

Page 1 of 18

Go Back

Full Screen

Close

Quit

Nonlinear Expectations and Nonlinear Pricing

ZENGJING CHEN

SHANDONG UNIVERSITY

Choquet... BSDE Risk measures Question Question Question Result 1 Result 1 Result 1 Result 1 Home Page Title Page Page 2 of 18 Go Back

Full Screen

Close

Quit

Objective

Considering the difference among Four Modes of nonlinear expectations:

- (i) Choquet expectations.
- (ii) g-expectation.
- (iii) Coherent risk measures.
- (iv) Convex risk measures.

We will show that *g*-expectation is the best expectation to deal with nonlinear pricing in continuous-time setting,.

Choquet... BSDE Risk measures Question Question Result 1 Result 1 Result 1 Result 1 Home Page

Quit

Motivation

★ Finance

(Linear) expectation \leftarrow Black-Scholes \rightarrow Complete Markets

- \iff Incomplete Markets.
- * Economics:Rational expected Utility
- * von Neumann, Morgenstern 1944:

Given "preference" \succeq over acts ξ, η , where $\xi \succeq \eta$ denotes that ξ is preferred to η . Axioms P1 through P6 imply that there exists a unique finitely additive, non-atomic probability measure $P(\cdot)$ on \mathcal{F} , and a utility function $U(\cdot)$, such that

$$\xi \succeq \eta \Leftrightarrow E_p U(\xi) \ge E_p U(\eta).$$

Allias' Paradox (1953), Nobel prize (1988).How about non-rational expected utility? e.g. ambiguity, uncertainty.

Choquet... BSDE Risk measures Question Question Result 1 Result 1 Result 1 Result 1

Motivation

★ Finance

- (Linear) expectation ← Black-Scholes → Complete Markets
 Nonlinear expectation ⇐ Incomplete Markets.
 New research area: Behavior finance
 ★ Economics-decision theory
 (Linear) expectation ← Neumann → Rational expected utility
 Nonlinear expectation ⇐ Non-rational expected utility.
 New research area: Behavior economics.
 Kahneman, Nobel prize (2002).
- **Remark:** Probability theory is not enough to deal with incomplete markets and non-rational expected utility because of its linearity.
- A new mathematical tool—non linear probability theory is needed in finance and economics.

Why to deal with nonlinear pricing

The current mathematical framework of financial economics is pre-dominantly linear. That is, the entire mathematical construct in financial economics is linear because the construct itself assume that the input-output relationships are proportional. Unfortunately, this is not so; the input-output relationships of financial economics are not linear. They are nonlinear, or disproportionate. by Christopher T. May (1999) — Nonlinear Pricing: Theory and Application

Linear and nonlinear Expectation

Linear case: $(\Omega, \mathcal{F}, P), E[\xi] : L^1 \to R$ linear functional.

 $E[\xi + \eta] = E[\xi] + E[\eta], \qquad \forall \xi, \eta \in L^1.$ or $P : \mathcal{F} \to [0, 1],$

 $P(A+B) = P(A) + P(B), \ A \cap B = \emptyset$

As a generalization of linear expectations and probability measures: Nonlinear case: $\mathcal{E}[\xi] : \xi \in \mathcal{L} \to R$ nonlinear functional, or $V : \mathcal{F} \to [0, 1]$, nonlinear probability,

 $V(A+B)=V(A)+V(B), \ A\cap B=\emptyset$

is no longer true.

Choquet... BSDE Risk measures Question Question Question Result 1 Result 1 Result 1 Result 1

Four modes of nonlinear expectations

Nonlinear expectations as an alternative to mathematical expectations are being used extensively in robustness, finance and insurance literature.

- (1) Choquet expectations (integral)(Choquet 1953). Potential Theory
- (2) *g*-expectations (Peng 1997). Backward stochastic differential equations. Control Theory.
- (3) Coherent risk measures (Artzner-Delbaen-Eber-Heath, 1999). Asset Pricing Theory.
- (4) Convex risk measures (Föllmer and Schied 2002).

 ▲
 ▶

 ▲
 ▶

 Page & of 18

 Go Back

 Full Screen

Close

Quit

1. Choquet expectation

Nonlinear: $V(\cdot) : \mathcal{F} \to [0, 1]$ but

 $V(A+B) \neq V(A) + V(B), \text{even if} A \cap B = \emptyset.$

Choquet expectation (1953)

$$C_{v}(\xi) = \int_{-\infty}^{0} [V(\xi \ge t) - 1] dt + \int_{0}^{\infty} V(\xi \ge t) dt$$

* Property of Choquet expectation:

 $C_v(\xi + \eta) = C_v(\xi) + C_v(\eta)$

is no longer true.

Title Page

▲

▶

▲

Page 9 of 18

Go Back

Full Screen

Close

Quit

2. BSDE and *g*-expectations

(1)**BSDE** [Pardoux and Peng, 1990]: $\xi \in L^2(\Omega, \mathcal{F}, P)$, g-Lip continuous,

$$y_t = \xi + \int_t^T g(y_s, z_s, s) ds - \int_t^T z_s dW_s, \quad t \in [0, T].$$

(2) *g*-expectation [Peng, 1997]: $g(y, 0, t) = 0, \forall y, t$.

$$\mathcal{E}_g[\xi] = y_0.$$
 $\mathcal{E}_g[\cdot]: L^2 \to R.$

Particularly, $\mathcal{E}_g[\xi] = E\xi$ if $g \equiv 0$.

3. Risk Measures

 $\rho:X\to R:$

*Coherent risk measures:[Artzner-Delbaen-Eber-Heath,1999]

- (1) Super-additivity: for all $X_1, X_2, \rho(X_1 + X_2) \leq \rho(X_1) + \rho(X_2)$.
- (2) Positive homogeneity: for all $\lambda \ge 0$ and all X, $\rho(\lambda X) = \lambda \rho(X)$.
- (3) Monotonicity: for all X and Y with $X \ge Y$, $\rho(X) \ge \rho(Y)$.
- (4) Translation invariance: for $X, c \in R, \rho(X + c) = \rho(X) + c$.
- * Convex risk measures: [Föllmer and Schied 2002]:
 - (i) Convexity: $\rho(\lambda X_1 + (1-\lambda)X_2) \leq \lambda \rho(X_1) + (1-\lambda)\rho(X_2), \forall \lambda \in [0, 1];$ (ii) Normality: $\rho(0) = 0;$

(iii) Properties (3) and (4) in coherent risk measures.

4.

Relations among nonlinear expectations Measure Choquet... BSDE Risk measures Question Question **Coherent Risk Measure** Question Result 1 Result 1 Result 1 Result 1 Home Page Linear Math **G-expectation** Choquet **Expectation** Title Page g=a|z|+bz g is convex Page 11 of 18 Go Back Full Screen Close Quit

5. Black-Scholes Model

Consider a financial market, d stocks governed by linear SDE, one bond. Value process $V_t :\equiv V_t^{x,\pi}$ (or increment dV_t of V_t) satisfies SDE:

$$dV_t = [rV_t + \pi_t^* \sigma_t \theta] dt + \pi_t^* \sigma_t dW_t, \quad V_0 = x.$$
(1)

where $\theta = [b - r\mathbf{1}]\sigma_t^{-1}$.

Pricing Principle: Given a contingent claim ξ at time T, the question of hedging contingent claim ξ in fact is to seek an initial endowment \hat{x} and portfolio process $\hat{\pi}$ such that the market value (wealth) process $\{V_t^{\hat{x},\hat{\pi}}\}$ satisfies $V_T^{\hat{x},\hat{\pi}} = \xi$. The fair price of claim ξ is defined as the minimal endowment \hat{x} .

Black-Scholes Theory: there exists E_Q such that $\hat{x} = E_Q \left[\xi e^{-rT} \right]$.

6. Questions

Recently, in studying the pricing of contingent claim with constraint on wealth or portfolio processes, e.g.

* higher interest rate for borrowing (Cvitanic and Karatzas(1993))

$$dV_t = [rV_t + \pi_t^* \sigma_t \theta] dt + \pi_t^* \sigma_t dW_t - (R - r)(V_t - \sum_{i=1}^d \pi_t^i)^- dt, \ V_0 = x$$
(2)

* Short sales constraint(Jouini and Kallal 1995, He and Pearson 1991):

$$dV_t = [rV_t + \pi_t^* \sigma_t \theta^1] dt + \pi_t^* \sigma_t dW_t + [\pi_t^*]^- \sigma_t [\theta^1 - \theta^2] dt, V_0 = x.$$
(3)

Choquet... **BSDE** Risk measures Question Question Question Result 1 Result 1 Result 1 Result 1 Home Page Title Page Page 14 of 18 Go Back Full Screen Close

Quit

7. Definition

DEFINITION 1 Given a market value (wealth) process $\{V_t^{x,\pi}\}$, if there is a mapping $\mathcal{E}[\cdot] : L^2 \to R$ such that for any claim $\xi \in L^2(\Omega, \mathcal{F}, P)$, let $x = \mathcal{E}[e^{-rt}\xi]$, and a portfolio π such that $V_T^{x,\pi} = \xi$, we say that the market value process could be priced by $\mathcal{E}[\cdot]$.

The sub-price of a claim corresponding to $\mathcal{E}[\cdot]$ is still defined as the minimal endowment x, that is $\min\{x|V_T^{x,\pi} = \xi\}$

8. Result for higher interest rate for borrowing

THEOREM 1 Higher interest rate for borrowing model:

$$dV_t = [rV_t + \pi_t^* \sigma_t \theta] dt + \pi_t^* \sigma_t dW_t - (R - r)(V_t - \sum_{i=1}^d \pi_t^i)^- dt, \ V_0 = x \quad (4)$$

Contingent claims with higher interest rate for borrowing could be priced by g-expectations, but not by convex risk measures (coherent risk measures, Choquet expectations). That is, there exists a g-expectation such that for any claim $\xi \in L^2$, denote $\hat{x} = \mathcal{E}_g[\xi e^{-rT}]$, there exists a portfolio $\hat{\pi}$ such that $V_T^{\hat{x},\hat{\pi}} = \xi$.

g-expectation is the best in this setting!

Choquet... BSDE Risk measures Question Question Result 1 Result 1 Result 1 Result 1 Title Page

9. Result for short-sale constaint

Short sales constraint model:

$$dV_t = [rV_t + \pi_t^* \sigma_t \theta^1] dt + \pi_t^* \sigma_t dW_t + [\pi_t^*]^- \sigma_t [\theta^1 - \theta^2] dt, V_0 = x.$$
(5)

THEOREM 2 (1) Contingent claims with short-sales constraints could be priced by both g-expectations and coherent risk measures, but not by Choquet expectations. Moreover, if the coherent risk measure is ρ , let $V(A) := \rho(I_A)$, then

 $\rho(\xi) \le C_V(\xi), \xi \in L^2.$

(2) However, if contingent claims are European with the form $\xi = (S_T - k)^+$, where S_t is a geometric Brownian motion, then those claims can be priced by a Choquet expectation moreover,

$$\rho(\xi) = C_V(\xi), \xi \in L^2.$$

and the second second

Choquet... BSDE **Risk measures** Question Question Question Result 1 Result 1 Result 1 Result 1 Home Page Title Page Page 17 of 18 Go Back Full Screen Close Quit

10. Main Result

THEOREM 3 Given a value process $V_t^{x,\pi}$ (shortly V_t), claims $\xi \in L^2$) can be priced by a g-expectation, iff there exist two Ito type processes X and Y with $E|X_t|^2 < \infty$, $E|Y_t|^2 < \infty$ such that the increments of V_t , X_t and Y_t satisfy

 $dX_t \le dV_t \le dY_t$

Here g-expectation is more general (See Peng 1999).

Choquet	С
BSDE	В
Risk measures	R
Question	Q
Question	Q
Question	Q
Result 1	R
Home Page	

Full Screen

Close

Quit

Thank you !