Asymptotic Behavior of Poisson-Dirichlet Distribution and Dirichlet Process with Two Parameters

Shui Feng McMaster University and Beijing Normal University

- Poisson-Dirichlet Distribution
- An Example
- Dirichlet Process
- Asymptotic Results
- Two Parameter Generalization
- Perman's Formula
- Subordinator Representation
- Asymptotic Results for Two-parameter Model

Poisson-Dirichlet Distribution

Let U_1, U_2, \cdots be a sequence of i.i.d. random variables with common distribution $Beta(1, \theta)$, i.e., density function of U_1 is

$$f(x) = \theta(1-x)^{\theta-1}, 0 \le x \le 1.$$

Define

$$X_1 = U_1, X_i = U_i(1 - U_1) \cdots (1 - U_{i-1}), i > 1$$

and let $(P_1(\theta), P_2(\theta), ...)$ be the decreasing order of $\{X_i : i \ge 1\}$. The law Π_{θ} of $(P_1(\theta), P_2(\theta), ...)$ is called the **Poisson-Dirichlet distribution** with parameter θ and $\{X_i : i \ge 1\}$ is called the GEM representation of Π_{θ} .

An Example

For each integer $n \ge 1$, let N_n be chosen at random from 1, 2, ..., n. Consider the prime factorization of $N_n = \prod_p p^{C_p(n)}$, and $\{C_p(n)\}$ is the multiples of p. Let

$$\begin{split} &K = \sum_{p} C_{p}(n),\\ &\tilde{C}_{i}(n) = i \text{th biggest component of } \{C_{p}(n)\}, i = 1, ..., K,\\ &\tilde{C}_{i}(n) = 1, i \geq K,\\ &L_{i}(n) = \log \tilde{C}_{i}(n), i \geq 1. \end{split}$$

Theorem 1.

$$(\frac{L_1(n)}{\log n}, \frac{L_2(n)}{\log n}...) \to (P_1(1), P_2(1), ...), \text{ as } n \to \infty.$$

Dirichlet Process

Let $\xi_k, k = 1, ...$ be a sequence of i.i.d. random variables with common diffusive distribution ν on [0, 1], i.e., $\nu(x) = 0$ for every x in [0, 1]. Set

$$\Xi_{\theta,\nu} = \sum_{k=1}^{\infty} P_k(\theta) \delta_{\xi_k}.$$

We call the law of $\Xi_{\theta,\nu}$ Dirichlet process, denoted by $Dirichlet(\theta,\nu)$.

Asymptotic Results

Law of Large Numbers

In population genetics, $\theta = 4N_e u$ with u being the individual mutation rate and N_e the effective population size. Hence for fixed u, the limiting procedure of θ approaching infinity is equivalent to effective population size getting large.

WLLN: $\lim_{\theta \to \infty} (P_1(\theta), P_2(\theta), ...) = (\overline{0, 0, ...}).$ WLLN: $\lim_{\theta \to \infty} \Xi_{\theta, \nu} = \nu.$

Fluctuations

For each $r \geq 1$, consider random variables Y_1, \ldots, Y_r such that $Y_1 \sim e^{-y_1 - e^{-y_1}}$, i.e., Y_1 has Gumbel distribution, $Y_k \sim \frac{1}{(k-1)!} \exp\{-(ky + e^{-y})\},\$ $(Y_1, \ldots, Y_r) \sim \exp\{-(y_1 + \cdots + y_r) - e^{-y_r}\}, y_1 \ge y_2 \ge \cdots \ge y_r.$ Set $\beta(\theta) = \log \theta - \log \log \theta$. **Theorem 2.** (Griffiths (79)) For each $r \ge 1$, $(\theta P_1(\theta) - \beta(\theta), ..., \theta P_r(\theta) - \beta(\theta)) \Rightarrow (Y_1, ..., Y_r)$ when θ goes to infinity.

It follows from the theorem that

$$P_k(\theta) \approx \frac{Y_k}{\theta} + \frac{\log \theta}{\theta} - \frac{\log \log \theta}{\theta}.$$

Noting that for each $k \ge 1$, $E[X_k] = (\frac{\theta}{1+\theta})^{k-1} \frac{1}{\theta+1} \sim \frac{1}{\theta}$. Hence the ordering increases the value of $P_k(\theta)$ by a factor of $\log \theta$.

Let $Z_i(\theta) = e^{-(\theta P_i(\theta) - \beta(\theta))}$ and $Z_i = e^{-Y_i}$. Then each Z_i is a Gamma(i, 1) random variable and (Z_1, \ldots, Z_r) has a joint density function

$$h(z_1,\ldots,z_r)=e^{-z_r}, 0\leq z_1\leq\cdots\leq z_r.$$

By continuous mapping theorem, for every $r \ge 1$,

$$(Z_1(\theta),\ldots,Z_r(\theta)) \Rightarrow (Z_1,\ldots,Z_r).$$

Large Deviations

Set

$$\nabla = \{(p_1, \cdots, p_2, \ldots) : p_1 \ge p_2 \ge \cdots, \sum_{i=1}^{\infty} p_i \le 1\}.$$

 \sim

Theorem 3. (Dawson and F(06)). The family of $\{\Pi_{\theta} : \theta > 0\}$ on space ∇ satisfies an LDP with speed θ and rate function

$$I(p_1, p_2, \ldots) = \begin{cases} \log \frac{1}{1 - \sum_{i=1}^{\infty} p_i}, & \sum_{i=1}^{\infty} p_i < 1\\ \infty, & \text{else.} \end{cases}$$

Let $M_1(\nabla)$ be the space of probability measures on ∇ . Consider the following function on $M_1(\nabla)$:

 $S(\cdot) = H(\nu|\cdot),$

where for each μ in $M_1(\nabla)$, $H(\nu|\mu)$ is the relative entropy of ν with respect to μ .

Theorem 4. (Lynch and Sethuraman(87), Dawson and F(01)). Assume that the support of ν is [0,1]. Then the family of $\{Dirichlet(\theta,\nu) : \theta > 0\}$ on space $M_1(\nabla)$ satisfies an LDP with speed θ and rate function $S(\mu)$.

Two-Parameter Generalizations

For any α in (0,1) and $\theta > -\alpha$, let $V_k, k = 1, 2, ...$, be a sequence of independent random variables such that V_k has $Beta(1 - \alpha, \theta + k\alpha)$ distribution. Set

$$X_1^{\theta,\alpha} = V_1, \ X_n^{\theta,\alpha} = (1 - V_1) \cdots (1 - V_{n-1}) V_n, \ n \ge 2.$$

Let $\mathbf{P}(\alpha, \theta) = (P_1(\alpha, \theta), P_2(\alpha, \theta), ...)$ denote $(X_1^{\theta, \alpha}, X_2^{\theta, \alpha}, ...)$ in descending order. The law of $\mathbf{P}(\alpha, \theta)$ is called the two-parameter Poisson-Dirichlet distribution, and is denoted by $PD(\alpha, \theta)$.

Let $\xi_k, k = 1, ...$ be a sequence of i.i.d. random variables with common diffusive distribution ν on [0,1], i.e., $\nu(x) = 0$ for every xin [0,1]. Set

$$\Xi_{\theta,\alpha,\nu} = \sum_{k=1}^{\infty} P_k(\alpha,\theta) \delta_{\xi_k}.$$

We call the law of $\Xi_{\theta,\alpha,\nu}$ the two-parameter Dirichlet process, denoted by $Dirichlet(\theta, \alpha, \nu)$.

The two-parameter Poisson-Dirichlet is the most general distribution whose GEM representation is invariant under a procedure called *size-biased permutation*.

Question: What is the impact of α on the asymptotic behavior of the two-parameter model?

Perman's Formula

For $0 \leq \alpha < 1$ and any constant $C > 0, \beta > 0$, let

 $h(x) = \alpha C x^{-(\alpha+1)}, x > 0,$

and

$$c_{\alpha,\beta} = \frac{\Gamma(\beta+1)(C\Gamma(1-\alpha))^{\beta/\alpha}}{\Gamma(\beta/\alpha+1)}.$$

Let $\psi(t)$ be a density function over $(0,\infty)$ such that for all $\beta > -\alpha$

$$\int_0^\infty t^{-\beta} \psi(t) dt = \frac{1}{c_{\alpha,\beta}}.$$

Let $\{\tau_s : s \ge 0\}$ be the stable subordinator with index α . Then $\psi(t)$ is the density function of τ_1 .

Set

$$\begin{split} \psi_1(t,p) &= h(tp)t\psi(t\bar{p}), t > 0, 0$$

Lemma 5. (Perman's Formula) For each $k \ge 1$, let $f(p_1, ..., p_k)$ denote the joint density function of $(P_1(\alpha, \theta), ..., P_k(\alpha, \theta))$. Then

$$f(p_1, ..., p_k) = c_{\alpha, \theta} \int_0^\infty t^{-\theta} g_k(t, p_1, ..., p_k) dt_{\theta}$$

where for $k \ge 2, t > 0$, $0 < p_k < \cdots < p_1, \sum_{i=1}^k p_i < 1$, and $\hat{p}_k = 1 - p_1 - \cdots - p_{k-1}$,

$$g_k(t, p_1, \dots, p_k) = \frac{t^{k-1}h(tp_1)\cdots h(tp_{k-1})}{\hat{p}_k}g_1(t\hat{p}_k, \frac{p_k}{\hat{p}_k})$$

and

$$g_1(t,p) = \sum_{n=1}^{\infty} (-1)^{n+1} \psi_n(t,p).$$

Subordinator Representation

Let $\{\sigma(t) : t \ge 0, \sigma_0 = 0\}$ be a subordinator with Lévy measure $x^{-(1+\alpha)}e^{-x}dx$, x > 0, and $\{\tau(t) : t \ge 0, \tau_0 = 0\}$ be a gamma subordinator that is independent of $\{\sigma_t : t \ge 0, \sigma_0 = 0\}$ and has Lévy measure $x^{-1}e^{-x}dx$, x > 0.

Lemma 6. (Pitman and Yor) Let

$$\gamma(\alpha, \theta) = \frac{\alpha \tau(\frac{\theta}{\alpha})}{\Gamma(1 - \alpha)}.$$

For each $n \ge 1$, and each partition $0 < t_1 < \cdots < t_n = 1$ of E, let

 $A_i = (t_{i-1}, t_i]$ for i = 2, ..., n, $A_1 = [0, t_1]$, and $a_j = \nu(A_j)$. Set $Y_{\alpha, \theta}(t) = \sigma(\gamma(\alpha, \theta)t), t \ge 0.$

Then the distribution of $(\Xi_{\theta,\alpha,\nu}(A_1), ..., \Xi_{\theta,\alpha,\nu}(A_n))$ is the same as the distribution of

$$\left(\frac{Y_{\alpha,\theta}(a_1)}{Y_{\alpha,\theta}(1)}, \dots, \frac{Y_{\alpha,\theta}(\sum_{j=1}^n a_j) - Y_{\alpha,\theta}(\sum_{j=1}^{n-1} a_j)}{Y_{\alpha,\theta}(1)}\right).$$

Asymptotic Results for Two-parameter Model

Law of Large Numbers

WLLN: $\lim_{\theta \to \infty} (P_1(\alpha, \theta), P_2(\alpha, \theta), ...) = (0, 0, ...).$ WLLN: $\lim_{\theta \to \infty} \Xi_{\theta, \alpha, \nu} = \nu.$

Fluctuations

For each $r \ge 1$, let $\infty > Y_1 > Y_2 > \cdots > Y_r > -\infty$ be as before.Set

 $\beta(\alpha, \theta) = \log \theta - (\alpha + 1) \log \log \theta - \log \Gamma(1 - \alpha).$

Theorem 7. (Handa(07)) For each $r \ge 1$,

 $(\theta P_1(\alpha, \theta) - \beta(\alpha, \theta), ..., \theta P_r(\alpha, \theta) - \beta(\alpha, \theta)) \Rightarrow (Y_1, ..., Y_r)$

when θ goes to infinity.

Thus

$$P_k(\alpha, \theta) \approx \frac{Y_k}{\theta} + \frac{\log \theta}{\theta} - \frac{(\alpha + 1)\log \log \theta}{\theta} - \frac{\log \Gamma(1 - \alpha)}{\theta}.$$

Large Deviations

Theorem 8. (F(07)). The family of $\{PD(\alpha, \theta) : \theta > 0\}$ on space ∇ satisfies an LDP with speed θ and rate function

$$I(p_1, p_2, \ldots) = \begin{cases} \log \frac{1}{1 - \sum_{i=1}^{\infty} p_i}, & \sum_{i=1}^{\infty} p_i < 1\\ \infty, & \text{else.} \end{cases}$$

Thus the parameter α has no impact on the LDP in this case.

For each μ in $M_1(\nabla)$, set

$$S_{\alpha}(\mu) = \sup_{f>0, f\in C_{b}(E)} \{ \frac{1}{\alpha} \log(\int (f(x))^{\alpha} \nu(dx)) + 1 - \int f(x) \mu(dx) \}.$$

Theorem 9. (F(07)). Assume that the support of ν is [0,1]. Then the family of $\{Dirichlet(\theta, \alpha, \nu) : \theta > 0\}$ on space $M_1(\nabla)$ satisfies an LDP with speed θ and rate function $S_{\alpha}(\mu)$.

It is not clear whether S_{α} converges to $S(\mu)$ as α approaches zero.