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1. Introduction

Let µ be a probability measure on a Polish space E with its Borel σ-

algebra B, and π : Lp(E, µ) → Lp(E, µ) be a positive operator with

1 ≤ p ≤ ∞.

We introduced in [Gong, Wu: C.R. Acad. Sci. Pairs, t.331, Série 1(2000),[3]],

[Gong, Wu: J. Math. Pures Appl. 85(2006),151-191, [4]], and [Wu: Theory

Relat. Fields 128(2004), 255-321, Remarks(5.ii)in [12]] the conceptions:

tail norm of π and tail norm condition (TNC for short) of π, and proved

several results and the applications.

• The aim of the present talk:

we will estimate the essential spectral radius ress(π) of π for p = 1, ∞
by using the tail norms of πn with 1 ≤ n < ∞, i.e. the tail radius rtail(π)

of π defined in the below.
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• Some related facts:

(1) In order to study many interesting infinite dimensional positive op-

erators from Euclidean quantum fields and statistical mechanics,

E.Nelson [7](1966) and L. Gross in [5] (1972) introduced the con-

ceptions of hypercontractivity and hyperboundedness of positive op-

erators respectively.

(2) In order to study the necessary and sufficient conditions for large

deviations of Markov processes on infinite dimensional spaces, Wu

in [C.R. Acad. Sci. Pairs, t.321, Série I(1995), 777-762, [10]] and [J.

Funct. Anal. 172(2000), 301-376 , [11]] introduced the conceptions

of uniform integrability of positive operators, which are weaker than

the hypercontractivity and the hyperboundedness.
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For the study of essential spectrum by using the uniform integrability

and the tail norm,

(3) on the one hand, by using functional inequalities, Gong and Wang

in [Forum Math. 14(2002), 293–313, [1]] studied the essential spec-

trum of uniformly integrable semigroups and gave an estimate of es-

sential spectrum when the semigroups have densities with respect

to µ, which are the extensions of corresponding results in [J. Funct.

Anal. 170(2000), 219–245, [8]]. These results were then extended

to more general cases by Gong and Wang in [2] and by Wang in [9].

(4) On the other hand,

(i). for 1 < p < ∞ we have pointed out in Remark 2.5 of [4] and

Remarks(5.ii)of [12] that: the essential spectral radius ress(π) of π

with a density with respect to µ is equal to the tail radius rtail(π) of

π , and in general case ress(π) 6= rtial(π).
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(ii). Furthermore, Wu in [Probab. Theory Relat. Fields 128(2004),

255-321, [12]] estimated the essential spectral radius ress(π) of π

by using the Persson type’s principle for 1 < p ≤ ∞ (see Theorem

5.1 in [12]), gave several results for the essential spectral radius

ress(π|bB) of a bounded nonnegative kernel π on bB by using two

new measures of non-compactness βτ (π) and βw(π) which are

the analogies of tail norms (see Section 3 of [12]), and proved in

Theorem 3.5 of [12] that

ress(π|bB) = inf
n≥1

βw(πn)
1
n

under the so called condition (A1). Where bB consists of all bounded

B-measurable functions on E endowed the sup-norm.
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(iii). Recently, H. Hennion in [6] proved that

ress(π|bB) = inf
n≥1

∆(πn)
1
n

(see Theorem III.3 and Corollary III.6 in [6]), which is an improve-

ment of Corollary 3.6 in [12] (see Remark III.2 in [6]). Note that,

∆(π) (see Definition III.4 and Corollary III.6 in [6]) is also an anal-

ogy of the tail norm.
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2. The main result

Definition 0.1 For p ∈ [1, +∞] and a bounded linear operator π : Lp →
Lp, we define the tail norm ‖π‖tail(Lp) of π by

(i). ‖π‖tail(Lp) := limL→∞ supf :‖f‖p≤1 ‖1[|πf |>L]πf‖p, ∀1 ≤ p < ∞;

(ii ).
‖π‖tail(L∞)

:= lim sup
µ(A)→0

‖π1A‖∞

:= lim
ε→0+

sup
A∈B: µ(A)≤ε

‖π1A‖∞ ;

(0.1)

and we define the tail radius rtail(Lp)(π) of π by

(iii ). rtail(Lp)(π) := limn→∞ ‖πn‖
1
n

tail(Lp).
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The main result is as follows:

Theorem 0.1 For an nonnegative operator π : Lp → Lp with p = 1, ∞
(if p = ∞, π is also a kernel operator, i.e., has a kernel realization) we

have

ress(π|L1) = rtail(L1)(π),

ress(π|L∞) = rtail(L∞)(π).
(0.2)

Remark 0.1 The above results can be considered as the Gelfand Nuss-

baum type formulaes on L1 and L∞. If we introduce the tail norm con-

dition (TNC for short) for a positive operator π in the p = 1, ∞ case

following Definition 2.1 in [4], i.e. rtail(Lp)(π) < rsp(π) for p = 1, ∞ (if

p = ∞, π is also a kernel operator), then TNC is equivalent to rsp(π) is

an isolated point in σ(π) (i.e., the existence of spectral gap).
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In order to prove the main result, we need to prove the following key lem-

mas:

Lemma 0.2 For an nonnegative operator π : Lp → Lp with p = 1, ∞ (if

p = ∞, π is also a kernel operator)

(a) the tail norm of π in L1 has the following expressions:

‖π‖tail(L1) = lim sup
µ(A)→0

‖1Aπ‖1,1 := lim
ε→0+

sup
µ(A)≤ε

‖1Aπ‖1,1

= lim sup
µ(A), µ(B)→0

‖1Aπ(1B·)‖1,1

:= lim
ε→0+

sup
µ(A), µ(B)≤ε

‖1Aπ(1B·)‖1,1;

(0.3)

(b) ‖π‖tail(L1) = ‖π∗‖tail(L∞);
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(c) for two nonnegative operators π1, π2 on Lp(µ) (if p = ∞, they are

also kernel operators) and a, b ≥ 0,

‖π1π2‖tail(Lp) ≤ ‖π1‖tail(Lp) · ‖π2‖tail(Lp),

‖aπ1 + bπ2‖tail(Lp) ≤ a‖π1‖tail(Lp) + b‖π2‖tail(Lp).
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Lemma 0.3 Let π be a positive kernel operator on L∞ and rtail(L∞) < ρ.

Then there is an integer lρ ≥ 1 such that, for any l ≥ lρ there exist

a positive operator K with the bounded density with respect to µ and a

positive kernel operator S with ‖S‖∞, ∞ < ρl satisfying

πl = T + S.

Remark 0.2 In the proof of Lemma 0.3 we have proved that: there is a

E0 ∈ B with µ(E0) = 1 such that, for all l ≥ some integer,

sup
µ(B)≤ η

2
, B∈B∩E0

sup
x∈E0

πl(x, B) < ρl. (0.4)
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the above (0.4) is just a kind of the Doelin’s condition with respect to µ

on E0 (see (1.4) in [12] and (D) in [6]) for the bounded positive kernel

π(x, dy) on (E0, B ∩ E0). Hence, we has essentially proved that, for a

positive kernel operator π on L∞, rtail(L∞)(π) < ρ implies that, there

exists a subset E0 with µ(E0) = 1 such that, π satisfies the Doelin’s

condition with respect to µ on E0 along with the up-bound parameter ρ.

This result was inspired by H. Hennion’s Lemma 3.4 in [6].
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3. The applications

• The essential spectral radius of a symmetric positive operator

Let π be a symmetric positive operator on L2. Then there is a µ-symmetric

nonnegative kernel realization π(x, dy) on (E, B) with µπ � µ, which

is unique up to µ − a.e. x ∈ E. Suppose that the kernel π(x, dy) is

bounded, then it determines a positive operator on Lp with 1 ≤ p ≤ ∞,

we denote it by π|Lp. For ress(π|Lp) we have the following result:

Proposition 0.4 For any 1 < p < ∞

ress(π|Lp) ≤ rtail(L1)(π|L1) = rtail(L∞)(π|L∞). (0.5)
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• The essential spectral radius of a positive Feller kernel operator

Let Cb := Cb(E) be the Banach space of all bounded continuous func-

tions on E endowed the sup-norm, and π be a red positive Feller kernel

operator on L∞, i.e. π is a positive kernel operator and π(Cb(E)) ⊆
Cb(E). Note that, in this case π|Cb(E) is also a bounded linear operator

on Cb(E), denotes its norm by ‖ · ‖Cb(E), and µπ � µ. For the essential

spectral radius of π we can prove that

Proposition 0.5 Suppose that Supp(µ) = E. Then for a positive Feller

kernel operator π on L∞ we have

rtail(L∞)(π) = ress(π|Cb(E)). (0.6)
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Corollary 0.6 Suppose that Supp(µ) = E, and the positive Feller oper-

ator π satisfying that

• rtail(L∞)(π) < rsp(π) (i.e., TNC),

• π is topologically transitive,

where the topologically transitivity of π means that for any x ∈ E and any

nonempty open subset O ⊂ E there is an integer N ≥ 1 satisfying that

πN(x, O) > 0 for the Feller kernel π(x, dy) of π. Then: π is erdogic in

Cb(E) and L∞, and
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Ker(rsp(π) − π) (resp. Ker(rsp(π) − π∗)) is spanned by an unique

φ > 0 on E with ‖φ‖Cb(E) = 1 (resp. an unique probability measure

ν on (E, B), there exist an integer d (called the period of π), a partition

{Ej ∈ B+
µ : Ej is closed in E, j = 0, · · · , d − 1} of E (called the

cyclic classes of π), and δ, C > 0, such that for all k, n ∈ N and for all

f ∈ Cb(E)

∥∥∥∥∥(
(rsp(π))−1 π

)nd+k

f −
d∑

j=1

1Ej−k(mod d)
φ

〈1Ej
f〉ν

〈1Ej
φ〉ν

∥∥∥∥∥
Cb(E)

≤ Ce−δn‖f‖Cb(E) .

(0.7)
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• The inequalities of essential spectral radiuses of positive bounded ker-

nels on bB

Let π be an nonnegative bounded kernel on (E, B), and bB := bB(E)

denote the Banach space of all bounded B-measurable functions on E

endowed the sup-norm. Then π will determine an uniquely bounded pos-

itive operator on bB, and we denote it by π|bB.

Note that, for any probability measure µ on (E, B) with µπ � π the ker-

nel π will also determine an uniquely positive operator on Lp(µ) with 1 ≤
p ≤ ∞, we denote it by π|Lp(µ). So, we can define supµ: µπ�µ rtail(L∞(µ))(π).

By the main result it is just supµ: µπ�µ ress(π|L∞(µ)).

What is the relation between it and the essential spectral radius of π|bB?

In the following we will try to answer this question.

Let Mb := Mb(E) (resp. M+ := M(E), P := P(E)) be the space

of all σ-additive signed (resp. nonnegative, probability) measures with
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bounded variations on (E, B). Note that Mb endowed the variation norm

‖·‖var is a Banach space and a closed subspace of the dual space (bB)∗

of bB.

Definition 0.2 (see Definition 3.1 in [12] and Definition III.4 in [6]) For any

nonnegative bounded kernel π on (E, B) we define the following semi-

norms of π:

• βτ (π|bB) = sup(An)n≥1⊂B: An↓Ø limn→∞ ‖π1An‖sup ;

• ∆(π|bB) = infν∈P lim supA⊂B: ν(A)→0 ‖π1A‖sup ;

and we define

• rτ (π|bB) = limn→∞ βτ (π|nbB)
1
n = infn≥1 βτ (π|nbB)

1
n ;

• r∆(π|bB) = limn→∞ ∆(π|nbB)
1
n = infn≥1 ∆(π|nbB)

1
n .
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Proposition 0.7 For any nonnegative bounded kernel π on (E, B) we

have
sup

µ: µπ�µ
ress(π|L∞) = sup

µ: µπ�µ
rtail(L∞(µ))(π)

≤ rτ (π|bB) ≤ r∆(π|bB) = ress(π|bB).
(0.8)

Corollary 0.8 For any nonnegative bounded Feller kernel π

ress(π|Cb(E))= sup
µ: µπ�µ, Supp(µ)=E

ress(π|L∞(µ))

= sup
µ: µπ�µ, Supp(µ)=E

rtail(L∞(µ))(π)

= rτ (π|bB) = r∆(π|bB) = ress(π|bB).

(0.9)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

It follows from the above Corollary that the Conjecture in Remarks (3.iii)in

Wu [12] holds for any nonnegative bounded Feller kernel. Note that, the

estimate of rτ (π|bB) are more easier than that of r∆(π|bB), and there are

several useful criterions to estimate rτ (π|bB) for example the so called

the method of Lyapunov functions see Wu [12].
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——————
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——————


