Essential spectral radius for positive operators on L^1 and L^{∞} spaces

Fuzhou GONG Chinese Academy Sciences, China, E-mail: fzgong@amt.ac.cn Liming Wu Université Blaise Pascal, France

KEY WORDS: Essential spectral radius, Positive operators, L^1 and L^{∞} -spaces

MATHEMATICAL SUBJECT CLASSIFICATION: 60J05, 60F10, 47A10, 47D07.

Abstract: For a positive operator π on L^1 and L^∞ spaces over Polish probability spaces, we have proved that

Theorem 0.1 For an nonnegative operator $\pi : L^p \to L^p$ with $p = 1, \infty$ (if $p = \infty, \pi$ is also a kernel operator) we have

$$r_{ess}(\pi|_{L^1}) = r_{tail(L^1)}(\pi), \ r_{ess}(\pi|_{L^\infty}) = r_{tail(L^\infty)}(\pi).$$
(1)

Proposition 0.2 Let π be a symmetric positive operator on L^2 with a bounded kernel. Then for any 1

$$r_{ess}(\pi|_{L^p}) \le r_{tail(L^1)}(\pi|_{L^1}) = r_{tail(L^\infty)}(\pi|_{L^\infty}).$$
(2)

Proposition 0.3 Suppose that $Supp(\mu) = E$. Then for a positive Feller kernel operator π on L^{∞} we have

$$r_{tail(L^{\infty})}(\pi) = r_{ess}(\pi|_{C_b(E)}).$$
(3)

Corollary 0.4 Suppose that $Supp(\mu) = E$, and the positive Feller operator π satisfying that

- $r_{tail(L^{\infty})}(\pi) < r_{sp}(\pi)$ (*i.e.*, *TNC*),
- π is topologically transitive,

where the topologically transitivity of π means that for any $x \in E$ and any nonempty open subset $O \subset E$ there is an integer $N \geq 1$ satisfying that $\pi^N(x, O) > 0$ for the Feller kernel $\pi(x, dy)$ of π . Then π is ergodic in $C_b(E)$ and L^{∞} .

Proposition 0.5 For any nonnegative bounded kernel π on (E, \mathcal{B}) we have

$$\sup_{\mu:\ \mu\pi\ll\mu} r_{ess}(\pi|_{L^{\infty}}) = \sup_{\mu:\ \mu\pi\ll\mu} r_{tail(L^{\infty}(\mu))}(\pi) \le r_{\tau}(\pi|_{b\mathcal{B}}) \le r_{\Delta}(\pi|_{b\mathcal{B}}) = r_{ess}(\pi|_{b\mathcal{B}}).$$
(4)

Corollary 0.6 For any nonnegative bounded Feller kernel π

$$r_{ess}(\pi|_{C_b(E)}) = \sup_{\mu: \ \mu\pi \ll \mu, \ Supp(\mu) = E} r_{ess}(\pi|_{L^{\infty}(\mu)}) = \sup_{\mu: \ \mu\pi \ll \mu} r_{tail(L^{\infty}(\mu))}(\pi) = r_{\tau}(\pi|_{b\mathcal{B}}) = r_{\Delta}(\pi|_{b\mathcal{B}}) = r_{ess}(\pi|_{b\mathcal{B}}).$$
(5)

References

- F.Z. Gong and L.M. Wu, Spectral gap of positive operators and applications, C.R. Acad. Sci. Pairs, t.331, Série 1(2000), 983-988
- [2] H. Hennion, Quasi-compactness and absolutely continuous kernels, Preprint(2006).
- [3] L.M. WU, Essential spectral radius for Markov semigroups (I): discrete time case, Probab. Theory Relat. Fields 128(2004), 255-321