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Continued Fractions : Quick Review 

Given a non-negative integer a 0  and a finite sequence of 
positive integers ao, al ,  . . . , a,, consider the expression 

1 
a0 + 1 

a1 + 1 
a2 + 1 ' - .  + -  

a n  

This is called a Continued Fraction. Standard Notation 

What if we have an infinite sequence al, aa, . . . of positive 
integers? Can one define a Continued Fraction? How? 

Natural course is to define x, = [ao : al, . . . , an], for each 
n > 1, and then ask if the sequence x, converges. 



There is an elegant way of doing this. Given any finite 
or nonterminating sequence ao, al,  . . . of integers with 
a0 - > 0 and ai > 0, i > 1, one constructs two sequences 
po, pl, . . . and qo, q1, . . . as follows: 

PO = ao, qo = 1; pl = a m +  1, ql = al;  

and 

for k > 2, pk = akpk-1 + Pk-2, q k  = akqk-1 + qk-2- 

It is then easy to see that xk = [ao; al ,  . . . , ak] = . It 
qk 

is also easy to see that 

Xo < 1 2  < . - .  - .  - < 1 3  < X i ,  that is, ( ~ 2 ~ )  f, {x2k+1) 4 . 
In case the sequence ao, a l ,  . . . is non-terminating, con- 

vergence of the sequence {xn} follows from 

> 1 and Pn 1 Pn-2, Qn 2 Qn-2; in particular, qzn - 
Qzn+l 2 a1 2 1 for all n. 



The limit x = limx, is referred to as the infinte (non- 
terminating) continued fraction denoted by 

x = [aO;al,. . . ]  

and the x, as defined above is called the nth convergent 

When a0 = 0, one writes [al, a2,. . .] for [O; a l ,  a2,. . .] in 
both the terminating as well as non-terminating cases. 
It is clear that terminating continued fractions are ra- 
tionals. In particular, the convergents x, for an infinte 
contiunued fraction x (which is always an irrational) give 
a sequence of rationals converging to x. 

Fact: Any positive real x can be expressed as a (termi- 
nating or non-terminating) continued fraction. 

Clearly a 0  = [XI. SO it is enough to do this for x E (0 , l ) .  
I t  is done through the Gauss map defined as 

T : [O, 1) t [ O , l ) ,  TO = 0 and, for 0 < x < 1, Tx = 
x 

For any x E ( O , l ) ,  consider the orbit of x: 

2 
YO = X, YI = TYO = Tx, 92 = Tyl  = T X ,  . . . , and so on. 

Two possibilities: 

There is n 2 1 such that yn = 0 but yo, . . . , yn-1 are 
all > 0. Taking ak = [A], k = 1 , .  . . , n,  one gets 

Yk-1 

x = [al, . . . ,an]. 

yn > 0 for all n. Taking the non-terminating positive 
1 integer sequence ak = [-I, one gets x = [al, a2, . . . I .  

Yk-1 



Thus the above algorithm produces, for every x E (0, I), 
a (finite or infinite) positive integer sequence al ,  a2, . . . 
such that x = [al, a2, . . . I .  Constructing (pk, qk) and the 
kth convergent xk as before one gets 

2 2  <_ 2 4  5 - - a  5 x <_ . - .  5 x3 5 x1 and xk + x. 

Well-known facts: 

Terminating sequence H Finite continued Fraction 
P' 0 is in the orbit H x rational. 

Periodic or eventually periodic orbit H x quadratic 
irrational. [Ex: [l, 1, . . .] = (fi- 1) 12 (Golden num- 
ber). 

[Gauss - 18121: mn = x(T")-' where X is lebesgue 
measure on [o, I). For 0 < y < 1, (Kuzmin-1928) 

x : Tnx 5 y} -+ log (1 + Y) 
mn[(O, ~ 1 1  = log 2 

is the unique (abs conts) invariant measure for the 
dynamical system. The system is ergodic and 4- 
mixing. 

Khinchin - Levy - Doeblin - Billingsley : 

a l + . . . + a n  -+ 00, and, - 
n 

log qn -+ ?r2/(1210g 21, a.e. 
n 



In defining the continued fractions [ao; al,  a2, . . . I ,  one 
can take non-integer inputs as well. pk, qk and xk will 
still be well-defined, as long as a0 > 0 and ak > 0, k 2 1. 
For convergence in the non-terminating case, a sufficient 
condition now will be that C ak diverges. 

For defining infinite continued fractions, it is not even 
necessary to start with ak > 0 for all k 2 1. 

Just aak+l > 0 for some k 2 1 will ensure q k  > 0 and 
hence xk = pk/qk is well-defined for all large k. For con- 
vergence of {xk), divergence of a k  remains sufficient. 

Suppose now that ao, al,  aa, . . . is a randomly chosen 
non-negative sequence. [ao; al,  az, . . . ] may or may not be 
well-defined. If well-defined, then it is a random variable; 
what kind of random variable? We consider the special 
case: I.I.D. Sequence 

Existence of [ao; al,  a2, . . . ] is trivially settled. 

Some general results on distribution of [ao; al,  a2, . . - 1  

Interesting interplay with Markov chain theory, 
Invariant distribution 

Explicit expression obtained for the distribution in a 
special case (interesting distribution!) 

Extensions to higher dimensions. 



Random Continued Fractions 

Zo, Zl, Z2, . . . are I.I.D. Non-Negative random vari- 
ables. Define random variables pk, q k ,  k 2 0 recursively: 

PO = 20, 40 = 1; pl = ZoZl + 1, ql = 21; and, 

pk = ~ k - l z k  + pk-2, q k  = q k - l z k  + qk-2, k 2 2 

Theorem (Bhattacharya & G) : With probability one, 
pk/qk = [ZO; Zl, . . . , Zk] is well-defined for all large k 
and the limit Y = lim [Zo; Zl, . . . , Zk] exists. 

k + w  

It is clear that the limit random variable Y is strictly 
positive. Thus its distribution is a probability on (0,oo). 
What can we say about this probability? In particular, 
given a specific I.I.D. sequence {Zi, i > 0)) can we find 
the distribution of Y = [Zo; Zl, Z2, . . . I ?  

A Related Markov Chain: 

Consider the Markov Chain {Xn, n 2 0) on the State 
Space S = (0, m) defined as follows: 

Xo strictly positive random variable independent of (2,); 

1 
And in general, Xn = Z,+--- = [Zn; Zn-l,. . . , Z1, Xo]. 

xn -1  



If the chain has a Unique Invariant Distribution n 

on S = (0, co) and if {Xn) converges weakly to a, 

then a is characterized by the distributional identity 

C C (Z = Zo; X = n; X independent of Z) 

Assume I Zi are non-degenerate 1 
Denote p to be the initial distribution (distribution of 
Xo) and p, to be the distribution of Xn. 

Theorem (Bhattacharya & G) : 

(a) The chain {Xn) has a unique invariant distribu- 
tion a that doesn't depend on the initial distribution p. 

(b) pn converges to a in Kolmogorov distance ex- 
ponentially fast uniformly over p.  

(c) The invariant distribution is non-atomic. 



The proof is based an extension (due to Bhattacharya 
& G) of an old idea of Dubins-Freedman(l966). 

The idea: Consider Markov chains that arise as Ran- 
dom Iterations of Functions (RIF) . 

S the state space; 31 a class of functions S -+ S; p a 
probability on 31. 

Start with any initial S-valued random variable Xo 
and define Xn by 

where fn are IID with distribution p. 

Diaconis-Freedman(2000) gives an excellent survey on 
such Markov chains (RIFs) . Dubins-Freedman consid- 
ered the special case when S is a compact interval in 
R and 31 is a class of monotone increasing functions. 
They introduced what has since then been known as the 
Splitting Condition and showed that this condition is 
sufficint to prove existence of a unique invariant proba- 
bility and also exponential convergence in Kolmogorov 
distance. We needed to extend this to non-compact in- 
tervals and also when 31 consists of monotone functions. 
This turned out to be somewhat non-trivial. 

Non-atomicity of T is a simple consequence of the unique- 
ness of the invariant distribution, the convolution iden- 
tity characterizing ;T and the convergence of pn to .;rr in 
Kolkmogorov distance 



What is the connection of this invariant probability T 

with our infinite random continued fraction 

Y = [ZO; Zl, Zz, . . . ]  = lim[Zo; Z1, . . . , Z,]? 
n 

Defining 

Yn = [ZO; z 1 7  7 zn-1, XO], 

it is clear that 
C 

Yn = Xn for each n, 

so that 

Y, converges in distribution to n. 

A little work (using estimates from the classical theory 

of continued fractions) shows that 

I Y, -+ Y with probability one, 1 
Thus one gets 

Thus we have our first conclusion about the distribu- 
tion of the random infinite continued fraction 

when Zi 2 0, i 2 0 are IID with P(Zi = 0) < 1. 

a Zi non-degenerate =+ Y has a non-atomic dis- 
tribution. 



Theorem (Bhattacharya & G): Suppose that the com- 
mon distribution of the Zi satisfies the conditions 

and 
P[Zi < E ]  > 0, for all e > 0. 

Then the distribution T of Y has Full Suppor t ,  i.e., 
suppor t  (n) = (0,oo). 

The proof rests on the following two lemmas; the first one 
closely follows classical arguments on representation of 
all positive reals by continued fractions, while the second 
one may be of independent interest in general Markov 
chain theory. 

Lemma 1 (Bhattacharya & G): For 0 < 0 5 1, the set of 
all continued fractions [ao& alO, ale, . . .] where {ao, a l ,  as, . . ..) 
is a terminating or non-terminating sequence of integers 
with a0 > 0 and ai > 0 'd i 2 1, comprises all of (0, w). 

Lemma 2 (Bhattacharya & G): Let p(") (x, dy) be the n- 
step transition probability of a Markov Chain on (S, S), 
where S is a separable metric space and S its Bore1 a- 
field, and let .;rr be an invariant probability. Assume that 
the map x H JI(') (x, dy) is weakly continuous on S .  If xo 
belongs to the support of ?r and if p(") (xo, dy) converges 
weakly to T, then the support of T coincides with the 

CO 

closure of U Sn(xo) where Sn(xo), for each n, denotes 
n=l  "' x ,dy). the support of p( ( 0 

Some Special Cases: 



Ex 1: Gamma Innovation 

Theorem (Letac & Shesadri): If the common distribu- 
tion of the {Zi) is a Gamma distribution with parame- 
ters X and a, then the distribution .;rr of Y is given by the 
density 

where Kx(-) denotes the Bessel function. 

The proof is based on use of Laplace transforms. In that 
sense it is lucky case! 

The above density is a special case of what is known as 
generalized inverse gaussian distribution [Barndorff- 
Nielsen and Halgreen (1977)], given by density 

with parameters X # 0 and a > 0, b > 0. 

Easy to see: 

1 
X has density g ~ , ~ , b  =$ - has density g-x,b,,. X 

The theorem says that the continued fraction with IID 
Gamma (A, a) innovations has generalized inverse gaus- 
sian distribution with parameters A, 2a and 2a. 



Ex 2: Bernoulii Innovation 

Theorem (Bhattacharya & G; also, Chassaing et al.): 

(a) Y = [Zo; Z1, Z2, . . . ] has distribution function F given 

by 
a1 +...+ai+l 

F (x) = (--!-) (z) , O < X < ~ ,  
i20 

1 
F(x)  = 1- -F - , x > 1, 

a 

where x = [O; al, a2, . . .] is the usual continued fraction 
expansion of x E (0,1], with the the sum on the right of 
the first equation being a finite sum in case the continued 
fraction expansion [O; al, a2, . . .] of x is terminating; 

(b) the distribution F is Singular with f i l l  Support 
s = (0,oo). 

Getting the explicit expression for F as in (a) is a matter 
of playing around with the convolution identity charac- 
terizing T .  

The proof of singularity in (b) is an interesting one! One 
proves that 

F'(x) = 0 for [Lebesgue] almost every irrational x E (0, l) .  

Write x = [O; a l ,  az, . . . ] (non-terminating!). 

Denote x, = [O; al ,  . . . , a,]. 



Since the right of the first relation in (a) is an alternating 
series with terms decreasing in magnitude, 

Pn Writing xn = -, where pn and qn are relatively prime 
rn 

Y? 
integers, and using classical inequalities, 

so that, 

Let M be chosen large enough to satisfy 

where y = exp{a2/(12 log 2)). It follows from classical 
Levy-Khinchin limit theorems that for all x outside a set 
of Lebesgue measure zero, one has 

a1 + . - -  + a,+l > M(n + 1) V all sufficiently large n. 

It now follows immediately that for all x outside a set of 
Lebesgue measure zero, 

lim IF(4 - F(xn)I - - O 

Lebesgue Differentiation Theorem completes the job now! 



Chassaing et al's argument: 

Elements of SL(2, R) (2 x 2 real matrices with determi- 
nant 1) define a projectivity on R U {m): 

ax + b 
x ct A(x) = 

c x f d '  
(A(-d/c) = GO, A(m) = ale, if c # 0.) The idea used 
is to consider the Markov chain given by the products 
of IID random matrices applied to an initial value. The 
matrices are chosen with a special common distribution. 
The argumnets are a bit complicated and the proof of sin- 
gularity is not direct (claimed to be "mere adoption of " 
certain arguments of S.D. Chatterji and F. Schweiger!) . 
A more direct proof and additional information is ob- 
tained in 

Theorem (Chakrabarti & Rao): For various 0 < a < 
1, the distributions Fa are all singular with respect to 
Lebesgue measure and with respect to one another. More- 
over, the family {&) is a uniformly singular family. 

Consider a slight departure from standard Bernoulli! 

(2,) IID , P (Zi = 0) = 0, P (Zi = 0) = 1 - a 

(0 > 0,0 < a < 1) 

Theorem (Bhattacharya & G) : 

(a) 0 5 1 + support of ?r is Full, namely, (0, m). 

(b) 0 > 1 support of ?r is a Cantor subset of ( 0 , ~ ) .  



Extension to Higher Dimensions 

[Hallin] 

H:(R) : real n x n symmetric positive definite matrices. 
For Ao, A1, A2, . . . in H,f(R), one defines 

[Ao] = Ao, [Ao; A11 = A0 + A;', 
and [Ao; A1,. . . A,] = A0 + [Al; A2,. . . , An]-', ; n > 2 

These are the finite continued fractions. Well-defined! 

[A1; A2, . . . , A,] all invertible. 

For convergence of the sequence {[Ao; A1, . . . , An]}, one 
uses arguments anlogous to the one-dimensional case, 
namely, that with matrices Pn and Qn defined recursively 

by 

P o = A o , Q o = I ,  P l = A I A o + I , Q l = A l  
and, for n 2 2, Pn = AnPn-1 + Pn-2, Qn = AnQn-I+ Qn-2 

one can show that the matrix Qk+lQn is in H: (R)  (in 
particular, invertible) and that 

The convergence of the sequence {[Ao; A1, . . . , A,]} can 
now be proved by showing convergence of the alternating 

00 

series (- (Qk+lQn)-l. 
n=O 

Given now any i.i.d. sequence Z1, Z2, . . . of random ma- 
trices taking values in H: (R),  consider the Markov Chain 
on S = H$(R) defined recursively by 

Xl = [z l ;  Xo], X2 = [22; XI], 
and, in general, Xn+1 = [Zn+1; Xn], for n 2 1, 



where Xo is any H:(R)-valued random matrix, indepen- 
dent of the sequence (2,). Using arguments similar to 
the one-dimensional case, one can show that this markov 
chain has a unique invariant distribution n and that X ,  
converges in distribution to n, whatever be Xo. More- 
over, this .rr is the unique probability on H: (R) satisfying 
the distributional identity 

where X and Z are independent H;(R)-valued random 
C 

matrices with X having distribution n and Z = Zl. 
In fact, Bernadac has extended the notion of continued 
fractions on a more abstract space of irreducible symmet- 
ric cones, i.e., the interior of cones of square elements of 
simple Euclidean Jordan algebras. For Bernadac (1995) 
has more details. 

Existence of a unique invariant probability and proper- 
ties of this invariant probability all go through using ap- 
propriate extensions of the one-dimensional arguments. 

THANK YOU! 


