A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium

I. Gentil

CEREMADE, Paris-Dauphine University

Workshop on Markov Processes and Related Topics Beijing Normal University, July 14-18, 2007

Work written in collaboration with C. Imbert from Paris-Dauphine

- Introduction
 - Ornstein-Uhlenbeck and Fokker-Planck equations
 - Tools for the asymptotic behaviour
- The Lévy-Fokker-Planck equation
 - The Lévy-Fokker-Planck equation
- Results
 - The equilibrium
 - Entropies
 - Convergence towards the equilibrium

- Introduction
 - Ornstein-Uhlenbeck and Fokker-Planck equations
 - Tools for the asymptotic behaviour
- The Lévy-Fokker-Planck equation
 - The Lévy-Fokker-Planck equation
- Results
 - The equilibrium
 - Entropies
 - Convergence towards the equilibrium

Ornstein-Uhlenbeck and Fokker-Planck equations

$$\begin{cases} dX_t = 2dB_t - \nabla V(X_t)dt \\ X_0 = x \end{cases}$$

where B_t is a standard Brownian Motion in \mathbb{R}^n .

Ito formula implies : the Semigroup $P_t f(x) = E_x(f(X_t))$ satisfies the PDE

$$\begin{cases} \frac{\partial}{\partial t} P_t f(x) = L P_t f(x) \\ P_0 f = f, \end{cases}$$

where $Lf = \Delta f - \nabla V \cdot \nabla f$ is the IG of P_t . This is the **Ornstein-Uhlenbeck equation**.

Consider L^* or P_t^* , the dual with respect to dx,

$$\int \textit{Lfgdx} = \int \textit{fL}^*\textit{gdx}, \ \ \text{or} \ \ \int P_t fg dx = \int fP_t^*g dx,$$

then

$$L^*g = \Delta g + \operatorname{div}(g.\nabla V).$$

The Semigroup $P_t^* f(x)$ satisfies the PDE

$$\begin{cases} \frac{\partial}{\partial t} P_t^* f(x) = L^* P_t^* f(x) \\ P_0^* f = f, \end{cases}$$

This is the Fokker-Planck equation.

Let $\mu_V = e^{-V} dx$ (assume that μ_V is a probability measure), $(P_t)_{t \geq 0}$ or L is self adjoint in $L^2(d\mu_V)$ and the by integration by parts

$$\int Lf \, g d\mu_V = - \int \nabla f \cdot \nabla g d\mu_V.$$

Under smooth assumptions:

$$\lim_{t\to\infty} P_t f(x) = \int f d\mu_V.$$

or equivalently

$$\lim_{t\to\infty}e^{V(x)}P_t^*g(x)=\int gdx.$$

The good question is HOW FAST?

- Introduction
 - Ornstein-Uhlenbeck and Fokker-Planck equations
 - Tools for the asymptotic behaviour
- The Lévy-Fokker-Planck equation
 - The Lévy-Fokker-Planck equation
- Results
 - The equilibrium
 - Entropies
 - Convergence towards the equilibrium

Tools for the asymptotic behaviour

▶ Poincaré inequality : a L² convergence.

$$\frac{\textit{d}}{\textit{dt}}\textit{var}_{\mu_{\textit{V}}}(\textit{P}_{\textit{t}}\textit{f}) = 2\int \textit{P}_{\textit{t}}\textit{fL}\textit{P}_{\textit{t}}\textit{fd}\mu_{\textit{V}} - 0 = -2\int |\nabla \textit{P}_{\textit{t}}\textit{f}|^2 \textit{d}\mu_{\textit{V}},$$

If Poincaré inequality holds

$$ext{var}_{\mu_V}(f) \leq C \int |
abla f|^2 d\mu_V$$
 $ext{var}_{\mu_V}(P_t f) \leq e^{-2t/C} ext{var}_{\mu_V}(f).$

▶ Logarithmic Sobolev inequality a L log L convergence

$$\frac{d}{dt} Ent_{\mu_V}(P_t f) := \frac{d}{dt} \int P_t f \log \frac{P_t f}{\int P_t f d\mu_V} d\mu_V = -4 \int |\nabla \sqrt{P_t f}|^2 d\mu_V,$$

If Logarithmic Sobolev inequality holds

$$ext{Ent}_{\mu_V}(f^2) \leq C \int |
abla f|^2 d\mu_V$$
 $ext{Ent}_{\mu_V}(P_t f) \leq e^{-4t/C} ext{Ent}_{\mu_V}(f).$

When do we have a Poincaré or a logarithmic Sobolev inequality?

The well known Bakry-Emery Γ_2 -criterion implies that if

$$\operatorname{Hess}(V) \geq \lambda \operatorname{Id},$$

with $\lambda > 0$ then logarithmic Sobolev inequality holds with $C = 2/\lambda$ and Poincaré inequality holds with $C = 1/\lambda$.

- Introduction
 - Ornstein-Uhlenbeck and Fokker-Planck equations
 - Tools for the asymptotic behaviour
 - The Lévy-Fokker-Planck equation
 - The Lévy-Fokker-Planck equation
- Results
 - The equilibrium
 - Entropies
 - Convergence towards the equilibrium

Definition of Lévy process

Lévy process L_t = process with stationary & indep increments

Fourier transform $(L_t) = e^{t\psi(\xi)}$ where ψ is characterized by the Lévy-Khinchine formula.

$$\psi(\xi) = -\sigma \xi \cdot \xi + ib \cdot \xi + \int (e^{iz \cdot \xi} - 1 - iz \cdot \xi \mathbf{1}_B(\xi)) \nu(dz)$$

where ν is a singular measure satisfying

$$\int_{B}|z|^{2}\nu(dz)<+\infty \qquad \qquad \int_{\mathbb{R}^{d}\setminus B}\nu(dz)<+\infty,$$

 σ is a positive definite matrix and b is a vector.

Parameters (σ, b, ν) characterize the Lévy process (or a inifinite divisible law).

▶ For all t > 0 the law of L_t is an infinite divisible law :

$$\mu = \underbrace{\mu_n \star \cdots \star \mu_n}_{n \text{ times}}.$$

► Associated infinitesimal generators as for the Brownian Motion.

$$I(u) = \operatorname{div}(\sigma \nabla u) + b \cdot \nabla u$$

+
$$\int (u(x+z) - u(x) - \nabla u(x) \cdot z \mathbf{1}_{B}(z)) \nu(dz)$$

These operators appear everywhere (mathematical finance, mechanics, fluids *etc.*)

• Example : $(\sigma, b, \nu) = (0, 0, \frac{1}{|z|^{\alpha+\sigma}}dz)$, the α stable process. In that case $\psi(\xi) = |\xi|^{\alpha}$. The case $\alpha = 2$ is the Brownian motion. In that case $I(f) = \Delta^{\alpha/2}(f)$, the fractional Laplacian.

The Lévy-Fokker-Planck equation

Replace Δ by I a IG of a Lévy process in the Fokker-Planck equation :

$$\begin{cases} \frac{\partial}{\partial t} u = I(u) + \operatorname{div}(ux) \\ u(0, x) = f(x) \end{cases}$$

The goal of this talk is to understand the asymptotic behaviour.

Remark: We assume that $V = x^2/2$.

Questions:

- Find a steady state as e^{-V} as for the classical case Δ .
- Find the asymptotic behaviour of the Lévy-Fokker-Planck equation (LFP).
- Find conditions to get an asymptotic behaviour using inequalities as Poincaré or logarithmic Sobolev.

- Introduction
 - Ornstein-Uhlenbeck and Fokker-Planck equations
 - Tools for the asymptotic behaviour
- The Lévy-Fokker-Planck equation
 - The Lévy-Fokker-Planck equation
- Results
 - The equilibrium
 - Entropies
 - Convergence towards the equilibrium

An equilibrium $u_{\infty} \stackrel{def}{=}$ a stationary solution of the LFP u_{∞} can be seen as an invariant measure μ_V in the case of the Laplacian.

Proposition (Existence of an equilibrium)

Assume that

$$\int_{\mathbb{R}^d\setminus B}\ln|z|\nu(dz)<+\infty.$$

There then exists an positive equilibrium u_{∞} :

$$I(u_{\infty})+div(u_{\infty}x)=0.$$

Moreover, $u_{\infty}dx$ is an infinite divisible law whose characteristic exponent A is

$$A(\xi) = \int_0^1 \psi(s\xi) \frac{ds}{s}.$$

Of course the condition is satisfied in the case of the α -stable. In that case u_{∞} is the infinite divisible law of the Lévy process, $A = \psi/\lambda$.

- Introduction
 - Ornstein-Uhlenbeck and Fokker-Planck equations
 - Tools for the asymptotic behaviour
- The Lévy-Fokker-Planck equation
 - The Lévy-Fokker-Planck equation
- Results
 - The equilibrium
 - Entropies
 - Convergence towards the equilibrium

For $\phi: \mathbb{R}^+ \to \mathbb{R}$ convex and smooth and μ a probability measure, consider the ϕ -entropy

$$m{\mathsf{E}}_{\mu}^{\phi}(f) = \int \phi(f) \mathsf{d}\mu - \phi\left(\int f \mathsf{d}\mu\right)$$

Examples

For $\phi(x) = \frac{1}{2}x^2$ (E_{μ}^{ϕ} =the variance), $D_{\phi}(a,b) = \frac{1}{2}(a-b)^2$

$$F_{\mu}^{\phi}(v) = \frac{1}{2} \iint (v(x+z) - v(x))^2 \nu(dz) \mu(dx)$$

For
$$\phi(x)=x\ln x-x-1$$
 (E^ϕ_μ =entropy), $D_\phi(a,b)=a\ln \frac{a}{b}+b-a$

This is natural interpolation between the variance and the Entropy.

Define also a Bregman distance

$$D_{\phi}(a,b) = \phi(a) - \phi(b) - \phi'(b)(a-b) \geq 0$$

Theorem

Let $\mu(dx) = u_{\infty}(x)dx$, ν the Lévy measure associated to I and consider $v(t,x) = \frac{u(t,x)}{u_{\infty}(x)}$, then

$$\frac{d}{dt} \, \mathbf{E}^{\phi}_{\mu}(v(t,\cdot)) = - \iint \mathbf{D}_{\phi} \left(v(x+z), v(x) \right) \nu(dz) \mu(dx).$$

Fisher information

$$F^{\phi}_{\mu}(v) = \iint \mathcal{D}_{\phi}\bigg(v(x+z),v(x)\bigg)\nu(dz)\mu(dx).$$

Can be seen as a Dirichlet form with respect to the measure $u_{\infty}(x)dx$

The proof of the theorem comes from

► A related equation : the Lévy-Ornstein-Ulenbeck equation (LOU)

The function $v = u/u_{\infty}$ satisfies

$$\partial_t v = \frac{1}{u_\infty} \bigg(I(u_\infty v) - I(u_\infty) v \bigg) + x \cdot \nabla v \stackrel{\text{def}}{=} Lv.$$

Dual operator of L wrt μ

$$\int w_1 \left(L w_2 \right) d\mu = \int \left(\widecheck{I}(w_1) - x \cdot \nabla w_1 \right) w_2 d\mu,$$

where \check{I} is I with $\check{\nu}(dx) = \nu(-dx)$.

Recall that in the classical case L is a self-adjoint operator with respect to μ .

- Introduction
 - Ornstein-Uhlenbeck and Fokker-Planck equations
 - Tools for the asymptotic behaviour
- The Lévy-Fokker-Planck equation
 - The Lévy-Fokker-Planck equation
- Results
 - The equilibrium
 - Entropies
 - Convergence towards the equilibrium

Convergence towards the equilibrium

Theorem

We assume that ν_1 has a density N with respect to dx and satisfies

$$\int_{\mathbb{R}^d\setminus B} \ln|z| \ N(z) \ dz < +\infty.$$

If N is even and satisfies,

$$\forall z, \quad \int_{1}^{+\infty} N(sz)s^{d-1}ds \leq CN(z)$$

then for any smooth convex function Φ one gets :

$$\forall t \geq 0, \quad \operatorname{Ent}_{u_{\infty}}^{\Phi} \left(\ \frac{u}{u_{\infty}} \right) \leq e^{-\frac{t}{C}} \operatorname{Ent}_{u_{\infty}}^{\Phi} \left(\ \frac{u_{0}}{u_{\infty}} \right).$$

$$rac{d}{dt} E^{\phi}_{\mu}(v(t)) = -F^{\phi}_{\mu}(t) = -\iint \mathcal{D}_{\phi}\bigg(v(x+z),v(x)\bigg)
u(dz)\mu(dx)$$

it is enough to compare F^{ϕ}_{μ} with E^{ϕ}_{μ} .

► A functional inequality [Wu'00,Chafaï'04]

If $\begin{array}{ll} \mu \text{ is an infinite divisible law} \\ \phi \text{ satisfies } \phi'' > \text{0 and } 1/\phi'' \text{ concave on } \mathbb{R}^+ \end{array}$

Then $E^\phi_\mu(f) \leq \iint D_\phi(v(x+z),v(x)) \,
u_\mu(dz) \mu(dx)$

4D > 4B > 4B > 4B > 3 000

$$rac{d}{dt} E^{\phi}_{\mu}(v(t)) = -F^{\phi}_{\mu}(t) = -\iint \mathcal{D}_{\phi}\bigg(v(x+z),v(x)\bigg)
u(dz)\mu(dx)$$

it is enough to compare F^{ϕ}_{μ} with E^{ϕ}_{μ} .

▶ A functional inequality [Wu'00,Chafaï'04]

 $_{
m lf}$ μ is an infinite divisible law

 ϕ satisfies $\phi'' > 0$ and $1/\phi''$ concave on \mathbb{R}^+

Then
$$E^\phi_\mu(f) \leq \iint D_\phi(v(x+z),v(x))\,
u_\mu(dz)\mu(dx)$$

lf

$$\nu_{\mu} \leq C \nu_{I}$$

$$\frac{d}{dt} E^{\phi}_{\mu}(v(t)) = -F^{\phi}_{\mu}(t) = -\iint \mathcal{D}_{\phi}\bigg(v(x+z),v(x)\bigg) \nu(dz)\mu(dx)$$

it is enough to compare F^{ϕ}_{μ} with E^{ϕ}_{μ} .

▶ A functional inequality [Wu'00,Chafaï'04]

 μ is an infinite divisible law

 $^{ extstyle l}$ ϕ satisfies $\phi''>$ 0 and 1/ ϕ'' concave on \mathbb{R}^+

Then
$$E^\phi_\mu(f) \leq C \iint D_\phi(v(x+z),v(x)) \,
u(dz) \mu(dx)$$

lf

$$\nu_{\mu} \leq C \nu_{I}$$

$$rac{d}{dt} E^{\phi}_{\mu}(v(t)) = -F^{\phi}_{\mu}(t) = -\iint \mathcal{D}_{\phi}\bigg(v(x+z),v(x)\bigg)
u(dz)\mu(dx)$$

it is enough to compare F^{ϕ}_{μ} with E^{ϕ}_{μ} .

► A functional inequality [Wu'00,Chafaï'04]

f $\ \mu$ is an infinite divisible law ϕ satisfies $\phi''>0$ and $1/\phi''$ concave on \mathbb{R}^+

Then $E^\phi_\mu(f) \leq {\color{red} C} F^\phi_\mu(f)$

lf

$$\nu_{\mu} \leq C \nu_{I}$$

$$\frac{d}{dt} E^{\phi}_{\mu}(v(t)) = -F^{\phi}_{\mu}(t) = -\iint \mathcal{D}_{\phi}\bigg(v(x+z),v(x)\bigg) \nu(dz)\mu(dx)$$

it is enough to compare F^{ϕ}_{μ} with E^{ϕ}_{μ} .

► A functional inequality [Wu'00,Chafaï'04]

 $\int\limits_{\phi}^{\mu} \mu \, \mathrm{is} \, \mathrm{an} \, \mathrm{in}$ finite divisible law $\int\limits_{\phi}^{\mu} \mu \, \mathrm{satisfies} \, \phi'' > 0 \, \mathrm{and} \, 1/\phi'' \, \mathrm{concave} \, \mathrm{on} \, \mathbb{R}^+$

Then $E^\phi_\mu(f) \leq {\color{red} C} F^\phi_\mu(f)$

lf

$$\nu_{\mu} \leq C \nu_{I}$$

then

$$E^{\phi}_{\mu}(u/u_{\infty}) \leq E^{\phi}_{\mu}\left(rac{u_0}{u_{\infty}}
ight)e^{-rac{t}{c}}$$