Nonlinear Expectations and Nonlinear Pricing

Zenguing Chen

SHANDONG UNIVERSITY

Considering the difference among Four Modes of nonlinear expectations:
(i) Choquet expectations.
(ii) g-expectation.
(iii) Coherent risk measures.
(iv) Convex risk measures.

We will show that g-expectation is the best expectation to deal with nonlinear pricing in continuous-time setting,.

Motivation

* Finance
(Linear) expectation \leftarrow Black-Scholes \rightarrow Complete Markets
?
\Longleftrightarrow Incomplete Markets.
* Economics:Rational expected Utility
* von Neumann, Morgenstern 1944:

Given "preference" \succeq over acts ξ, η, where $\xi \succeq \eta$ denotes that ξ is preferred to η. Axioms P1 through P6 imply that there exists a unique finitely additive, non-atomic probability measure $P(\cdot)$ on \mathcal{F}, and a utility function $U(\cdot)$, such that

$$
\xi \succeq \eta \Leftrightarrow E_{p} U(\xi) \geq E_{p} U(\eta) .
$$

Allias' Paradox (1953), Nobel prize (1988).
How about non-rational expected utility? e.g. ambiguity, uncertainty.

Motivation

\star Finance
(Linear) expectation \leftarrow Black-Scholes \rightarrow Complete Markets Nonlinear expectation \Longleftrightarrow Incomplete Markets.

New research area: Behavior finance

* Economics-decision theory
(Linear) expectation \leftarrow Neumann \rightarrow Rational expected utility

Home Page

Title Page

Why to deal with nonlinear pricing

Linear and nonlinear Expectation

Choquet expectation (1953)

$$
C_{v}(\xi)=\int_{-\infty}^{0}[V(\xi \geq t)-1] d t+\int_{0}^{\infty} V(\xi \geq t) d t
$$

* Property of Choquet expectation:

$$
C_{v}(\xi+\eta)=C_{v}(\xi)+C_{v}(\eta)
$$

is no longer true.
Nonlinear: $V(\cdot): \mathcal{F} \rightarrow[0,1]$ but

$$
V(A+B) \neq V(A)+V(B), \text { even if } A \cap B=\emptyset
$$

1. Choquet expectation

Particularly, $\mathcal{E}_{g}[\xi]=E \xi$ if $g \equiv 0$.

2. BSDE and g-expectations

(1)BSDE [Pardoux and Peng, 1990]: $\xi \in L^{2}(\Omega, \mathcal{F}, P), g$-Lip continuous,

$$
y_{t}=\xi+\int_{t}^{T} g\left(y_{s}, z_{s}, s\right) d s-\int_{t}^{T} z_{s} d W_{s}, \quad t \in[0, T]
$$

(2) g-expectation [Peng, 1997]: $g(y, 0, t)=0, \forall y, t$.

$$
\mathcal{E}_{g}[\xi]=y_{0} . \quad \mathcal{E}_{g}[\cdot]: L^{2} \rightarrow R .
$$

3. Risk Measures

$\rho: X \rightarrow R:$
*Coherent risk measures:[Artzner-Delbaen-Eber-Heath,1999]
(1) Super-additivity: for all $X_{1}, X_{2}, \rho\left(X_{1}+X_{2}\right) \leq \rho\left(X_{1}\right)+\rho\left(X_{2}\right)$.
(2) Positive homogeneity: for all $\lambda \geq 0$ and all $X, \rho(\lambda X)=\lambda \rho(X)$.
(3) Monotonicity: for all X and Y with $X \geq Y, \rho(X) \geq \rho(Y)$.

Title Page
(4) Translation invariance: for $X, c \in R, \rho(X+c)=\rho(X)+c$.
\star Convex risk measures:[Föllmer and Schied 2002]:
(i) Convexity: $\rho\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda \rho\left(X_{1}\right)+(1-\lambda) \rho\left(X_{2}\right), \forall \lambda \in[0,1]$;
(ii) Normality: $\rho(0)=0$;
(iii) Properties (3) and (4) in coherent risk measures.

4. Relations among nonlinear expectations

5. Black-Scholes Model

Consider a financial market, d stocks governed by linear SDE, one bond. Value process $V_{t}: \equiv V_{t}^{x, \pi}$ (or increment $d V_{t}$ of V_{t}) satisfies SDE:

$$
\begin{equation*}
d V_{t}=\left[r V_{t}+\pi_{t}^{*} \sigma_{t} \theta\right] d t+\pi_{t}^{*} \sigma_{t} d W_{t}, \quad V_{0}=x \tag{1}
\end{equation*}
$$

where $\theta=[b-r \mathbf{1}] \sigma_{t}^{-1}$.
Pricing Principle: Given a contingent claim ξ at time T, the question of hedging contingent claim ξ in fact is to seek an initial endowment \hat{x} and portfolio process $\hat{\pi}$ such that the market value (wealth) process $\left\{V_{t}^{\hat{x}, \hat{\pi}}\right\}$ satisfies $V_{T}^{\hat{x}, \hat{\pi}}=\xi$. The fair price of claim ξ is defined as the minimal endowment \hat{x}.
Black-Scholes Theory: there exists E_{Q} such that $\hat{x}=E_{Q}\left[\xi e^{-r T}\right]$.

6. Questions

Recently, in studying the pricing of contingent claim with constraint on wealth or portfolio processes, e.g.
\star higher interest rate for borrowing (Cvitanic and Karatzas(1993))

$$
\begin{equation*}
d V_{t}=\left[r V_{t}+\pi_{t}^{*} \sigma_{t} \theta\right] d t+\pi_{t}^{*} \sigma_{t} d W_{t}-(R-r)\left(V_{t}-\sum_{i=1}^{d} \pi_{t}^{i}\right)^{-} d t, V_{0}=x \tag{2}
\end{equation*}
$$

* Short sales constraint(Jouini and Kallal 1995, He and Pearson 1991):

$$
\begin{equation*}
d V_{t}=\left[r V_{t}+\pi_{t}^{*} \sigma_{t} \theta^{1}\right] d t+\pi_{t}^{*} \sigma_{t} d W_{t}+\left[\pi_{t}^{*}\right]^{-} \sigma_{t}\left[\theta^{1}-\theta^{2}\right] d t, V_{0}=x \tag{3}
\end{equation*}
$$

* Question: Contrast to linear pricing, could we identify x as nonlinear expectations when the market value process is either $\operatorname{SDE}(2)$ or $\operatorname{SDE}(5)$? $\mathcal{E}=?, \hat{x}=\mathcal{E}\left[\xi e^{-r T}\right]$. Choquet pricing? g-expectation pricing? Coherent pricing? Convex pricing?

9. Result for short-sale constaint

Short sales constraint model:

$$
\begin{equation*}
d V_{t}=\left[r V_{t}+\pi_{t}^{*} \sigma_{t} \theta^{1}\right] d t+\pi_{t}^{*} \sigma_{t} d W_{t}+\left[\pi_{t}^{*}\right]^{-} \sigma_{t}\left[\theta^{1}-\theta^{2}\right] d t, V_{0}=x . \tag{5}
\end{equation*}
$$

THEOREM 2 (1) Contingent claims with short-sales constraints could be priced by both g-expectations and coherent risk measures, but not by Choquet expectations. Moreover, if the coherent risk measure is ρ, let $V(A):=\rho\left(I_{A}\right)$, then

$$
\rho(\xi) \leq C_{V}(\xi), \xi \in L^{2}
$$

(2) However, if contingent claims are European with the form $\xi=\left(S_{T}-\right.$ $k)^{+}$, where S_{t} is a geometric Brownian motion, then those claims can be priced by a Choquet expectation moreover,

$$
\rho(\xi)=C_{V}(\xi), \xi \in L^{2}
$$

Here g-expectation is more general (See Peng 1999).

Thank you!

