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Outline

• Poisson-Dirichlet Distribution

This section introduces a definition and some properties of Poisson-

Dirichlet Distribution.

• Moderate Deviations for Poisson-Dirichlet Distribution

The moderate deviation principle (MDP) for Poisson-Dirichlet

distribution is presented in this section.

• Moderate Deviations for Homozygosity

In this section we discuss moderate deviations for homozygosity.
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Poisson-Dirichlet Distribution

• Definition.

Let U1, U2, · · · be a sequence of i.i.d. random variables with

common distribution Beta(1, θ), i.e., density function of U1 is

f(x) = θ(1− x)θ−1, 0 ≤ x ≤ 1.

Define

X1 = U1, Xi = Ui(1− U1) · · · (1− Ui−1), i > 1

and let (P1(θ), P2(θ), ...) be the decreasing order of {Xi : i ≥ 1}.
The law Πθ of (P1(θ), P2(θ), ...) is called the Poisson-Dirichlet
distribution with parameter θ.
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• Poisson Process Representation.

Consider a nonhomogeneous Poisson process Ξθ with mean measure

density

θu−1e−u, u > 0.

Let σ1 ≥ σ2 ≥ · · · be the points of Ξθ in descending order, and

σ =
∑∞

i=1 σi. Set

P(θ) =
(σ1

σ
,
σ2

σ
, · · ·

)
.

Then it is known that P(θ) and σ are independent, and σ is a

Gamma(θ, 1) random variable. The law of P(θ) is also Poisson-
Dirichlet distribution with parameter θ.
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• Connection to Population Genetics.

Poisson-Dirichlet Distribution appears in many different contexts

including Bayesian statistics, number theory (prime number

representation), and population genetics. In the context of

population genetics, the distribution describes the equilibrium

proportions of different alleles in the infinitely many alleles model.

The parameter θ represents the mutation rate.

The limiting procedure of large θ is equivalent to population size

getting large. When the population grows, the proportion of types

will become small.
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• Law of Large Number. limθ→∞(P1(θ), P2(θ), ...) = (0, 0, ...).

• Fluctuation Theorem (Griffiths (1979)) . For each r ≥ 1, let

∞ > Y1 > Y2 > · · · > Yr > −∞ have a joint distribution with

density

exp{−(y1 + · · ·+ yr)− e−yr}.
Set

β(θ) = log θ − log log θ.

Then for each r ≥ 1,

(θP1(θ)− β(θ), · · · , θPr(θ)− β(θ)) ⇒ (Y1, ..., Yr) as θ →∞.
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Now replacing the scale θ with a scale a(θ) such that

lim
θ→∞

a(θ)
θ

= 0.

Then by the fluctuation Theorem, we have

a(θ)
θ

[θ(P1(θ), P2(θ), . . .)− β(θ)(1, 1, . . .)] ⇒ (0, 0, . . .). (1)

Question: How fast does a(θ)
θ (θPk(θ)−β(θ)) converge to zero?
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When a(θ) is a constant, the question is a large deviation problem.

The next result is obtained by Dawson and Feng (2006,AAP).

• Large Deviations (Dawson and Feng, 2006). The family of {Πθ :
θ > 0} satisfies an LDP with speed θ and rate function

I(p1, p2, ...) = log
1

1−
∑∞

k=1 pk
.

In particular, for each n ≥ 1, the family {Pn(θ) : θ > 0} satisfies

an LDP with rate function

In(p) = log
1

1− np
.
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If a(θ) satisfies

a(θ) →∞,
a(θ)
θ

→ 0.

the question is a moderate deviation problem. Moderate deviation

result lies between a large deviation result and a fluctuation result.

The following result is the MDP for Poisson-Dirichlet distribution.
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Moderate Deviations for Poisson-Dirichlet
Distribution

• Moderate deviations

Theorem 1. (Feng and Gao (2007)). For above a(θ), the family

{a(θ)
θ [θ(P1(θ), P2(θ), . . .) − β(θ)(1, 1, . . .)] : θ > 0} on space R∞

satisfies an LDP with speed θ/a(θ) and rate function

I(x1, x2, . . .) =


∞∑

i=1

xi,

∞∑
i=1

xi < ∞, x1 ≥ · · · ≥ 0

∞, otherwise.
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• Sketch of the Proof.

Step 1. To establish the LDP for a(θ)
θ (σ1−β(θ), · · · , σn−β(θ)) by

analyzing asymptotic behavior of the density function of a(θ)
θ (σ1 −

β(θ), · · · , σ1 − β(θ)).

Step 2. To prove that a(θ)
θ (θP1(θ) − β(θ), · · · , θPn(θ) − β(θ))

and a(θ)
θ (σ1 − β(θ), · · · , σn − β(θ)) are exponential equivalent for

all n ≥ 1.

Step 3. To derive the LDP for {a(θ)
θ [θ(P1(θ), P2(θ), . . .) −

β(θ)(1, 1, . . .)] : θ > 0} by the projective limit theorem.
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Moderate Deviations for Homozygosity

• Homozygosity

For m ≥ 2,

Hm(θ) = Hm(P1(θ), P2(θ), ...) =
∞∑

i=1

Pm
i (θ)

is called the homozygosity of order m. Set

Zm(θ) =
√

θ[
θm−1

Γ(m)
Hm(θ)− 1]

=
√

θ
θm−1

Γ(m)
[Hm(θ)− Γ(m)

θm−1
].
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• CLT for Homozygosity (Griffiths (1979), Joyce, Krone and Kurtz
(2002,2003))

Zm(θ) =⇒ N(0,
Γ(2m)

(Γ(m))2
−m2).

• LDP for Homozygosity (Dawson and Feng (2006)). The family of

the laws of Hm(θ) on space [0, 1] satisfies an LDP with speed θ

and rate function

I(x) = log
1

1− x1/m
.
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• MDP for Homozygosity

Theorem 2. (Feng and Gao (2007)). Let a(θ) satisfy

lim
θ→∞

a(θ) = ∞, lim
θ→∞

a(θ)√
θ

= 0,

and

lim inf
θ→∞

a1−ε(θ)
θ(m−1)/(2m−1)

> 0,

for some 0 < ε < 1/(2m − 1). Then the family

a(θ)
(

θm−1

Γ(m)Hm(θ)− 1
)

satisfies an LDP with speed a2(θ)
θ and rate

function
z2

2(Γ(2m)/Γ(m)2 −m2)
.
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The main idea of the proof is to explore the connection between

homozygosity and Poisson process, and apply Campbell’s theorem.

The difficulty here is that the exponential moment is not finite,

and thus a truncation procedure is used.

Choosing the scaling factor of a(θ) = θγ. Then the MDP obtained

here requires that γ is between m−1
2m−1 and 1

2.

It is natural to ask what happens for γ ≤ m−1
2m−1.

We can prove that the LDP for (a(θ)(θm−1

Γ(m)Hm(θ)− 1), a2(θ)
θ , I(x))

and the compactness of I(x) imply γ ≥ m−1
2m−1.
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Consider the case of m = 2 and set

Zr(θ) = θr[H2(θ)−
1
θ
].

Then the CLT corresponds to r = 3
2. The MDP corresponds to r in

(4
3,

3
2). The LDP obtained corresponds r = 0. (4

3,
3
2) is the range for

Gaussian MDP and the MDP for r in (0, 4
3] will be non-Gaussian.

Further guess: a further phase transition may occur in the

neighborhood of 1.
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• Sketch proof of Theorem 2.

Step 1. Choose a positive function γ(θ) → ∞ that grows faster

than a positive power of θ such that

lim
θ→∞

γ(θ)
a(l−2)/(m−1)l(θ)

= 0, lim
θ→∞

a2(θ)γ(θ)
θ

= ∞.

Set

G̃
(1)
θ =

∞∑
j=1

σjI{σj≤γ(θ)}, G̃
(m)
θ =

∞∑
j=1

σm
j I{σj≤γ(θ)},

and

G̃θ = (G̃(1)
θ − E(G̃(1)

θ ), G̃(m)
θ − E(G̃(m)

θ )).
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By Gärtner-Ellis theorem, it is easy to get that
(

a(θ)
θ G̃θ,

a2(θ)
θ ,Λ∗

)
satisfies LDP, where

Λ∗(x, y) :=
1

2(Γ(2m)− Γ(m + 1)2)
(Γ(2m)x2 − 2Γ(m + 1)xy + y2), x ∈ R, y ∈ R.

Step 2. Set

G
(m)
θ =

∞∑
j=1

σm
j , Gθ = (σ − θ, G

(m)
θ − Γ(m)θ).

Then the family a(θ)
θ Gθ and the family a(θ)

θ G̃θ are exponential

equivalent, and so the family a(θ)
θ Gθ satisfies a LDP with speed

a2(θ)
θ and rate function Λ∗(x, y).
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Step 3. By the step 2 and the contraction principle, we can

complete the proof of Theorem 2.
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Thanks for your attention


