[Beijing Normal University, July 17, 2007]

The Contact Process beyond Z^d

Dayue Chen

Peking University Beijing, China

Contact Process ↔ Oriented Percolation

Percolation beyond Z^d : many questions and a few answers

I. Benjamini & O. Schramm, Elect Comm in Probab. 1, (1996) 71-82.

The contact process is a Markov process defined on $\{0, 1\}^V$, where V is the vertices set of graph G = (V, E).

Configuration $\eta = \{\eta(x), x \in V\}$

 $\eta(x) = 0$ the person at site x is healthy;

 $\eta(x) = 1$ the person at site x is infected.

The process can be formally defined by specifying the infinitesimal rates of the generator.

 $1 \rightarrow 0$ at rate 1

$$0
ightarrow 1$$
 at rate $\lambda imes |\{y \sim x; \eta_t(y) = 1\}|$

 λ is the only parameter of the process.

Graphic Construction by T. Harris

Infection persists if λ is large, and dies out if λ is small.

There is a phase transition and a critical value λ_c ,

 $0 < \lambda_c < \infty$.

The subcritical Case: $\lambda < \lambda_c, \, \delta_0$ is the only invariant measure (ergodic)

The supercritical Case: $\lambda > \lambda_c$, \exists a family of invariant measures, In some sense, δ_0 is the "minimum", δ_1 is the "maximum". (non-ergodic).

Furthermore, the complete convergence theorem holds for $G = Z^d$.

$$\mu = \alpha \delta_1 + (1 - \alpha) \delta_0.$$

New Phenomenon:

The contact process on T_d has a second phase transition!

The contact process on trees, R. Pemantle, Ann. Probab., 20,(1992) 2089-2116.

Liggett (1996)(tour de force), Stacy(1996)

survival \rightarrow weak survival + strong survival,

Two critical values: $\lambda_1 < \lambda_2$.

 $\lambda < \lambda_1$, the contact process eventually dies out.

 $\lambda > \lambda_2$, strong survival. the infection persists, every site is infected infinitely many times, and the the complete convergence theorem holds.

 $\lambda_1 < \lambda < \lambda_2$, weak survival. The infection persists.

However, every site is infected only finite times. (Infection moves away to infinity.)

The complete convergence theorem fails.

∃ infinitely many non-homogeneous invariant measures.

Each boundary condition corresponds an invariant measure.

 \exists an invariant measure which is rotationally symmetric.

Ref. the second book of Liggett

Conjecture: $\lambda_1 < \lambda_2 \iff$ the Cheeger constant of *G* is positive.

 $S \subset V(G)$, |S| the cardinality of S. ∂S the set of boundary edges.

Cheeger constant

$$\mu(G) = \inf rac{|\partial S|}{|S|}$$

the infinium is over all finite connected subsets.

The special case $G = T_d \times Z$.

Theorem (Shumei Jia); If $d \geq 8$, then $\lambda_1 < \lambda_2$.

Open Problem 1: Extend the statement to the case d = 3, 4, 5, 6, 7.

Theorem (Shumei Jia); The complete convergence theorem holds for $\lambda > \lambda_2$ and fails for $\lambda_1 < \lambda < \lambda_2$.

Open Problems 2: Find out all the invariant measures.

Growth Profile, the Shape Theorem

 $A_t = \{x \in V, \eta_s(x) = 1 \text{ for some } s \leq t\}$, the set of vertices that ever be infected by time t.

For Z^d , there is a convex set B such that $B(1-\epsilon)t \subset A_t \subset B(1+\epsilon)t.$

For T_d , there is a function ϕ which decays exponentially.

$$P_0(\eta_t(x) = 1 \text{ for some} t > 0) = \phi(|x|).$$

Open Problem 3: Is this true for $T_d \times Z$? Apparently, the exponential growth of trees make the parallel argument impractical.

Other transitive graphs?

Percolation. A random environment is the second best.

Let G = (V, E) be an infinite graph. Each edge of G is independently declared *open* with probability p and *closed* with probability 1 - p.

All open bonds, together with all the vertices, consist of a subgraph. A connected component is called an open cluster.

G.R. Grimmett, "Percolation", 2nd ed. Springer-Verlag, New York, 1999.

what is Percolation?

1.2

The **open cluster** containing the fixed vertex *o*

 $\mathcal{C} = \{x \in V; x \text{ and } o \text{ are connected by open edges}\}.$

$P(\mathcal{C} \text{ is infinite})$ is increasing in p.

Critical value $p_c = \inf\{p, P(\mathcal{C} \text{ is infinite}) > 0\}.$

The critical probability of bond percolation on the square lattice equals 1/2,

H. Kesten, Comm. Math. Phys. 74, (1980) 41-59.

Suppose that $p > p_c$ and that C is infinite. Define the contact process on C.

If $G = T_d$, then \mathcal{C} is a Galton-Watson tree.

Theorem (C. & Zhao) If $p > (2\sqrt{d}+1)/d$, then $\lambda_1 < \lambda_2$.

Remarks: 1. $p_c = 1/d$;

2. Useful only if $d \ge 6$.

Open Problem 4: Find a better condition for $\lambda_1 < \lambda_2$.

Let $G = Z^d$, \mathcal{C} is an infinite cluster.

Question 5. Is $p_c(\mathcal{C}) > p_c(Z^d)$?

Question 6. Is the complete convergence theorem holds for $p > p_c(\mathcal{C})$?

Question 7. Does the infected area grows linearly on the cluster of Z^d and T_d ?

Thank You

E-mail: dayue@math.pku.edu.cn