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Abstract:
The sample functions of Lévy processes have rich analytic and geometric properties. Many of them have been

studied since 1960’s [see the survey papers of Fristedt (1974), Taylor (1986) and Xiao (2004)]. This talk is concerned
with the intersection problems for Lévy processes and regenerative sets. We apply potential theory of multiparameter
Lévy processes to establish necessary and sufficient conditions for the existence of intersections, and to determine
the Hausdorff dimension of the intersection set when it is non-empty. Our results improve those of Fitzsimmons and
Salisbury (1989) and solve a conjecture of Bertoin (1999a).

This talk is based on joint articles with Davar Khoshnevisan.
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