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0.1 Introduction

In 1952, Markowitz proposed the Mean-Variance portfolio
selection problem for a single period. Recently, the Mean-
Variance framework were studied in multi-period market by
Li and Ng [4] and in continuous-time market by Zhou and
Li [8] and Bielecki, Plisca, Jin, and Zhou [1], among others.
In this paper, we will discuss the Mean-Risk problem in a

complete continuous time financial market.
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0.2 Problem Formulation

Bank account:
dSo(t) = r(t)Se(t)dt, t € |0, T], Sp(0)=s9> 0.

m assets stocks:
4

. dS;(t) = Si(t)bi(t)dt + 377, 035()dWI ()], t € [0,T],
SZ(O) = 8§ > 07

\



where b;(t) and 0;;(t) are assumed to be F;-adapted and uni-
formly bounded, and o(t)o(t) > 61,, Vt € [0,T], as.,
for some 0 > 0. This assumption ensures that the market is
complete.

Set B(t) = (bi(t) — r(t),---,bn(t) — r(t)), and de-
fine the risk premium process 0(t) = (01(t), - -, 0n(t)) =
B(t)(a(t)")~1, and the pricing kernel

plt) = {— [+ 00 ds — [ otsjawis) |
)



With this notation, The wealth x(¢) at time ¢t > 0 of a self-
financing strategy 7(-) = (m1(-), - -, mm(:)) satisfies
dz(t) = [r(H)z(t) + B()w(t)ldt + w(t) o (t)dW(2).  (2)

where m;(t), @ = 0,1,2---,m, denotes the total market

value of the agent’s wealth in the i-th asset at time ¢.

Definition 0.2.1 A portfolio 7(-) is said to be admissible
() € L(0, T} R™)

We denote by A(z) the set of admissible portfolios with ini-
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tial wealth x. The wealth process of an admissible portfolio

satisfies
z(t) = p(t) " E(p(T)z(T)|F), Vte[0,T], as. (3)
Consider a general portfolio selection problem:

Minimize FE f(z(T)), n
subject to ™ € A(xg), z(T') € D,
where D C L*(Fr, R) represents some additional constraints

on the terminal wealth z(7T'), and zp € Rand f : R — R are
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given. Notice that here — f is not necessary a utility function.
The portfolio selection problem (4) can be decomposed into
a static optimization problem and a replication problem. The

static optimization problem is
Minimize FEf(X),
subject to E|p(T)X|=x9, X € D.

(5)

Suppose X * is an optimal solution to (5), then the replication



problem is to find (z(-), 7(+)) that solves the following BSDE:

’

dz(t) = [r(t)z(t) + Bl)r()dt + n(t)o(t)dW (¢),
z(T) = X*.

\

(6)
Theorem 0.2.1 /f (x*(-), 7*(-)) is optimal for problem (4),
then x*(T') is optimal for problem (5) and (z*(-), 7*(+)) sat-
isfies (6). Conversely, if X* is optimal for problem (5), then
the solution of (6) (x*(-), 7*(-)) is an optimal solution for (4).
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0.3 The Weighted Mean—Variance Model

Ror given o > 0,56 > 0,2 € R, xy € R, we consider the

“weighted” mean-variance portfolio selection problem:

Minimize FEla(z(T) — 2)% + B(x(T) — 2)?], o
subject to ™ € A(xg), Fx(T) = z.

Define Y := X — z, then the problem (5) is reduced to the
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problem in terms of Y":

Minimize E(aY?+ 8Y?),

subject to <

(

\

EY =0,
E[pY] = Yo,
Y € L2(fT, R),

where p := p(T') and yg := 2o — 2Fp.

Theorem 0.3.1 The unique optimal solution for problem
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(8) is
A=pp)y (A —pup)-

a B

where (\, 1) is the unique solution of the system of equations:

Y*:(

( EQ—pp)+ _ EQ—p)- _
T, ’ (9)
Elp(A=pp)+] _ Elp(A—pp)-] _ Y
\ @ b 0

The minimum value of the problem (8) is

Ela(Y])? + B(Y2)"] = —uyo. (10)
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0.4 The Mean—Semivariance Model

Now we consider the mean—semivariance problem, which is

to

Minimize E[(z(T) — 2)%], )
subject to m € A(xy), Fx(T) = .

Theorem 0.4.1 The mean—semivariance problem (11) does

not admit an optimal solution so long as z # g_(;f
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Proof: In view of Theorem 0.2.1, it suffices to prove that

the static optimization problem

Minimize FE (Y_Z),
4

EY =0,
| (12
subject to ¢ E[pY] = yg = zo — 2Ep,

Y € LQ(.FT, R),
\

has no optimal solution. Consider problem (8) with § =

l—aand a € (0,1). We denote by Y () the corresponding
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solution. We can prove that as o | O,

u(a)Zﬁ(E(Zi; PE L R IE G~ pof. (13

On the other hand, for any feasible solution Y of problem
(12), Cauchy-Schwartz's inequality yields { E[(p—po)Y_]}* <

E[Y_]?E[(p — po)*1y<o]- Note that E[(p — po)*1y o] # 0,
for otherwise P(Y > 0) = 1 which together with EY = 0

ElY(a)?] =
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implies P(Y = 0) =1 and hence yg = 0. As a result,

}[3([(,,_,);)2)3/_}}2]

pP—p0)“ly <o 14
_ {Ellp=p0)Y+]-%0}” > uq (14)
\ E[(p—p0)?1y <] E(p—po)*’

where the last strict inequality is due to the facts that yy < 0

and £Y = 0.

Remark 0.4.1 The infimum of the problem is finite and
asymptotically optimal portfolios can be obtained by repli-
cating Y («) as a — 0.
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0.5 The Mean—Downside-risk Model

In this section, we generalize the “negative” result obtained
in Section 4 to a model with a general downside risk. The
risk is measured by a non-negative function f on R, which
is strictly decreasing on R™, and f(z) = 0 Vx € R*. An
example is f(z) = (x_)? for some p > 0.

Assumption 0.5.1 For any 0 < a < b < +o0, P{p(T) €
(a,b)} > 0 and P{p(T) =a} = 0.
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Now we turn to the following mean—downside-risk portfolio

selection problem. For each z € R:

Minimize FEf(x(T)— Ex(T)), 15
subject to ™ € A(xy), Ez(T) = z.
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The corresponding static optimization problem of (15) is

Minimize Ef(X — z),
(
EX =z,
(16)
subject to § E[p(T)X] = x,

X € LQ(fT, R)
\

Theorem 0.5.1 Problem (15) admits no optimal solution

for any z # E;’;(OT). On the other hand, when z = xy/Ep(T),

(15) has an optimal portfolio which is the risk-free portfolio.

19



0.6 The General Mean—Risk Model

An interesting problem is the following: for a general convex
function f which measures the risk, when the problem (15)
does possess an optimal solution?

Let (€2, F, P) be a probability space and £ be a strictly

positive real random variable on it satisfying

P{¢ € (a,a9)} >0, P{{ =a1} =0,Y0 < a1 < ay < 00.
(17)
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Let f : R — R be a convex (hence continuous) function, not
necessarily differentiable. For any x € R, its subdifferential

O0f(x) in the sense of convex analysis, is defined as the set

0f(z) = [fL(x), fi(z)].

For a given ¢ > 1 and yy € IR, consider the following
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optimization problem:
Minimize FEf(Y),
(
EY =0,

(18)
subject to ¢ E[EY] = y,,

Y € LY F,R).
\

According to [1, Proposition 4.1], (18) admits an optimal
solution Y* if and only if Y* is feasible for (18) and there
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exists a pair (A, ) such that Y* solves the following problem

Lmin EI(Y) = (= Y] (19)

Lemma 0.6.1 Y* € LY Fr,R) is an optimal solution to
(19) if and only if

FOYT) = (A = p)Y™" = minlf(y) — (A — uyl, as.

Define a set-valued function G: U,crdf(z) — 28

Gly) ={reR:yedf(z)}, Vye€ Uerdf(z),
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and define g: Uzcrdf(x) — R as the “inverse function” of
Of as follows

9(y) == argmingecu) |z, Yy € Uperdf(z).
g is a well-defined function (on its domain), and the set of
y's where GG(y) is not a singleton is countable.
We will solve the problem in each of the following four

(mutually exclusive) cases:

Case 1: The set U,crOf(z) is upper bounded but not lower
bounded:
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Case 2: The set U,crOf(x) is lower bounded but not upper
bounded;

Case 3: U,erOf(z) = R;
Case 4: The set U crOf(x) is both upper and lower bounded.

Let us first focus on Case 1. In this case, U,cr0f(x) is
either a closed interval (—oo, k] or an open one (—oo0, k)

where
k:= lim f'(z)€eR. (20)

r—400
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Deflne

A= {A € [f2(0), k] : Fu = p(N) st.g(X — u(N)§) € LU(F,]
Eg(A — p(A)E€) =0, £g(A — p(N)E) € LY(F,R)},
A = SUpPy i A,

| G0N = Elgg(A — pVE), A€ [£(0), V).

[N

(21)
Notice that A # (), since 9f(0) C A. As a result f,(0) <
A < k. Also, [f.(0),)\) C A.
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Theorem 0.6.1 Consider Case 1.

(i) If X ¢ A, then (18) admits an optimal solution if and
only if yo € (y,0], where y = limy5 g(A). If X € A,
then (18) admits an optimal solution if and only if yy €
{g(N)} U (y,0]. If in addition X < k, then g(\) = y.

(ii) When yo =0, Y* := 0 is the unique optimal solution to
(18).

(iii) When yo < 0 and the existence of optimal solution
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is assured, Y* = g(A — u(A)E) is the unique optimal
solution to (18), where X is the unique solution to g(\) =
Yo0-

As for Case 2, it can be turned into Case 1 by considering

~

f(z) = f(—z). For Case 3, it can be dealt with similarly
combining the analyses for the previous two cases.

The final case, Case 4, only has a trivial solution, as shown

in the following theorem.

Theorem 0.6.2 Consider Case 4. Problem (18) admits an
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optimal solution if and only if yo = 0, in which case the

unique optimal solution is Y* = 0.

Example 0.6.1 Let f(z) = 2. This is the mean—semivariance
model investigated in Section 0.4. It then follows from The-
orem 0.6.1 that the mean—semivariance model admits an

optimal solution if and only if 2 = x¢/Ep.

Example 0.6.2 Let f(x) = |x|. In view of Theorem 0.6.2
the continuous-time mean—absolute-deviation model admits

an optimal solution if and only if z = x¢/Ep, in which case
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the optimal portfolio is simply the risk-free one.

Example 0.6.3 Let f(z) = e™®. By Theorem 0.6.1, the
mean-risk portfolio selection problem admits an optimal so-

lution if and only if xg—2Ep € [(Ep)(Elnp)—E(plnp), 0]

0 wo—(Ep)(Elnp)+E(plnp)]
Ep’ Ep :

or, equivalently, z € |
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0.7 Concluding Remarks

We have solved out the Mean-Weighted-variance problem in
a complete continuous-time financial market, and proved that
other than a trivial case, Mean-Semivariance problem is not
well-posed. Furthermore, for a kind of downside risk, we
proved that the corresponding Mean-Downside-risk problem
is also not well-posed other than a trivial case.

Not all the results in this paper are negative. We turned to
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Mean-Risk problem, where the risk is measure by the expec-
tation of a (strictly) convex function of the terminal wealth.

We got a sufficient and necessary condition for the Mean-Risk

problem to be well-posed.
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