SLE AND α -SLE DRIVEN BY LÉVY PROCESSES

Qingyang GUAN Institute of Applied Mathematics, Chinese Academy of Sciences, China, E-mail: guanqy@amt.ac.cn

Abstract: Schramm Loewner Evolutions (SLE) are random planar curves (if $\kappa \leq 4$) or growing compact sets generated by a curve (if $\kappa > 4$). We consider more general Lévy processes as the driving processes which give increasing clusters with trees-like structure. We show that when the driving force is of the form $\sqrt{\kappa}B + \theta^{1/\alpha}S$ for a Brownian motion B and a symmetric α -stable process S, the cluster has zero or positive Lebesgue measure according to whether $\kappa \leq 4$ or $\kappa > 4$. Due to the different scale invariant properties between Brownian motion and symmetric α -stable processes, we introduce a new class of evolutions called α -SLE. The corresponding clusters have α -self-similarity. We show the phase transition at a critical coefficient $\theta = \theta_0(\alpha)$ analogous to the $\kappa = 4$ phase transition in Brownian SLE. This talk is based on a joint work with Matthias Winkel.