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1 Introduction

(I) Two ways of ragarding the uniqueness

Given a space of functions B on some Polish space (E,B) and a
pre-generator £ acting on some test-functions space D C B.

1) Mathematical way: Whether is-there a unique “semigroup” (F;)
on B such that its generator £ extends £ 7

2) Physical way: the Kolmogorov forward equation below
Owy = L1, vy given r K F E—)
is-it well-posed 7
Definite answer in the framework of Cy-semigroup:

Theorem 1.1. Let B be a Banach space and (F;) a Cy-semigroup on
B such that its generator L extends (L, D), where D is dense in B.

The following properties are equivalent:

(i) (P,) is the unique Cy-semigroup on B such that its generator L
extends (L, D);

(ii) D is a core for L, i.e. L=L;

(i11) (Liowwville property) for some or all large enough A € R, Ker(A—
L£*) ={0};
(iv) KFE is well-posed or has a unique solution in [B*;

(v) the abstract Cauchy problem

Owuy = Luy, 1wy given

15 well-posed. o> alnswma U'F oﬂ;
Callod: = B~ uncqueness i




Remarks 1.2. This beautiful result can be applied in

B=I”u), 1<p<+oo; B=Cy(E), E locally compact;
but CAN NOT be applied in the following situations:
1) B = L*(u); (Y.P. Zhang and Wu 01, CRAS)

2) B = Cy(E) where E is infinite-dimenstonal (Y.P. Zhang and Wu
01-04, in preparation);

3) B = bB (this work).

Indeed Lotz (1983) and T. Coulhon (1984) proved that if (B;) is a
Coy-semigroup on L or bB, then its generator L is bounded.

Remarks 1.3. Four sentences:

1. for a unbounded operator L, knowing its full domain D(L) is very
important;

2. 4t is very difficult (to do mot say that is impossible usually) to
describe D(L);

3. hence to determine if a test-functions space D s a core for L is
almost the only fashion to know L;

4. the problem of core 1s equivalenet to the problem of the uniqueness.

This talk treats the semigroups of kernels on B = bB.
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2 Preliminaries on semigroups of kernels

T'wo classical books:
Dynkin: Markov processes, Vol. I and II (1963, 64)
Ethier-Kurtz Markov processes: characterization and convergence

(1986)

2.1 Notations and definition

bB: the Banach space of all real and bounded B-measurable functions
on E, equipped with the sup norm ||f|| := sup,cg |f(z)|; and
M;y(E): the space of all (maybe signed) o-additive measures v such

that its variation ||||yer < +00.
Then

(1) = 5($) = [ F@)w(da), V(0. 5) € My(B) x bB

is a bilinear form of duality between bB and M;(E).

Definition 2.1. A family (P;)icr+ of bounded operators on b3 is said
to be a semigroup of bounded operators on bB, denoted by (P;) € 86,

if

(i) Py = Id (the identity operator, it can be represented by the kernel
Pﬂ(fﬂ, )= 0z {the Dirac measure at z), for all x € E);

(El) fﬂ‘l" all 8,1 € R_!_J PP = P3+t;

(4ii) for each f € bB, (t,z) — Pif(z) is B(R") ® B-measurable on
Rt x E;

(¢v) there are C > 0 and k € R such that ||| < Ce™,Vt € RY.

If the constants C, k are given, we write (P;) € SG(C, k).

If moreover every P; can be represented by a bounded kernel P,(z, dy),
we say that (Py)ier+ 45 a semigroup of bounded kernels, denoted by
(P) € SGx. Similarly we write (P;) € SGk(C,k) if and only if
(P,) € SG(C, k) and (P,) € SGk.

Given (B) € SGx(C, k), if P(z,-) (t >0, z € E) are nonnegative
measures (i.e., nonnegative kernels), we write (P;) € SGg(C,k). In
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particular, (P,) € SG(1,0) iff it is a semigroup of sub-Markov kernels
verifying the measurable condition ().

Given (B;) € SGk(C, k), then for any A > &,

Faflz) = fﬂm e MP,f(z)dt, Vf € bB (2.1)

defines not only a bounded linear operator on bB (the resolvent), but
also a bounded kernel.

To see the difference between bounded operators on b3 and bounded
kernels, let us consider

Definition 2.2. On bBB, we denote by 0., the weak topology o(bB, My(E)),
i.e., the weakest topology on bB such that all linear forms f — (v, f)
where v € My(E) are continuous.

Lemma 2.3. Let P : bB — bB be a bounded linear operator. Then
the following properties are equivalent:

(i) P is continuous on (bB,oy);

(ii) P can be identified as a kernel, i.e., there is a bounded kernel
P(z,dy) such that

Pf(z) = /;j 7(9) Pz, dy);

(i43) If fn — 0 in the bp-convergence, then Pf,(z) — 0 for allz € E.

Lemma 2.4. Let D be a linear subspace of bB. Then D s dense in
(bB, o) iff for any given v € My(E),

(v, f)=0,VfeD) = v=0
i.e., D is separating on E in the language of Ethier-Kurtz [4].

Proof. Since (bB, 0y,) = My(E) and oy, is a locally convex topology,
this characterization is just an immediate consequence of the Hahn-
Banach theorem:. ]




2.2 Multi-valued operator and the full generator

A sub-linear space A of bB x bB will be called a multi-valued lin-
ear operator (or the graph of a multi-valued linear operator), with
domain of definition D(A) := {f/3g € bB such that (f,g) € A}
and range Ran(A) := {g/3f such that (f,g) € A}. For f € D(A),
Af = {g/(f,g9) € A}. If Af is a singleton {g}, we write simply
g = Af. Finally let

A—A:={(f,A\f-9)/(f,9) € A}, A" :={(g,f)/ (f,9) € A}

We define now the full generator £ of a semigroup (7).

Definition 2.5. Given (B,) € SG. Its full generator L is the linear
subspace in bB x bB characterized by (f,g) € L f

Pif(z) — f(z) = A Pig(z)ds, Yt > 0, x € E. (2.2)

Example 2.6. Let (Pi(z,dy)) be the transition semigroup of the
Brownian Motion on £ = R¢ with (formal) generator A/2. Then
its full generator £ can be characterized as d

(i) Given f € bB(RY), f € D(L) iff f € Cb(E/zi, the space of real
bounded and continuous functions on E = R¢, and Af € L®(R%, dz)
in the sense of distribution of Schwartz;

(i) Given f € D(L) and g € bB(R?), then g € Lfiffg=Af/2, dz—

a.cE.

(we remind the reader that this is quite difficult.)

However for more complicated diffusion semigroups (especially those
generated by a degenerate elliptic second-order differential operator),
it is very difficult to describe exactly L.

Notice that if f € D(L£), then lim;_sq ||P.f — f|| =0, i.e., f belongs
to

B, :={h € b/ %1_1}1& | Pth — hl| = 0} (2.3)
on which (F,) is stable and becomes a Cp-semigroup.

6




Lemma 2.7. Given (P.) € §G. Let L, be the uniform generator of
(P,), i.e., the generator of (Fi|s,). Then

L, ={(f,g) € bB x bB; lin'ﬂl‘ F"ft'f

= L[ (D(L) x D(L))

and B, = D(L,) = Eﬂ{ﬁ:}.

Theorem 2.8. (Dynkin [2] (65)) Given two semigroups of bounded
operators in 8G, if they have the same uniform generator L., then
Pls, = Pils,. In particular Pls, = Pis, if they have the same full
generator £

Proposition 2.9. Let £ be the full generator of (P) € SGk(C, k).
The following properties are equivalent:

Ao

(i) D(L) is dense in (bB,oy);

(i) the strongly continuous subspace B, given in (2.3) is dense in
(bB, o4);

(111) the pointwise continuous subspace

B,, :={f € bB; P,f(z) is continuous on R*, Yz € E}
is dense in (bB, op);

(c.iv)
={f €bB; lim Pf(z) = f(z), V= € E}

is dense in (b8, oy,).
Moreover Py(B,. ) C B, and B(B,) C B,.

The equivalences above motivates

Definition 2.10. Given (P;) € S0k, if B, is dense in (b5, oy) or
equivalently if it is separating on E, we say that (P,) is a regular
semigroup of kernels, denoted by (F;) € SGY..

If B, = b3, we say that (F,) is completely regular.
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Lemma 2.11. Given (P,) € SGx, if (P;) verifies: Pi(x,-) — d; in the
weak convergence of measures as t — 0+, then (P) is regular.

Proof. By the assumption, Cy(E) C B,. O

In the framework of sub-Markov semigroup, the assumption in the
lemma above is the so called stochastic continuity (cf. Dynkin [2]).

The most often encountered (sub)Markov semigroups are regular,
but not completely regular;

for a sub-Markov semigroup (7)) € 8G(0,1), if it is completely
regular, then it is of pur jump type by M.F. Chen [1].

Open Question: prove {or disprove) that all (P,) € SGx are
regular.

Theorem 2.12. Let (P), (P) € 8G%. If they have the same full

generator L or the same uniform generator L, then P, = P; over bB.

2.3 Unigqueness of the abstract Cauchy problem
Theorem 2.13. Let L be the full generator of (B € SGi(C, k). If

u(t) is a solution of
éi—tu[t] € fu(t), u(0) = f € D(£) (given) (2.4)

in the following sense:

(i) u(t) € D(L) and there 1s B(R™) ® B-measurable function g(t,z)
such that g(t,-) € Lu(t) and sup,< ||g(s,-)|| < +oo for all t > 0;
and

(i)

i

u(t,z) — f(z) = j‘; g(s,z)ds, ¥(t,z) e R* x E;

and if moreover
lu(t)|| < C1e®t, Ve >0 (2.5)

for some constants Cy,Csy = 0, then u(t, z) = P.f(x).




3 Uniqueness of Kolmogorov’s equation and of
regular semigroup of kernels

3.1 Unigueness of Kolmogorov’s forward equation

Given a single valued operator £ acting on a space of test-functions
D C bB.

Definition 3.1. A flow t = v, € My(E) indezed by £ € RT is said fo
be a measure-velued weak solution of the Kolmogorov forward equation

d
Eyﬁ = J{:tl-"'t {31}
with initial condition vy = v, if

(i) t = 1(g) is B(R')-measurable for all g € bB;

i f[: |(ve, Lf)|ds < 400 for allt > 0; and

(iii) for allt > 0 and all f € D,

e fﬂ L (3.2)

A first main new result of this work is

Theorem 3.2. Assume that (F;) € SGk(C, k) with the full generator

L. Given a single valued linear operator L on bB with domain D, such
that L C L. Then

(a) The following properties are equivalent.

(i) D is a core for £ w.r.t. the on-topology, i.e., identifying £
as its graph in bB x bB, we have

=
(ii) L* = L*.

(ti1) For all A > k, (A — L)(D) is dense in (bB, oy,), or equiva-
lently for any given v € My(FE),

(v, A= L)f) =0, ¥f€D) — v=0. (3.3)
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(iv) Property (iii) holds for some A > &, i.e, (3.3) holds for some
A > K.

(b) Assume moreover that D is dense in (bB,on) (hence B, D D
is separating, i.e., (Pi) is reqular). Then each of the equivalent
conditions in part (a) is equivalent to

(v) Given any initial measure v € My(E), the Kolmogorou for-
ward equation (3.1) associated (L, D) has a unigue weak measure-
valued solution (1) with vy = v so that there are constants
Cy,Ch > 0,

|V lvar < C1%, ¥t > 0. (3.4)

Moreover this solution is given by vy = v P,.

Definition 3.3. Given a single valued linear operator £ with D(L) =
D on bB,

(a) we say that L is Kolmogorov-forward (KF in short) unique, if for
each v € My(FE), the Kolmogorov forward equation (5.1) has at
most one solution (v;) verifying moreover vy € My(FE) and (5.4)
(i.e., the uniqueness in Theorem 3.2(v) holds);

(b) we say that L is KF*-unique, if for each v € M} (E), the Kol-
mogorov forward equation (3.1) has at most one solution (1) ver-
ifying moreover vy € M, (E) and (3.4);

(c) we say that L is KFM-unique (“M” means sub-Markov), if for
each v € M,(F), the Kolmogorov forward equation (3.1) has at
most one solution (v;) verifying moreover vy € M<y(E).

Obviously
KF uniqueness —> KF*-uniqueness — KFM uniqueness.

For the heat diffusion phenomena described by the Kolmogorov
forward (or Fokker-Planck) equation (3.1), where »; denotes the tem-
perature distribution at time ¢, the KFT-uniqueness is very natural for
the temperature is always nonnegative. When the system has no outer
positive heat source, the total heat v;(F) at time £ will not bypass the

total heat v3(E) = v(E) at time 0, and so the KFM-uniqueness is also
natural in the actual situation.
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3.2 Uniqueness of semigroup of kernels

Parallel to Definition 3.3, we give

Definition 3.4. Given a single valued linear operator £ with D(L) =
D on bB,

(a) we say that L is bB-unigue, if there is at most one semigroup
(P;) € SGg such that its full generator L O L;

(b) we say that L is bB* -unique, if there is at most one nonnegative
semigroup (P;) € SG}- such that its full generator L D L;

(c) we say that L iz Markov-unique, if there is at most one sub-
Markov semigroup (P;) € 8G;-(1,0) such that its full generator
LD L

We have obviously

Proposition 3.5. Given a single valued linear operator L on bB, with
D(L) =D dense in (bB, oy,).

(a) If (L, D) is KF-unigue, then it is bB-unique.
(b) If (£, D) is KF™-unique, then it is bBT-unique.
(¢) If (L, D) is KFM-unique, then it is Markov-unique.

I believe that the inverses of all the three implications above are
true.

3.3 BSeveral corollaries

3.3.1 A result of Ethier-Kurtz revisited

Corollary 3.6. Assume that (P;) € SGx(C, k) with the full generator
L. Given a single valued linear operator £ on bB with domain D
separating on F, such that £ C L. If for some A > K,

G=0)' oD, (3.5)

then all conclusions in Theorem 3.2 hold. If moreover Tl B,, then
<l
Lot —r

11




Let us see a baby model.

Example 3.7. Let V > 0 be a real measurable function on E. Con-
sider the semigroup B f(z) := e V@ f(z) or Fi(z, dy) = e™' @5, (dy),
ie., (P) € 8G3(1,0). Its full generator is single valued given by

D(L) = byB := {f € bB; || fllv :== Sup 1f(@)|(1+ V(z))™' < +oo},
Lf=-VFf Vf€byB.

and

—

B, =D(L) = {f €bB; lim sup |f(z)| =0}
=0 pe[V >n]

-

For this example we see that B,, = B, =bB and L, = L; = Ly, = L.

Assume that 17 is unbounded and consider the space D of test-
functions f € bB such that [f # 0] C E, := [V < n] for some n € N}.
Let £ := ﬁlﬂ

Since (A — L)D = {(A+ V)f; f € D} = D we see that L verifies
(3.5). Hence (P,) is the only semigroup of kernels generated by L,
and the Kolmogorov forward equation (3.1) has a unique condition
verifying (3.4). Moreover since D = by B = B, we also have i £

But for this simple example, £ is @-unique (Hou and Chen) iff V/
is bounded.

4 Martingale uniqueness and Markov uniqueness

Given a single-valued linear operator £ : D — bB with domain D
which is a linear subspace of bl3. Let v be an element in the space
M;(E) of probability measures on E.

Definition 4.1. By a martingale solution associated with (£, D,v),

we mean a stochastic process (Xi)i>o valued in some larger measurable
space (E,B) such that E D E, B[1E = {ANE; A€ E} D B,
defined on some complete probability space (Q, F,IP) such that

(i) B(Xo € -N B) = v(");

(it) For eacht > 0, [X; € E] € F and (t,w) — 1g(Xi(w)) is measur-
able on (RT x Q, A) where A is the completion of B(R™) ® F is
by dt @ IP;
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(iii) For every f € D, My(f) = f(Xo) — f(Xo) — [, LF(Xs)ds (which
is well defined by (1)) is a martingale w.r.t. the filtration

&
G: := completion of o(X,, f g(Xy)du; s < t,g € bB) by P.
0

Here, a real function f on E is interpreted as a function on E with
the convention that f|g g = 0.

Definition 4.2. We say that the solution of the martingale prob-
lem associated to (L,D,v) is unique, if for any two martingale so-

lutions (Xi) and (Y:) associated with (L, D,v) have the same finite-
dimensional distributions on E, i.e.,

P(Xy, € Ay, -+, Xy, € An) =P (Y}, € Ay, , 1, € Ay)
forall0<ti <t <- - <thband A; €B,i=1,--- ,n.
We say that (£, D) is martingale-unique, if the solution of the mar-
tingale problem associated to (£, D, ») is unique for each v € My(E).

Theorem 4.3. Assume that for any initial measure v € My(E), there
is a martingale solution to (L, D,v). (L,D) is martingale unigue if
one of the following conditions is satisfied:

(i) for some Ag > 0 and for all A > Xg, (A — L)(D) is separating on
A O
\/ E

(1t) for some Ay > 0 and for all A = Ay and v € M, (E),
u/ W A=L)f) =), VfeD
h

as at most one solution p € M, (E);
(iii) (L, D) is KFM-unique (see Definition 8.3).

The following result should be recognized true by every specialist,

but the author has not found it in an exact reference, with some
surprise.

Proposition 4.4. Let £ be a single valued linear operator with do-
main D(L) = D. Assume that o(D) = B, D separates the points
of E (that is strictly weaker than saying that D is separating on E )
and there is {fu}lneo C D such that D is contained in the closure of
{F(for -, fa); 1> 0, F € C(R™)} in (85, - ).

If (L, D) is martingale unique, then (L, D) is Markov unique.
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5 Uniqueness of semigroup of pur jumps type

In this section we study thoroughly the uniqueness of the following
operator:

£Y f(x) =[EJ{$=dy}(f(yJ — f(z)) = V(z)f(x) (5.1)

for all real measurable functions f so that J|f| < 40, where

(C1) J(z,dy) is a nonnegative kernel on E such that J(z, {z}) = 0
and J(z, E) < 4oo for all z € E (it can be interpreted as the
jumps rate);

(C2) the potential V' is a real measurable function on E such that
V' > —k for some & = 0.

(C3) There is (E, € B)pen T E such that J(-, E,)+|V|1E, is bounded
and for any f € D, there is some n so that [f # 0] C F,, and

(C4) for each n, D, := {f € D; [f # 0] C E,} is separating on E,.

Conditions (C3) and (C4) mean that £V is observed only “locally”.
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5.1 Probabilistic construction of the “minimal” nonnegative
semigroup

We begin with the case where V' = 0 and we write £ = Llp.
Consider

1. the Markov kernel Q(z, dy) := J(z, E)~'J(z, dy)

2. @,: the probability measure on E™ such that its coordinates
system (Y )new is a Markov chain with transition @ starting from
r € E.

3. the product probability measure IP; := Q. @7 on Q := ENx (RT)"
where  is the standard exponential law with parameter 1.

For any w = (Y4, Yn)nen € 2, define

To=0, Tylw

Z )

X =Y, Vi € 1,Tn~.- Tﬂ+l)
o= g Nt T = Ruply
n=1

Let B f(x) := E*f(X;)lict,. whose full generator £. by the Lemma
below, extends L.

In the case where V' #£ 0 satisfies (C2), the following Feynman-Kac
formula

(5.2)

PY f(z) :== E®1er, ) f(X) exp (— [D : V(Xs}ds) (5.3)

defines a semigroup of nonnegative kernels satisfying || P} || < e <
+00, then belonging to the class SGk.
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Lemma 5.1. Assume (C1), (C2). Let £Y be the full generator of
(B)-

(a) For any f : E — R such that J|f| < 400, Mj\p. (f) is a P,-closed
martingale for every ¢ € E and n = 1, where

MY (f) i= Lyer f(X) D: — flz) — [D D,LY §(X,)lscr ds (5.4)

and D; := exp (— f; V{Xa)ds).
(b) Given f € bB.

(b.4) If f € D(LY), then LY f(z) = LY f(z),Yz € E. In par-
ticular £V is single valued. Moreover (LV,D) C LY for D
satisfying (C3) and (C4).

(b.11) Inversely assume that
Tee
I ([ (1+ V) (Xs)ds = —I—::x:n) =1, ¥z 8. (55)
0

IFLY f e bB, then Mt‘j{f} is a Px-martingale for each z € E,
and f e D(LY) and LY f = LV f.

We shall see that the probabilistic condition (5.5) is also necessary
for the identification £ = LV [(bB x bB).
Throughout this section, conditions (C1)-(C4) are assumed.

16




5.2 KF-uniqueness: a Lyapunov function criterion

Besides the criteria in Theorem 3.2 for the KF-uniqueness, we have
the following very practical criterion.

Proposition 5.2. Let (J,V,D) satisfy (C1)-(C4). If there is some
measurable function ¢, strictly positive everywhere on E, such that

sup[Jé(z)] < +o0, and L' ¢ < c for some ¢ > 0, (5.6)
el

then (LY, D) is KF-unique (see its definition in Theorem 3.2).

One Application:

the KF-uniqueness of the Glauber dynamics associated with con-
tinuous gas in finite volume.
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5.3 TUniqueness of the Kolmogorov backward equation

Theorem 5.3. Assume (C1), (C2). Then the following properties are
equivalent:

(i) The abstract Cauchy problem associated with LY in bB has a
ynique solution;

(i) LY = LV (B x bB);

(iii) for some A > &, if f € bB satisfies (A — LY)f =0, then f = 0.
(iv) for some A\ > &, if f € bB* satisfies (A — £Y)f =0, then f=0.
(v) Condition (5.5) is satisfied, i.e.,

P, (fm(u VH)(X,)ds = +m) —1, Vs € E.

Notice that the equivalence between (iv) and (v) is proved in Hou

and Guo [7] (1978), cf. [1], Remarks 3.9. Here we shall give a direct
proof.

Corollary 5.4. In the context of Theorem 5.8, the properties therein
are equivalent to any one of

(vi) (PY) is the unique semigroup of kernels on bB in the class SGk
such that its full generator is contained in LV [|(bB x bB);

(vii) (PY) is the unique semigroup of nonnegative kernels in the class
8G(1, k), completely regular, such that its full generator 1s con-
tained in LV (b8 x bB).
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5.4 KF"-uniqueness

Theorem 5.5. For the pure jumps operator (LY, D) satisfying (C1)-
(C4), consider the entrance space

VE(\) = {n € MF(E); (n.(A-L)f)=0, ¥VfeD}.  (5.7)
the following properties are equivalent:
(1) (L, D) ts KF'-unique (see Def. 5.3);
(i) (L, D) is bBT-unique (see Def. 3.4);
(tit) for some (or eguivalently for oll) A > &, VT(A) = {0}.

5.5 KFM, Markov and martingale uniqueness

Theorem 5.6. For the pure jumps operator (L, D) with V > 0, the
following properties are equivalent:

(a) (LY, D) is KFM-unique;
(b) (LY, D) is Markov-unigue;
(c) one of the following two conditions are satisfied:

(c.i) (PY) is honest, i.e., PY1 =1 for allt > 0 (or equivalently
V=0and Pr(Tw =+00)=1 forailz € E);

(c.it) for some (or equivalently for all) A > 0, if v € M, (E)
verifies

v, A\=L")f) =0, ¥f € D,

then v = 0.
(d) (LY, D) is martingale-unique;

When V = 0, F; is not honest and (c.ii) holds, it is quite difficult
to see why we have the martingale-uniqueness. Following Doob, we
can extend our Markov process (X;)o<t<r, in the following way: on
[Tee < +co] put Xr_ =Y tobean arbitrary E-valued random variable
independent of {X:J'Dgt-:Tm and run the process after time T, as before

19




with ¥ as initial condition, and so on at and after the second *T..",
the third...

Why this new honest Markov process is not a solution of the mar-
tingale problem (£, D, v)? The answer resides at the fact that this new
process has a predictable jumps at T}, and the jumps of a caglag so-
lution (X;) of the martingale problem (L, D, v/} are totally inaccessible
(cf. Dellacherie and Meyer).
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5.6 Birth-death processes: characterization

Let £ = N and the jumps rate J be given by (for all 7 € N)
J(i,i+ 1) = b; > 0 (birth rate), J(¢,¢ — 1) = a; > 0 (death rate), J(i, 7) = 0, others

where —1 is identified as 0. Consider E, = [0,n][|N and D = {f :
N—+R/3neN: f(k)=0,Yk >n}. Let
boby - - - br—1

po =1, pg = R = (5.8)
ai---ag

Then u({k}) := p is a symmetric measure for L, i.e.,

{(fLLa)yy = {LF g, Yf, g€ D.

And the minimal semigroup (F;) is symmetric on L*(N, i) and it is
strongly continuous semigroup on LP(N, ) for all 1 < p < +o0.

Theorem 5.7. For the birth-death process above, let

ke
i 1 1 a;
S0= 7, 8ki=— =

b T 1 b Wk > 1 ( the scale measure) (5.9)

(a) (L,D) is KF-unigue iff (L, D) is KFt-unique (see Theorem 5.5

for equivalent conditions), and iff

+00 n—1 0o
Z‘H“‘ZS;‘ = Zsk#{[k—l—l,—l—m]} =100, (5.10)
=1 k=0 k=0

(This condition means that +00 15 a no entrance boundary, par-
allel to Feller’s classification for one-dimensional diffusion.)

(b) Let 1 < p < +o0. (L£,D) is LP(N, u)-unique, i.e., D is a core for
the generator L, of (P;) in LP(N, p), iff

+00 n=1 i
Eﬂ“ (Z s_e;) = +o00 (5.11)

0 k=0
where p' := p/(p — 1) is the conjugated number of p.
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(¢) The following properties are equivalent.
(c.t) The Cauchy problem associated with L is well-posed;
(c.ii) (£, D) is L} (N, p)-unique;
(c.iii)} The semigroup (P)) is honest, i.e., P,1 =1 for all t > 0.
(c.iv)

+co k
D sk ) py=+oo. (5.12)

k=0 ;=0

(d) (L,D) is Markov-unique (see Theorem 5.6 for equivalent con-
ditions) iff either (5.12) or (5.10) holds (equivalently, (L, D) is
either L*(u)-unique or KF-unique).

Though stated differently, the equivalence between (c.iii) and (c.iv)

and the so called g-process uniqueness is essentially due to J.K. Zhang
(84), cf. Chen [1], Thm. 3.16.

In the case of the presence of a potential V', we have

Theorem 5.8. Let V : N — R be lower bounded,

£ f(n) = an(f(n = 1) = £(n)) + ba(f(n + 1) — f(n)) = V(n)f ()

and LY = LV |p.

(a) LY is KF-unique iff it is KFt-unique. A sufficient condition for
them 1is

+ 00 n—1 k
> a(n) (Z sy pi(l+ V(j}]) = 400 (5.13)

n=1 k=0 =0

(b) Let 1 <p < +co. If

+00 n-1 k 4
> u(n) (Z sk ) ui(1+ V{j)}) = +00 (5.14)
n=1 k=0 =()

then LV is LP(u)-unique (which is equivalent to the essential self-
adjointness of LV in L*(u) when p = 2).
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(c) The following properties are equivalent:

(c.i) The Cauchy problem associated with LV is well-posed;
(c.ii) (LY, D) is LI(N, p)-unique;

(c.iii) By ( [To(1 4 V)(X,)ds = +m) =1 for all k € N;
(c.iv)

+ 0 k
> sty 11+ V() = +oo. (5.15)
k=0 j=0

Remarks 5.9. It is quite fortunate that the probabilistic condition
(c.iii) above (see Theorem 5.6) admits a simple characterization (c.iv).
However for LP(p)-uniqueness with 1 < p < oo, I believe that our
sufficient conditions in part (b) of Theorem 5.8 is not necessary, by
comparison with the classical Weil’s criterion of limit point-limit circle
for the essential self-adjointness of the Schrédinger operator —d? /dz*+
V on L%((0,+00),dz) (cf. Reed and Simon [?], Theorem X.10 and
Theorem X.7). We recall this result for clarifying the situation: letting
V : (0,+00) —+ R* be continuous, and bounded near o0,

1)if V(z) > (3/4)z~% near 0, then d?/dz®—V with domain C§°(0, +o0)
is essentially self-adjoint on L?((0, +cc), dz) (or equivalently it is
L?*((0, 4+00), dz)-unique);

2) if V(z) < (3/4 — )z~ near 0 for some ¢ € (0,3/4), then d*/dz® —
V' with domain C§°(0,+o00) is NOT essentially self-adjoint on
L?((0,+00), dz) (or equivalently it is not L2((0, +o00), dz)-unique).

This criterion is very sensible w.r.t. the constant factor of V', how-
ever the sufficient condition in part (b) of Theorem 5.8 is not at all
sensible w.r.t. constant factor of V/, so it should be non-necessary.
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We develop now several corollaries and concrete examples to illus-
trate the differences between the different notions of uniqueness.

Remarks 5.10. For the birth-death process, we have by Theorem 5.7,
(i) (£, D) is KF-unique iff (£, D) is L®(p)-unique;

(ii) If D> 50 tn = +o0, then (£, D) is KF-unique (or L*(p)-unique),
and LP(u)-unique for all 1 < p < 400 (by Theorem 5.7(a) and

(b)).

(iii) In the case where the symmetric measure y is finite, i.e., 3, . ptn <
+o0, if (£, D) is L p)-unique for some g € (1, +0cc], then (£, D)
is LP(p)-unique for all 1 < p < g (that follows by Theorem 5.7(b)
when p > 1 and by what are recalled at the beginning of the
proof of Theorem 5.7(b) for p = 1).

The finiteness of the symmetric measure p in the theory of ir-
reducible Markov chains means the positive recurrence, so one
might have the impression that (F;) should be honest in such
case. This impression is not correct! Indeed given such p, we can
take by = (k + 1)%/p (and determine ay, = 1/(sp_1x) = k*/
by (5.8)). We have

0 k +o0

ZSkZ#jE#[N}Z{kil}g < +00

k=0 _'il-=ﬂ| k= 0

and then (F;) is not honest.

Where is question? The reason is : the finiteness of the symmetric
measure 4 of (F;) implies the positive recurrence iff ( P,) is honest!

(iv) By Theorem 5.7(a) and (b), the KF- or KF*-uniqueness of (£, D)
is stronger than its LP(u)-uniqueness for every 1 < p < +o0 (since
(5.10) is stronger than (5.11)).

(v) It is easy to see that (L, D) is not martingale unique {or equiv-
alently not Markov unique) iff Y ., p. and 3 .5, are both
finite. Hence if (£, D) is not martingale unique, it is not LP(p)-
unique for every 1 < p < 4co.
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Corollary 5.11. For the birth death process, if (£, D) is LP(u)-unique
or martingale unique, where 1 < p < +oo (L™(u)-uniqueness < KF-
unigueness), then so is (L, D) for every V : N — R lower bounded.

This corollary shows an essential difference of the different unique-
ness here from the so called g-process uniqueness (cf. [1]): if V = 0 is

not upper bounded, (£Y, D) is never g-process unique for any choice
of L.

Proof. It follows by Theorem 5.7 and Theorem 5.8. ]
Corollary 5.12. (a) (L, D) is KF-unique (or equivalently KF"-unique)
if
+oo 1
Z e e B T
n=0 n

and the inverse is true if imsup,,_, . (by/ans1) < 1.

(c) Let p=1. (£, D) is L'(u)-unique (or equivalently (P;) is honest)

if
n=0 bﬂ'

and the inverse is true if limsup, . (a./b,) < 1.

Example 5.13. Let a, = a(n + 1)* and b, = b where a,b > 0
and o € R. By Corollary 5.12 (a), (£, D) is KF-unique iff o < 1.
But by Corollary 5.12(b), (£, D) is always L'(u)-unique (< the KB-
uniqueness of A given in Theorem 5.7(c)). Hence when e > 1, we
have the KB-uniqueness, but not the KF-uniqueness.

Example 5.14. Let a, = a and b, = b(n + 1)* where a,b > 0 and
a € R. By Corollary 5.12 (b), (£, D) is L'(u)-unique (equivalent to
Pl =1)iff @« < 1. But (£,D) is always KEunique by Corollary
5.12(a). Hence when & > 1, we have the KF-uniqueness, but not the
KB-uniqueness.

Example 5.15. Let a;, = b, = (n + 1)* where a € R, then u, =
(n+1)*and s, = 1for alln € N. (£,D) is L'(p)-unique for all
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a € R for ), sy = +oo. For the LP(u)-uniqueness, note that

o0 (nﬂl 4 o np:
S (Sa) -3 525
n=1 =0 n=1 {ﬁ. - l)

is infinite iff & < p’ + 1. By Theorem 5.7, for p € [1,00], (£, D) is
IP(p)-unique iff o < p’ + 1 where p' = p/(p — 1). In particular when
o =3, (L,D) is LP(u)-unique iff p € [1, 2].

Example 5.16. Let a, = n®(n + 1)* and b, = (n + 1)*. Then u, =
(n+1)~%and s, = (n+1)"2. As > ., pusand 3 ., s, are both finite,
(L, D) is not Markov-unique, not LP(p)-unique (1 < p < +o0o) (then
not unique in any sense defined in this paper).
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