A CENTRAL LIMIT TYPE THEOREM FOR A CLASS OF PARTICLE FILTERS

Jie XIONG University of Tennessee, USA and Hebei Normal University, P. R. China, E-mail: jxiong@math.utk.edu

Abstract: The optimal filter $\pi = {\pi_t, t \ge 0}$ for a general observation model is approximated by a probability measure valued process $\pi^n = {\pi_t^n, t \ge 0}$. The process π^n is the empirical measure of a system of weighted particles that at time 0 consists of *n* particles. The particles branch at equally spaced time instances $jn^{-2\alpha}$ where j = 1, 2, ... and $0 < \alpha < 1$. We prove the convergence of the process π^n to π and derive sharp upper bounds for the mean square error. We also prove a central limit theorem to characterize the convergence rate of the approximate filter. A similar result is obtained for the unweighted, unnormalized version introduced in Crisan-Gains-Lyons (1998). As a corollary, we show that $\alpha = \frac{1}{3}$ is the optimal exponent for that version. This talk is based on a joint paper with Crisan.