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Ornstein-Uhlenbeck and Fokker-Planck equations

dX; = 2dB; — VV(X;)dt
Xo =X

where B; is a standard Brownian Motion in R”.
Ito formula implies : the Semigroup P:f(x) = Ex(f(X;)) satisfies
the PDE

2. Pif(x) = LPf(x)

Pof = f,

where Lf = Af — VV - Vfisthe |G of P;. This is the
Ornstein-Uhlenbeck equation.
Consider L* or P;, the dual with respect to dx,

/Lfng:/fL*ng7 or /Ptfgdx: /fP:‘gdx7

L*g = Ag +div(g.VV).

then
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The Semigroup P f(x) satisfies the PDE

B Pyf(x) = L*P;f(x)
Pif =1,

This is the Fokker-Planck equation.

Let uy = e~V dx (assume that 1 is a probability measure),
(Pt)¢>o or Lis self adjoint in L2(duy) and the by integration by
parts

/Lfgduv _ —/Vf-nguV.

Under smooth assumptions :

I|m Pf(x /fd,u,v
or equivalently
Jim V™ prg(x) = /gdx.

The good question is HOW FAST ?
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Tools for the asymptotic behaviour

» Poincaré inequality : a L? convergence.

gtvarw(P,f) = 2/ PLPifdpy — 0 = —2/ VP f2dpy,

If Poincaré inequality holds
var,,(f) < C/nyZdW

var,, (Pif) < e 2/Cvar,,(f).
» Logarithmic Sobolev inequality a Llog L convergence

d P:f
dt Entw(Pf dt/Ptfl fPfd 4/|V\/ P[ ’ duv,

If Logarithmic Sobolev inequality holds
Ent,, () < c/yvn?dw

Ent,,(Pif) < e */CEnt, (f).
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When do we have a Poincaré or a logarithmic Sobolev
inequality ?

The well known Bakry-Emery I>-criterion implies that if
Hess(V) > Ad,

with A > 0 then logarithmic Sobolev inequality holds with
C = 2/ and Poincaré inequality holds with C = 1/\.
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Definition of Lévy process

Lévy process L; = process with stationary & indep increments

Fourier transform (L;) = e/¥(€) where 1+ is characterized by the
Lévy-Khinchine formula.

B(E) = —ot - E4ib-E+ / (€€ 1 iz E15(¢))(d2)

where v is a singular measure satisfying
/ 1z]2v(dz) < +o0 / v(dz) < +oo,
B RI\B

o is a positive definite matrix and b is a vector.
Parameters (o, b, v) characterize the Lévy process (or a inifinite
divisible law).
» For all t > 0 the law of L; is an infinite divisible law :
L= fin* - * .
N———

ntimes
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» Associated infinitesimal generators as for the Brownian
Motion.
I(u) = div(eVu)+b-Vu
+ /(u(x +2) —u(x) — Vu(x) - z1g(2))v(dz)

These operators appear everywhere (mathematical finance,
mechanics, fluids etc.)

@ Example : (0, b,v) = (0,0, ‘Z‘%ﬂ,dz), the o stable process.
In that case (&) = |£]“. The case « = 2 is the Brownian
motion. In that case I(f) = A®/2(f), the fractional
Laplacian.
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The Lévy-Fokker-Planck equation

Replace A by / a IG of a Lévy process in the Fokker-Planck
equation :

2u = I(u) + div(ux)

u(0, x) = f(x)

The goal of this talk is to understand the asymptotic behaviour.
Remark : We assume that V = x2/2.

Questions :
@ Find a steady state as e~ as for the classical case A.
@ Find the asymptotic behaviour of the Lévy-Fokker-Planck
equation (LFP).
@ Find conditions to get an asymptotic behaviour using
inequalities as Poincaré or logarithmic Sobolev.
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An equilibrium u., % a stationary solution of the LFP
U, can be seen as an invariant measure py in the case of the
Laplacian.

Proposition (Existence of an equilibrium)
Assume that

In|z|v(dz) < +o0.
RI\B

There then exists an positive equilibrium Us, :
I(Uso) + div(UsoX) = 0.

Moreover, u-.dx is an infinite divisible law whose characteristic
exponent A is

1
a©) = [ u(s0).

Of course the condition is satisfied in the case of the a-stable.
In that case u. is the infinite divisible law of the Lévy process,

A=)\
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For ¢ : RT — R convex and smooth and x a probability
measure, consider the ¢-entropy

£ = [ oo [ 1an)
» Examples

For ¢(x) = 1x? (Ej=the variance), D,(a, b) = }(a— b)?

Frv = 5 [ v+ 2) = vix) Putdz)n(an)
For ¢(x) = xInx — x — 1 (Ej/=entropy), Dy(a,b) = aln2 + b—a

This is natural interpolation between the variance and the
Entropy.
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Define also a Bregman distance

Dy(a,b) = ¢(a) — ¢(b) — ¢'(b)(a—b) = 0

Theorem

Let u(dx) = us(x)dx, v the Lévy measure associated to | and

consider v(t, x) = “(’(X)) then

S EE) =~ [[ Ds v+ 2. v(0) el

» Fisher information
// ( X+ 2) v(x)> v(dz)p(dx).

Can be seen as a Dirichlet form with respect to the measure
Uoso(X)dX

17/ 21



The proof of the theorem comes from

» A related equation : the Lévy-Ornstein-Ulenbeck
equation (LOU)

The function v = u/u satisfies

otV = u1<l(uoov) — l(uoo)v> +x-vv® Ly

o0

Dual operator of L wrt 1

/W1 (LWg)d,u:/<7(W1)—X~VW1>W2d,u,

where 1is I with ¥(dx) = v(—dx).

Recall that in the classical case L is a self-adjoint operator with
respect to .
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Convergence towards the equilibrium

Theorem

We assume that v, has a density N with respect to dx and
satisfies

/ In|z| N(z) dz < +oc.
RI\B
If N is even and satisfies,
“+oo
vz, N(sz)s?'ds < CN(z)
1
then for any smooth convex function ® one gets :

u u
vVt >0, Entd < > < e CEnt® < °> .
=\ u e\ u

o o0
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Proof

4 E9(y(t)) = —FL(1) =—ffD( (x+2), ())( 2)pu(c)

it is enough to compare F{ with E.

» A functional inequality [Wu’'00,Chafai’'04]
w1 is an infinite divisible law
¢ satisfies gb” > 0 and 1/¢” concave on R*

Then ) < Jf Dp(v(x + 2), v(x)) v, (dz)pu(dx)
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