq 1$.
Just $a_{2 k+1}>0$ for some $k \geq 1$ will ensure $q_{k}>0$ and hence $x_{k}=p_{k} / q_{k}$ is well-defined for all large k. For convergence of $\left\{x_{k}\right\}$, divergence of $\sum a_{k}$ remains sufficient.

Suppose now that $a_{0}, a_{1}, a_{2}, \ldots$ is a randomly chosen non-negative sequence. [$a_{0} ; a_{1}, a_{2}, \ldots$] may or may not be well-defined. If well-defined, then it is a random variable; what kind of random variable? We consider the special case: I.I.D. Sequence

- Existence of $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ is trivially settled.
- Some general results on distribution of $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$
- Interesting interplay with Markov chain theory, Invariant distribution
- Explicit expression obtained for the distribution in a special case (interesting distribution!)
- Extensions to higher dimensions.

Random Continued Fractions

$Z_{0}, Z_{1}, Z_{2}, \ldots$ are I.I.D. Non-Negative random variables. Define random variables $p_{k}, q_{k}, k \geq 0$ recursively:

$$
\begin{aligned}
& p_{0}=Z_{0}, q_{0}=1 ; \quad p_{1}=Z_{0} Z_{1}+1, q_{1}=Z_{1} ; \quad \text { and }, \\
& p_{k}=p_{k-1} Z_{k}+p_{k-2}, \quad q_{k}=q_{k-1} Z_{k}+q_{k-2}, \quad k \geq 2
\end{aligned}
$$

$$
\text { Assume } P\left(Z_{i}=0\right)<1 \text {. }
$$

Theorem (Bhattacharya \& G): With probability one, $p_{k} / q_{k}=\left[Z_{0} ; Z_{1}, \ldots, Z_{k}\right]$ is well-defined for all large k and the limit $Y=\lim _{k \rightarrow \infty}\left[Z_{0} ; Z_{1}, \ldots, Z_{k}\right]$ exists.

It is clear that the limit random variable Y is strictly positive. Thus its distribution is a probability on $(0, \infty)$. What can we say about this probability? In particular, given a specific I.I.D. sequence $\left\{Z_{i}, i \geq 0\right\}$, can we find the distribution of $Y=\left[Z_{0} ; Z_{1}, Z_{2}, \ldots\right]$?

A Related Markov Chain:

Consider the Markov Chain $\left\{X_{n}, n \geq 0\right\}$ on the State Space $S=(0, \infty)$ defined as follows:
X_{0} strictly positive random variable independent of $\left\{Z_{i}\right\}$;
$X_{1}=Z_{1}+\frac{1}{X_{0}}=\left[Z_{1} ; X_{0}\right], \quad X_{2}=Z_{2}+\frac{1}{X_{1}}=\left[Z_{2} ; Z_{1}, X_{0}\right] ;$
And in general, $X_{n}=Z_{n}+\frac{1}{X_{n-1}}=\left[Z_{n} ; Z_{n-1}, \ldots, Z_{1}, X_{0}\right]$.

$$
S=(0, \infty) \quad f_{z}(\pi)=z+\frac{1}{x} \quad f_{z} ;(0, \infty) \rightarrow(0, \infty)
$$

If the chain has a Unique Invariant Distribution π on $S=(0, \infty)$ and if $\left\{X_{n}\right\}$ converges weakly to π, then π is characterized by the distributional identity

$$
X \stackrel{\mathcal{L}}{=} Z+\frac{1}{X}
$$

$\left(Z \stackrel{\mathcal{L}}{=} Z_{0} ; \quad X \stackrel{\mathcal{L}}{=} \pi ; \quad X\right.$ independent of $\left.Z\right)$

$$
\text { Assume } Z_{i} \text { are non-degenerate }
$$

Denote μ to be the initial distribution (distribution of X_{0}) and μ_{n} to be the distribution of X_{n}.

Theorem (Bhattacharya \& G):
(a) The chain $\left\{X_{n}\right\}$ has a unique invariant distributimon π that doesn't depend on the initial distribution μ.
(b) μ_{n} converges to π in Kolmogorov distance exponentially fast uniformly over μ.
(c) The invariant distribution is non-atomic.

The proof is based an extension (due to Bhattacharya \& G) of an old idea of Dubins-Freedman(1966).
The idea: Consider Markov chains that arise as Random Iterations of Functions (RIF).

- S the state space; \mathcal{H} a class of functions $S \rightarrow S ; \mu$ a probability on \mathcal{H}.
- Start with any initial S-valued random variable X_{0} and define X_{n} by

$$
X_{n}=f_{n}\left(X_{n-1}\right), n \geq 1
$$

where f_{n} are IID with distribution μ.
Diaconis-Freedman(2000) gives an excellent survey on such Markov chains (RIFs). Dubins-Freedman considered the special case when S is a compact interval in \mathbf{R} and \mathcal{H} is a class of monotone increasing functions. They introduced what has since then been known as the Splitting Condition and showed that this condition is sufficint to prove existence of a unique invariant probability and also exponential convergence in Kolmogorov distance. We needed to extend this to non-compact intervals and also when \mathcal{H} consists of monotone functions. This turned out to be somewhat non-trivial.

Non-atomicity of π is a simple consequence of the uniqueness of the invariant distribution, the convolution identity characterizing π and the convergence of μ_{n} to π in Kolkmogorov distance

$$
d\left(\mu_{n}, \pi\right)=\sup _{x}\left|F_{\mu_{n}}(x)-F_{\pi}(x)\right| .
$$

What is the connection of this invariant probability π with our infinite random continued fraction

$$
Y=\left[Z_{0} ; Z_{1}, Z_{2}, \ldots\right]=\lim _{n}\left[Z_{0} ; Z_{1}, \ldots, Z_{n}\right] ?
$$

Defining

$$
Y_{n}=\left[Z_{0} ; Z_{1}, \ldots, Z_{n-1}, X_{0}\right],
$$

it is clear that

$$
Y_{n} \stackrel{\mathcal{L}}{=} X_{n} \text { for each } n,
$$

so that
Y_{n} converges in distribution to π.
A little work (using estimates from the classical theory of continued fractions) shows that

$$
Y_{n} \longrightarrow Y \text { with probability one }
$$

Thus one gets

$$
Y \stackrel{\mathcal{L}}{=} \pi
$$

Thus we have our first conclusion about the distribution of the random infinite continued fraction

$$
Y=\left[Z_{0} ; Z_{1}, Z_{2}, \ldots\right]
$$

when $Z_{i} \geq 0, i \geq 0$ are IID with $P\left(Z_{i}=0\right)<1$.

- Z_{i} non-degenerate $\Longrightarrow Y$ has a non-atomic distribution.

Theorem (Bhattacharya \& G): Suppose that the common distribution of the Z_{i} satisfies the conditions

$$
P\left[0<Z_{i} \leq 1\right]>0,
$$

and

$$
P\left[Z_{i}<\epsilon\right]>0, \quad \text { for all } \epsilon>0 .
$$

Then the distribution π of Y has Full Support, i.e., support $(\pi)=(0, \infty)$.

The proof rests on the following two lemmas; the first one closely follows classical arguments on representation of all positive reals by continued fractions, while the second one may be of independent interest in general Markov chain theory.

Lemma 1 (Bhattacharya \& G): For $0<\theta \leq 1$, the set of all continued fractions $\left[a_{0} \theta ; a_{1} \theta, a_{2} \theta, \ldots\right]$ where $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ is a terminating or non-terminating sequence of integers with $a_{0} \geq 0$ and $a_{i}>0 \forall i \geq 1$, comprises all of $(0, \infty)$.

Lemma 2 (Bhattacharya \& G): Let $p^{(n)}(x, d y)$ be the n step transition probability of a Markov Chain on (S, \mathcal{S}), where S is a separable metric space and \mathcal{S} its Borel σ field, and let π be an invariant probability. Assume that the map $x \mapsto p^{(1)}(x, d y)$ is weakly continuous on S. If x_{0} belongs to the support of π and if $p^{(n)}\left(x_{0}, d y\right)$ converges weakly to π, then the support of π coincides with the closure of $\bigcup_{n=1}^{\infty} S_{n}\left(x_{0}\right)$ where $S_{n}\left(x_{0}\right)$, for each n, denotes the support of $p^{(n)}\left(x_{0}, d y\right)$.

Some Special Cases:

Ex 1: Gamma Innovation

Theorem (Letac \& Shesadri): If the common distribution of the $\left\{Z_{i}\right\}$ is a Gamma distribution with parameters λ and a, then the distribution π of Y is given by the density

$$
g_{\lambda, a}(x)=\left(2 K_{\lambda}(2 a)\right)^{-1} x^{\lambda-1} e^{-a\left(x+\frac{1}{x}\right)}, \quad x \in(0, \infty),
$$

where $K_{\lambda}(\cdot)$ denotes the Bessel function.
The proof is based on use of Laplace transforms. In that sense it is lucky case!

The above density is a special case of what is known as generalized inverse gaussian distribution [BarndorffNielsen and Halgreen (1977)], given by density
$g_{\lambda, a, b}(x)=\frac{a^{\lambda / 2} b^{-\lambda / 2}}{2 K_{\lambda}(\sqrt{a b})} x^{\lambda-1} \exp \left\{\frac{1}{2}\left(a x+b x^{-1}\right)\right\}, \quad x \in(0, \infty)$, with parameters $\lambda \neq 0$ and $a>0, b>0$.

Easy to see:

$$
X \text { has density } g_{\lambda, a, b} \Longrightarrow \frac{1}{X} \text { has density } g_{-\lambda, b, a} .
$$

The theorem says that the continued fraction with IID Gamma (λ, a) innovations has generalized inverse gaussian distribution with parameters $\lambda, 2 a$ and $2 a$.

Ex 2: Bernoulii Innovation

$$
P\left(Z_{i}=0\right)=\alpha, \quad P\left(Z_{i}=1\right)=1-\alpha . \quad(0<\alpha<1)
$$

Theorem (Bhattacharya \& G; also, Chassaing et al.):
(a) $Y=\left[Z_{0} ; Z_{1}, Z_{2}, \ldots\right]$ has distribution function F given by

$$
\begin{array}{ll}
F(x)=\sum_{i \geq 0}\left(-\frac{1}{\alpha}\right)^{i}\left(\frac{\alpha}{1+\alpha}\right)^{a_{1}+\cdots+a_{i+1}}, & 0<x \leq 1, \\
F(x)=1-\frac{1}{\alpha} F\left(\frac{1}{x}\right), & x>1
\end{array}
$$

where $x=\left[0 ; a_{1}, a_{2}, \ldots\right]$ is the usual continued fraction expansion of $x \in(0,1]$, with the the sum on the right of the first equation being a finite sum in case the continued fraction expansion $\left[0 ; a_{1}, a_{2}, \ldots\right]$ of x is terminating;
(b) the distribution F is Singular with Full Support $S=(0, \infty)$.

Getting the explicit expression for F as in (a) is a matter of playing around with the convolution identity characterizing π.

The proof of singularity in (b) is an interesting one! One proves that
$F^{\prime}(x)=0$ for [Lebesgue] almost every irrational $x \in(0,1)$.
Write $x=\left[0 ; a_{1}, a_{2}, \ldots\right]$ (non-terminating!).
Denote $x_{n}=\left[0 ; a_{1}, \ldots, a_{n}\right]$.

Since the right of the first relation in (a) is an alternating series with terms decreasing in magnitude,

$$
\begin{aligned}
\left|F(x)-F\left(x_{n}\right)\right| & =\left|\sum_{i=n}^{\infty}\left(-\frac{1}{\alpha}\right)^{i}\left(\frac{\alpha}{1+\alpha}\right)^{a_{1}+\cdots+a_{i+1}}\right| \\
& \leq \frac{1}{\alpha^{n}}\left(\frac{\alpha}{1+\alpha}\right)^{a_{1}+\cdots+a_{n+1}}
\end{aligned}
$$

Writing $x_{n}=\frac{p_{n}}{q_{n}}$, where p_{n} and q_{n} are relatively prime integers, and using classical inequalities,

$$
\left|x-x_{n}\right|>\frac{1}{q_{n}\left(q_{n+1}+1\right)},
$$

so that,

$$
\left|\frac{F(x)-F\left(x_{n}\right)}{x-x_{n}}\right|<\frac{1}{\alpha^{n}}\left(\frac{\alpha}{1+\alpha}\right)^{a_{1}+\cdots+a_{n+1}} q_{n}\left(q_{n+1}+1\right) .
$$

Let M be chosen large enough to satisfy

$$
\left(\frac{\alpha}{1+\alpha}\right)^{M} \cdot \frac{\gamma^{2}}{\alpha}<1,
$$

where $\gamma=\exp \left\{\pi^{2} /(12 \log 2)\right\}$. It follows from classical Levy-Khinchin limit theorems that for all x outside a set of Lebesgue measure zero, one has

$$
a_{1}+\cdots+a_{n+1}>M(n+1) \quad \forall \text { all sufficiently large } n .
$$

It now follows immediately that for all x outside a set of Lebesgue measure zero,

$$
\lim _{n \rightarrow \infty}\left|\frac{F(x)-F\left(x_{n}\right)}{x-x_{n}}\right|=0
$$

Lebesgue Differentiation Theorem completes the job now!

Chassaing et al's argument:
Elements of $S L(2, \mathbf{R})(2 \times 2$ real matrices with determinant 1) define a projectivity on $\mathbf{R} \cup\{\infty\}$:

$$
x \mapsto A(x)=\frac{a x+b}{c x+d} .
$$

$(A(-d / c)=\infty, A(\infty)=a / c$, if $c \neq 0$.) The idea used is to consider the Markov chain given by the products of IID random matrices applied to an initial value. The matrices are chosen with a special common distribution. The argumnets are a bit complicated and the proof of singularity is not direct (claimed to be "mere adoption of" certain arguments of S.D. Chatterji and F. Schweiger!). A more direct proof and additional information is obtained in

Theorem (Chakrabarti \& Rao): For various $0<\alpha<$ 1, the distributions F_{α} are all singular with respect to Lebesgue measure and with respect to one another. Moreover, the family $\left\{F_{\alpha}\right\}$ is a uniformly singular family.

Consider a slight departure from standard Bernoulli!

$$
\begin{gathered}
\left\{Z_{i}\right\} \text { IID }, \quad P\left(Z_{i}=0\right)=\alpha, P\left(Z_{i}=\theta\right)=1-\alpha \\
(\theta>0,0<\alpha<1)
\end{gathered}
$$

Theorem (Bhattacharya \& G):
(a) $\theta \leq 1 \Longrightarrow$ support of π is Full, namely, $(0, \infty)$.
(b) $\theta>1 \Longrightarrow$ support of π is a Cantor subset of $(0, \infty)$.

Extension to Higher Dimensions

[Hallin]

$H_{n}^{+}(\mathbf{R})$: real $n \times n$ symmetric positive definite matrices.
For $A_{0}, A_{1}, A_{2}, \ldots$ in $H_{n}^{+}(\mathbf{R})$, one defines

$$
\left[A_{0}\right]=A_{0},\left[A_{0} ; A_{1}\right]=A_{0}+A_{1}^{-1}
$$

and $\left[A_{0} ; A_{1}, \ldots A_{n}\right]=A_{0}+\left[A_{1} ; A_{2}, \ldots, A_{n}\right]^{-1}, ; n \geq 2$
These are the finite continued fractions. Well-defined!

$$
\left[A_{1} ; A_{2}, \ldots, A_{n}\right] \text { all invertible. }
$$

For convergence of the sequence $\left\{\left[A_{0} ; A_{1}, \ldots, A_{n}\right]\right\}$, one uses arguments anlogous to the one-dimensional case, namely, that with matrices P_{n} and Q_{n} defined recursively by

$$
\begin{gathered}
P_{0}=A_{0}, Q_{0}=I, P_{1}=A_{1} A_{0}+I, Q_{1}=A_{1} \\
\text { and, for } n \geq 2, P_{n}=A_{n} P_{n-1}+P_{n-2}, Q_{n}=A_{n} Q_{n-1}+Q_{n-2}
\end{gathered}
$$

one can show that the matrix $Q_{n+1}^{\prime} Q_{n}$ is in $H_{n}^{+}(\mathbf{R})$ (in particular, invertible) and that
$\left[A_{0} ; A_{1}, \ldots, A_{n+1}\right]-\left[A_{0} ; A_{1}, \ldots, A_{n}\right]=(-1)^{n+1}\left(Q_{n+1}^{\prime} Q_{n}\right)^{-1}$.
The convergence of the sequence $\left\{\left[A_{0} ; A_{1}, \ldots, A_{n}\right]\right\}$ can now be proved by showing convergence of the alternating series $\sum_{n=0}^{\infty}(-1)^{n+1}\left(Q_{n+1}^{\prime} Q_{n}\right)^{-1}$.
Given now any i.i.d. sequence Z_{1}, Z_{2}, \ldots of random matrices taking values in $H_{n}^{+}(\mathbf{R})$, consider the Markov Chain on $S=H_{n}^{+}(\mathbf{R})$ defined recursively by

$$
X_{1}=\left[Z_{1} ; X_{0}\right], X_{2}=\left[Z_{2} ; X_{1}\right]
$$

and, in general, $X_{n+1}=\left[Z_{n+1} ; X_{n}\right]$, for $n \geq 1$,
where X_{0} is any $H_{n}^{+}(\mathbf{R})$-valued random matrix, independent of the sequence $\left\{Z_{i}\right\}$. Using arguments similar to the one-dimensional case, one can show that this markov chain has a unique invariant distribution π and that X_{n} converges in distribution to π, whatever be X_{0}. Moreover, this π is the unique probability on $H_{n}^{+}(\mathbf{R})$ satisfying the distributional identity

$$
X \stackrel{\mathcal{L}}{=} Z+X^{-1}
$$

where X and Z are independent $H_{n}^{+}(\mathbf{R})$-valued random matrices with X having distribution π and $Z \stackrel{\mathcal{L}}{=} Z_{1}$.
In fact, Bernadac has extended the notion of continued fractions on a more abstract space of irreducible symmetric cones, i.e., the interior of cones of square elements of simple Euclidean Jordan algebras. For Bernadac (1995) has more details.

Existence of a unique invariant probability and properties of this invariant probability all go through using appropriate extensions of the one-dimensional arguments.

THANK YOU!

