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Reflected Brownian Motion

When D ⊂ R
n is C2:

Xt = X0 + Bt +

∫ t

0
n(Xs)dLs,

B: Brownian motion in R
n,

n: unit inward normal at ∂D

L: boundary local time that is non-decreasing and increases
only when Xs ∈ ∂D.

• The infinitesimal generator L is 1
2∆ with zero Neumann

condition.

Question 1: How to simulate RBM?
Question 2: How to construct RBM on non-smooth domains?
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Green-Gauss formula

∫

D

v(x)∆u(x)dx = −
∫

D

∇u(x) · ∇v(x)dx−
∫

∂D

v(x)
∂u

∂n
(x)σ(dx).

So for u ∈ D(L),

(−Lu, v)L2(D) =
1

2

∫

D

∇u(x) · ∇v(x)dx.
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Green-Gauss formula

∫

D

v(x)∆u(x)dx = −
∫

D

∇u(x) · ∇v(x)dx−
∫

∂D

v(x)
∂u

∂n
(x)σ(dx).

So for u ∈ D(L),

(−Lu, v)L2(D) =
1

2

∫

D

∇u(x) · ∇v(x)dx.

Dirichlet form (E ,F)

{

F = D(
√
−L) = W 1,2(D),

E(u, v) = (
√
−Lu,

√
−Lv)L2(D) = 1

2

∫

D
∇u(x) · ∇v(x)dx.
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Reflected BM on non-smooth domains

Fukushima (1967): X∗ on Martin-Kuramochi compactification
D∗ of D.

Chen (1993): X = π(X∗) projection on D. X is symmetric
Markov process on D but may not be strong Markov.

Chen (1993), Chen-Fitzsimmons-Williams (1993): Sample path
behavior (Skorokhod decomposition)

Chen (1993): Approximations from inside by RBMs on smooth
domains.

Condition
C1(D) is dense in (W 1,2(D), ‖ · ‖1,2) (1)

guarantees the regularity on D.
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Uniform domains

Extension operator: T : W 1,2(D) → W 1,2(Rn)

Bounded Lipschitz domains and (ε, δ)-domains are
W 1,2-extension domains.

D is an (ε, δ)-domain if for x, y ∈ D with |x − y| < δ, there exists
a rectifiable arc γ ⊂ D joining x and y with
length(γ) ≤ ε−1|x − y| such that for any z ∈ γ,

min {|x − z|, |z − y|)} ≤ ε−1 dist(z, ∂D).

Uniform domains =(ε,∞)-domains.

Example: von Koch snowflake domain.
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More on Uniform domains

The boundary of a uniform domain can be highly non-rectifiable
and, in general, no regularity of its boundary can be inferred
(besides the easy fact that the Hausdorff dimension of the
boundary is strictly less than n).

For any α ∈ [n − 1, n), one can construct a uniform domain
D ⊂ R

n such that Hα(U ∩ ∂D) > 0 for any open set U satisfying
U ∩ ∂D 6= ∅. Here Hα denotes the α-dimensional Hausdorff
measure in R

n.

Benjamini-Chen-Rohde (2004): Uniform Hausdorff dimensional
result for RBM on uniform domains, Hausdorff dimension on
boundary occupation time and on trace on the boundary.
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Discrete Approximation

Assume 0 ∈ D and |∂D| = 0 in the first two approximations.

Let Dk be the connected component of D ∩ 2−k
Z

n that contains
0 with edge structure inherited from 2−k

Z
n.

vk(x): the degree of a vertex x in Dk.

Let Xk and Y k be the discrete and continuous time simple
random walks on Dk with stationary initial distribution mk,

moving at the rate 2−2k, respectively, where mk(x) = vk(x)
2n

2−kn.

Theorem (Burdzy-C.) Under condition (1), both {Xk, k ≥ 1} and
{Y k, k ≥ 1} converge weakly to the stationary reflected
Brownian motion on D in the Skorokhod space D([0, 1],Rn).
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Domain regularity condition

Some domain regularity condition is needed for the above
theorem to hold.

A Counter-example. Regularity conditions are needed for the
random walk approximations. Let

U ε
k = {(x, y) ∈ (0, 1)2 : |x−j2−k| < ε or |y−j2−k| < ε for some j ∈ Z}.

Choose εk > 0 so that |U εk

k | < 2−k−1 and let U =
⋃

k≥1 U εk

k . U is
a bounded open connected set with Lebesgue area less than
1/2.

Note that Dk defined for U is the same as that relative to
D = (0, 1)2.
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Myopic Conditioning

The “myopic conditioning” approximation below works on any
bounded domain.

For every integer k ≥ 1, let {Zk
j2−k , j = 0, 1, 2, . . . } be a discrete

time Markov chain with one-step transition probabilities being
the same as those for the Brownian motion in D conditioned not
to exit D before time 2−k. The process Zk

t can be defined for
t ∈ [(j − 1)2−k, j2−k] either as the conditional Brownian motion
going from Zk

(j−1)2−k to Zk
j2−k without leaving the domain D or as

a linear interpolation between Zk
(j−1)2−k and Zk

j2−k .

Theorem (Burdzy-C.): For any bounded domain D, the laws of
Zk (defined in either way) converge to that of the reflected
Brownian motion on D.
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Remarks and History

The myopic conditioning approximation of reflected Brownian
motion is proved for every starting point x ∈ D so these
theorems demonstrate explicitly that the symmetric reflected
Brownian motion on D is completely determined by the
absorbing Brownian motion in D.

History: Stroock-Varadhan (1971): discrete approximations to
RBM in C2-domains.

Varopoulos (2003): approximations to the killed BM in Lipschitz
domains.
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Our Approach

In the first two approximation schemes (i.e. random walk

approximations), define mk(x) = vk(x)
2n

2−kn for x ∈ Dk.

In the myopic conditioning scheme, define
mk(dx) := 1D(x)PD

2−k1(x)m(dx).

Let Xk be one of the discrete approximating processes
mentioned above. Then mk is the reversible measure for Xk in a
suitable sense.
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Strategy

We will show that

• the law of {Xk,Pk
mk

, k ≥ 1} is tight in the space C([0, 1],Rn) or
D([0, 1],Rn), and that any of its weak subsequential limits (Z,P)
is a time-homogeneous Markov process that is time-reversible
with respect to the Lebesgue measure m in D.

• the process Z killed upon leaving domain D is a killed
Brownian motion in D and establish that the Dirichlet form
(EZ ,F) of Z in L2(D,m) has the property that

W 1,2(D) ⊂ F and EZ(f, f) ≤ E(f, f) :=
1

2

∫

D

|∇f(x)|2dx

for f ∈ W 1,2(D).
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(continued)

We then get the desired result by the following

Theorem (Silverstein, 1974)
Let D be a bounded domain in R

n and mD be the Lebesgue
measure in D that is extended to D by taking mD(D \ D) = 0.
Suppose that Z is a D-valued right continuous
time-homogeneous Markov process having left-limits with initial
distribution mD and is symmetric with respect to measure mD.
Let (EZ ,F) be the Dirichlet form of Z in L2(D,mD). If the
subprocess of Z killed upon leaving domain D is a killed
Brownian motion in D, then

F ⊂ W 1,2(D) and EZ(f, f) ≥ E(f, f) for f ∈ F .
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Discrete random walk approximation

• Tightness: time-reversal method, forward-martingale
decomposition.

• An inequality: Let Qk be the one-step transition of RW on Dk.

(f − Q2j
k f, f)L2(D,mk) ≤ 2j(f − Qkf, f)L2(D,mk).

• Dirichlet form comparison: Let (E ,F) be the symmetric
Dirichlet form of X. Then the above implies that C1(D) ⊂ F and

E(f, f) ≤ 1

2n

∫

D

|∇f |2dx

for f ∈ C1(D). Thus under assumption (1), we have
W 1,2(D) ⊂ F .
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Myopic conditioning

Let Y k be myopic conditioning of killed BM with linear
interpolation between time interval [(j − 1)2−k, j2−k].

Lemma Suppose that either (i) µk = mk for every k ≥ 1; or
(ii) {µk, k ≥ 1} is a sequence of measures on D with
supk≥1 µk(D) < ∞ and µk(D \ K) = 0 for some compact subset

K of D and all k ≥ 1. Then the laws of {Y k,Pk
µk

, k ≥ 1} are tight
in the space C([0, 1],Rn).
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Sketched Proof

By Ito’s formula, for every f ∈ C2(D),

{f(Y k
j2−k) + ‖∆f‖∞

2 j2−k, Gk
j2−k}j=0,1,··· ,2k is a non-negative

P
k
mk

-submartingale. Moreover, for every ε > 0,

lim
k→∞

2k

∑

j=1

P
k
mk

(

|Y k
j2−k − Y k

(j−1)2−k | > ε
)

≤ lim
k→∞

2k

∫

D

Px(|X2−k − X0| > ε and 2−k < τD)dx

≤ lim
k→∞

2k

∫

D

Px(|X2−k − X0| > ε)dx

= 0.

This implies the laws of {Y k,Pk
mk

, k ≥ 1} are tight in
C([0, 1],Rn).
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(continued)

For case (ii), we use the property of BM:

P

(

sup
s≤t

|Bs − B0| > r

)

≤ c0 exp

(

− r

c0t

)

.

and reduce the case to the stationary distribution.

Lemma. Let (Y,P) be a weak limit of Y k. Then for every

f ∈ C∞
c (D), M f

t := f(Yt) − f(Y0) − 1
2

∫ t

0 ∆f(Ys)ds is a P-square
integrable martingale. This in particular implies that
{Yt, t < τD,P}, with τD := inf{t > 0 : Yt /∈ D}, is the killed
Brownian motion in D with initial distribution µ.

Sketched proof. Prove Lkf(x) :=
∫

D
(f(y) − f(x))Qk(x, dy)

converges uniformly to 1
2∆f for f ∈ C3

c (D). 2
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Weak Convergence

A similar approach through semigroup inequality proves the
weak convergence of (Y k,Pmk

) to stationary RBM on D.

Weak convergence of (Y k,Pµk
) requires extra work. The idea is

BM spread out immediately and so can reduce the case with
stationary initial distribution.

The “true" myopic conditioning requires extra work in the
tightness proof.
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Summary

New approaches are introduced for discrete approximation of
RBMs. In particular, these approaches do not require detailed
heat kernel estimates and so they are potentially applicable to
various other stochastic models.

These approximation schemes (especially the random walk
approximations) give not only new ways of constructing RBMs
but also implementable algorithms to simulate RBMs.
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THE END
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