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1. Gartner-Ellis large deviation

Given a non-negative random variable X and
v > 0, if there is a A, > 0 such that
<00 A< A,

E exp{/\Xl/W}{
=00 A> A,

then “very likely”
lim ¢t~ 7 logP{X >t} = —\,.

t—0o0

In the spirit of Taylor expansion, we have

Lemma. (Koénigand Morters (2002)) Let v > 0 and

assume that

1 1
lim — log

EX™" = —Kk.
m—o00 M (m!)Y &

Then
lim ¢t~ logP{X >t} = —~e"/7.

t— 00

In this talk, we discuss a newly developed method of
computing the asymptotics of

EX™

when X is an intersection local time or local time.



2. Intersection in supercritical dimensions

Let X1(¢t), --,X,(t) (¢t > 0) be independent, iden-
tically distributed, symmetric and square integrable

random walks on Z¢. \/ 5 / b

The subject of interest is the intersection local

time
I = Lebesgue measure((th Tt tp);

Xi(t) = = X,(t ))

= / / Lixa)=-=x, (1)1 801 - - dby

= H/ L{x, (t)=z} 0t

xezZd j=1

which is well defined under p(d — 2) > d.
J = #{X1(0,00) N---N X,[0,00)}

We call I intersection local time, and J range inter-

section.




Quantities measuring the amount of intersec-
tion of random walks have been studied intensively

for more than twenty years. This research is often
motivated by the role these quantities play in renor-
malization group methods for quantum field theory,

in our understanding of polymer models.

In the special case p = 2 and d > 5 of the super-
critical dimensions, Khanin, Mazel, Shlosman and
Sinai (1994) observed the following surprising be-

haviors:
exp{——cltl/2} <P{I >t} < eXp{—C2tl/2}
exp{——t%nge} <P{J >t} < eXP{—td_g—z—_e}

for large t > 0.

Similar observations were made at around the
same time (1993) by Sznitman in a continuous set-

ting
The challenging question lies in understand-

ing the difference between I and J, providing sharp

estimates for the tails.




We provide a complete solution for I.

Theorem 1. (Morters and Chen (2007))
Under p(d — 2) > d,

lim —=logP{I >t} = P
p

veoo /

where

G(x) is the Green’s function defined by
G(z) = / PIX(t) = z}dt z € 77
0

and the supremum is taking over the functions f on

7% with
> e =1

T €7
The proof is based on the establishment of the high

moment asymptote

. 1 1
lim — log
m—oco M, (m!)P

EI™ =plogp.
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Indeed, notice that

Hence, V.
r= Y HI tesweede
x1,---,meZdj=1 k:]_ 0
This gives

EI™ = [Z/ dty -+ dtm,

T, meZd Uez O<t1< <tm}

p
X H IP’{X by —th—1) = $a(k) Lo(k— 1)}}
k=1

= ) [ > ﬁ G(Tok) — %(k—l))r'

xl,...’meZd UGEm k_—_-_l

The problem is reduced to prove

lim l1og > [}% >

.UEEm
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The idea of dealing high moment associated
with large permutation group first appeared in Konig
and Morters (2002).

The key of the proof is to get rid of permutations.
We only prove the lower bound (the delicate part is
the upper bound).

Let ¢ > 1 the the conjugate of p and let f(z) > 0 on

7% such that
> fi) =1

TEZ4

By Holder inequality,

L5 fee ]

1y T €23 F0ED, k=1

> S f(@) - flam)

xla...,wmezd .

X Z H G(%(k) - xa(k—l))

o€ k=1

= m! Z f(@1) - f(@m) HG(iﬂk—ivk_l)
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the desired lower bound is associated with the prin-
cipal eigenvalue problem. O

o <3 T



Recall that

]

</

Il

NN

#{Si[1,00) 1+ (18, [1,00)}

The most important recent progress on J was
made by van den Berg, Bolthausen and den Hol-
lander (Ann. Math., 2004): To apply the famous
Donsker-Varadhan large deviations, they consider thel}
intersection of two independent Brownian sausages
Wi(t) and W5(t) instead of J and show that as
d > 5,

Jim £~ log P{}Wf(@t) N WE(0t)] > t} — _I5(6)

- where the rate function I5(-) is given in the form of
variation. They also show that there exists a critical
6* such that I5(0) = 15(0*) for all & > 0*. This
strongly suggests (conjectured in van den Berg et
al) that

lim ¢~ 7 logIP’{le(oo)ﬂWS(oo){ > t} = —15(6%).

t—00



The main difficulty encountered by van den
Berg, Bolthausen and den Hollander is that the con-
ventional way fails in dealing with the intersections

over an infinite time period.

Our success on I gives new hope in finding
the exact tail for the range intersection J. Indeed,
our method allows the random walks run up to an
infinite time period. We believed that we are on the
right track leading to that goal.
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Brownian intersection local time

Let W1 (t),---, W,(t) be independent d-dimensional
Brownian motions. According to Dvoretzky, Erdos
and Kakutani (1950, 1954), these p independent tra-
jectories intersect if and only if p(d — 2) < d (sub-

critical dimensions).

In sub-critical dimensions we consider the intersec-

tion local time

a([0,t1] X - -+ x [0,tp))
tJ
LR il
We are interested in the tail probability of

oz([O, 1]p)

Let 71, - - -, 7p be independent exponential times with

mean 1. We assume independence between

(7'1) .o .77-p) and (W17 .o .7Wp).
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We have

Ea([0, 7] x - [O,Tp})m

\ K

m p
:‘/(Rd) diUl .. daij: Z HG(CC(j(k)_CEo—(k—l))

oceX k=1

where G(z) is the Green’s function given by

Glz) = /0 " ety () da

and p;(x) is the Brownian density.

By the method of high moment asymptotics,

1 1 . m
n}gnooglog (m!>pEa([O,m x---[0,7,]) =plogp
where

p=  sup //Rded G(z —y)f(z)f(y)dzdy.

[l _2p =1
2p—1
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By a argument of Tauberian type, this gives that

1 d(p—1) [ m
] — | p
W}g%o - log(m!) E [&([O, 1]7) ]
2p—dlp—1), 2p
08
2 2p —d(p—1)

= plogp +

which leads to
Theorem 2. (Chen (2004)). Under p(d — 2) < d,

lim ¢~ 3D log P{a([(), 17) > t}

t—o0
2p—d(p—1)

d(p — 1)<2p—d(p—1))—z<p——1> T
— p p .
2 2p

Remark. The constant on the right hand side was

initially given in terms of the best constant x(d,p)
of the Gagliardo-Nirenberg inequality

TS 1,2(md
I fllzp < CUIV I = lfll; ™ fe WHAHR).
Indeed, one can prove that

d(p—1)

o (2}? ~ c;g? - 1)) QP‘iiop"l)(d(pz;— 1) ) 5 )
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4. Local time of additive Brownian motion

Let Wi(t),---,W,(t) be independent d-dimensional

Brownian motions. The multi-parameter process
Wl(tl) +o Wp(tp) (t1> o >tp) = (R+)p

is called additive Brownian motion, which is used to

“simulate” Brownian sheet.

The local time

n([0, 1] x - [Ot])

/ / b0 (W + Wp(sp))dsi - - - dsp.

exists if and only if d < 2p.

We are interested in the tail probability of

n([0,1]7).
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Let 7, - - -, 7, be independent exponential times with

mean 1. We assume independence between

(11,---,7p) and (Wy,---, Wp).

We have | )
m ‘ Ly ) V2R
En([0,71] x -+ x [0,7p]) <) TG

where
QM) = (1+27 A2 AeR
is the Fourier transform of G(x).

The method of high moment asymptotics gives

1 1

L 108 (m!)pE"([()’Tl] x e x [0, 7))
= log P
(2m)<
where
p= sup /d/\[ \/Q(/\H)Q(v)f(ﬂ'v)f(v)dv]p-
|[f]l2=1 /R4 R
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By a Tauberian type argument,

Consequently, we obtain

Theorem 3. (Chen (2006)) Under d < 2p,

lim ¢/ log P{7([0,1)") > t

t—00

d d \
- —(QW)Q—@ ~ ——) T
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Conclusion.

The method of high moment asymptotics opens up
new avenues for the treatment of a wide range of in-
tersection and multi-parameter problems, which are
by no means limited to random walk and Brown-
ian motion. For example, we have reach the point
where we know what to expect for the quantities of
the form

/mw(dxl) m(dz,,) [ Ez_; 17_::[ To(k-1)> To(k))

The mathematical challenge is compatification and
discritization of the state space 2. The reward of
success is complete understand of the intersection
tail behaviors of the general Markov processes.

sup O C, 0
ko
hs . 0 ds
J( 0 R ()




