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Definition

P:(z,-): Markov kernel with stationary distribution =
P;: Markov semigroup with generator L

o Definition:
Sup HPt(.f, ) — 7THVar — HPt — 7"'Hoo—>oo — 0
T

By semigroup property, define the exponential
convergence raie

o = sup {6 > 0:3C < o0 s.t. ||Pr— 7|]oo—o0 < Oe_d}

that is

1
t—oo T
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Recall: qualitative

#® Meyn & Tweedie et al: petite set C, sup,..p E*7¢ < 0.
and the famous drift condition
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Recall: qualitative

® Meyn & Tweedie et al: petite set C, sup,.z E*m0 < oc.
and the famous drift condition

# H-J, Zhang; An-Yue, Chen; Xiang Lin; Zhenting Hou:
strong ergodicity = non FRR semigroup; they are
equivalent for monotonic process; birth-death process,
extended branching process
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Recall: qualitative

® Meyn & Tweedie et al: petite set C, sup,.z E*m0 < oc.
and the famous drift condition

# H-J, Zhang; An-Yue, Chen; Xiang Lin; Zhenting Hou:
strong ergodicity = non FRR semigroup; they are
equivalent for monotonic process; birth-death process,
extended branching process

# Zhang,Y-H: single birth process (or upward skip free
process)
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Recall: convergence rate

#® Doeblin(1930-40): Discrete time Markov chain
In, P"(i, A) > ev(A) = repp < (1 — €)™
Where

Teap = INf{r < 1:||P" — 7||oomoo < Cr"}
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Recall: convergence rate

#® Doeblin(1930-40): Discrete time Markov chain
In, P"(i, A) > ev(A) = repp < (1 — €)™
Where
Tezp = If {r < 1:[|P" — 7||oomoo < CT"}
#® Dobrushin coefficient(1960):

1
0(P) = §SUPZ Pik — Pjk| = reap < 0(P)
[¥] L
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Recall: convergence rate

#® Doeblin(1930-40): Discrete time Markov chain
In, P"(i, A) > ev(A) = repp < (1 — €)™
Where
Tezp = If {r < 1:[|P" — 7||oomoo < CT"}
#® Dobrushin coefficient(1960):

1
0(P) = §SUPZ Pik — Pjk| = reap < 0(P)
[¥] L

# Qriffeath(1975): coupling method, basic coupling
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Recall: convergence rate

#® Doeblin(1930-40): Discrete time Markov chain
In, P"(i, A) > ev(A) = repp < (1 — €)™
Where
Tezp = If {r < 1:[|P" — 7||oomoo < CT"}
# Dobrushin coefficient(1960):

1
5(P) — isgpzk: ‘pik _pjk‘ = Texp < 5(P)
o Griffeath(1975): coupling method, basic coupling
# Aldous; Fill; Diaconis; Saloff-Coste: Markov chains
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Recall: convergence rate

# Saloff-Coste: diffusion on compact manifold
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Recall: convergence rate

# Saloff-Coste: diffusion on compact manifold

# Hino; Wang, F-Y: Convergence of semigroup in L' (by
symmetry)

P — 7||co—oo = || Pt — 7||1—1
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Recall: convergence rate

# Saloff-Coste: diffusion on compact manifold

# Hino; Wang, F-Y: Convergence of semigroup in L' (by
symmetry)

P — 7||co—oo = || Pt — 7||1—1

® Wu, L-M: a comprehensive study in various spaces,
discrete time
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Recall: convergence rate

o Saloff-Coste: diffusion on compact manifold
# Hino; Wang, F-Y: Convergence of semigroup in L' (by
symmetry)

P — 7||co—oo = || Pt — 7||1—1

#® Wu, L-M: a comprehensive study in various spaces,
discrete time

# Mao: diffusion and ) process
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Coupling

® X; = (X}, X?) coupling Markov process. Coupling time:
T =inf{t >0: X} = X7}
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Coupling

® X; = (X}, X?) coupling Markov process. Coupling time:
T =inf{t >0: X} = X7}

# Basic coupling inequality:

1Pt 21.) — | [yar < 2 / (g )PP (T > 4]
B
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Coupling

® X; = (X}, X?) coupling Markov process. Coupling time:
T =inf{t >0: X} = X7}

# Basic coupling inequality:

1Pt 21.) — | [yar < 2 / (g )PP (T > 4]
B

® Saloff-Coste: variance threshold time

n = inf {t >0:||P— 7||oo—oo < 6_1}
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Coupling

® X; = (X}, X?) coupling Markov process. Coupling time:
T =inf{t >0: X} = X7}

# Basic coupling inequality:

1Pt 21.) — | [yar < 2 / (g )PP (T > 4]
B

® Saloff-Coste: variance threshold time
n = inf {t >0:||P— 7||oo—oo < 6_1}

o |f
S = sup E"'"?T < 00

T1,T2

then o > (eS) 1.
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Coupling

The above estimate can be improved as:

o d)\ >0

sup EZ1 %2 < oo
T1,%2

then a > ).
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Coupling

The above estimate can be improved as:

® J\>0
sup E¥172eM « .
L1,L2
then a > A
# Usually,
sup E*122T" < nlS", n>1
L1,T2
so that

a> 81
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Upper bound for o

# Right-continuous is assumed 74: hitting time of A.




Upper bound for o

# Right-continuous is assumed 74: hitting time of A.
# For closed A with 7(A) > 0

R C
Y174 <inf ; 1] .
ig())E T4 < In {W(A)—C@‘O‘R R >« ng(A)}
In particular,

a < 1() 20 u Ex’7 1
S
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Convergence rate: diffusion

® (M, g) complete Riemannian ( 0M empty or convex)
L=A+VV ,VecC*M), X;:L-diffusion,
m(dx) = eVdx/Z
Ricyr > —Kg, K(V') = inf {r : Hessy — Ricy; < r}.
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Convergence rate: diffusion

® (M, g) complete Riemannian ( 0M empty or convex)
L=A+VV ,VecC*M), X;:L-diffusion,
m(dx) = eVdx/Z
Ricyr > —Kg, K(V') = inf {r : Hessy — Ricy; < r}.

# For suitable v € C|0, D] (for example, v(r) = K(V)r)

cxr)::expljgryogdsﬁ{‘, re[0,d)

D D
5@@:%4 qgl@/ C'(u)du.
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Convergence rate: diffusion

® (M, g) complete Riemannian ( 0M empty or convex)
L=A+VV ,VecC*M), X;:L-diffusion,
m(dx) = eVdx/Z
Ricyr > —Kg, K(V') = inf {r : Hessy — Ricy; < r}.

# For suitable v € C|0, D] (for example, v(r) = K(V)r)

cxr)::expljgryogdsﬁ{‘, re[0,d)

D D
5@@:%4 qgl@/ C'(u)du.

® a>0M)"L

Strong Ergodicity: Some New Results — p. 10/2



Convergence rate: () process

o Coupling @ = (c’jw) for @) = (qij):

Qf (x1,22) = Qf(x1), flz1,22) = f(z1)
Qf (z1,22) = Qf(x2), [flz1,22) = f(z2)




Convergence rate: () process

o Coupling Q = (%) for @) = (qij):

Qf (x1,22) = Qf(x1), flz1,22) = f(z1)
Qf (z1,22) = Qf(x2), [flz1,22) = f(z2)

# Independent coupling:

@Of(3717$2) — [Qf(,$2)](371) + [Qf(xla )](%‘2)




Convergence rate: () process

# Classical coupling

Qf(+,12)](11) + |Qf (i1, )] (42), fi1 # i,
Qg(il)v If Z.1 :i27

@Cf(ilaiQ) — {

where g(¢) = f(i,1).




Convergence rate: () process

# Classical coupling

Qf(+,12)](11) + |Qf (i1, )] (42), fi1 # i,

el = { Qolin). i1 — i,

where g(¢) = f(i,1).
# For probability measures pu;, v;i(i = 1, 2),

H/Ll X g — 11 X VQHVar < H/Ll — VlHVar T H/LQ — VQHVar-




Convergence rate: () process

# Classical coupling
ch(ilpiZ) _ [Qf(722)](/&1) + [Qf(zla )](22)7 If Z:l # /&:27
Qg(zl)a If 11 = 12,
where g(¢) = f(i,1).
# For probability measures u;, vi(i = 1,2),
H/Ll X p2 — Vg X VZHVar < H:ul — VlHVar -+ H/LZ — VQHVar-

# For classical coupling (or independent coupling) with
coupling time T, strong ergodicity < sup; ; E"2T < co.
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Convergence rate: () process

A sufficient condition:

® Let D be an absorbing set for ) = (gi;) process (i.e.
1€ D,q;=0),andi € D) ..pqy; > 3, then

sup,c pe Elrp < 1/8.
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Convergence rate: () process

A sufficient condition:

® Let D be an absorbing set for ) = (gi;) process (i.e.
1€ D,q;=0),andi € D) ..pqy; > 3, then

sup,c pe Elrp < 1/8.
» For any coupling @, if 8;; := >4 4 rr) = B, then a > 3.
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Convergence rate: () process

# Basic coupling:

Quf(ir,i2) =Y (aiv; — ainy)(f(G,i2) — i1, ia)

J
+ Z(Cl@%j —q;,;)(f(i1,5) — fi1,i2)
J

£ (aly NE)(F D)~ Flinio)




Convergence rate: () process

# Basic coupling:

Quf(ir,i2) =Y (aiv; — ainy)(f(G,i2) — i1, ia)

.

J
+ Z(leij —q;,;)(f(i1,5) — fi1,i2)
J
+ > (i N ) (F(d) — flin,i2)
J

® lti#£j
Bij = qij + qji + Z gk N\ QK = 5,
k#1,]
then o > (.




Convergence rate: () process

# Example:
Let ¢;; = 7,7 # j;mj — 1,5 =i, then o = 1. Furthermore
o(L|L*>®) = o(L|L?) = {0,1}. Indeed,
Bij = m; +m; + Zk;éi,j G = 1.
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Convergence rate: () process

# Example:

Let ¢;; = 7,7 # j;mj — 1,5 =i, then o = 1. Furthermore
o(L|L*>®) = o(L|L?) = {0,1}. Indeed,
Bij = mj 4+ i + 2 praj Ok = L.

® Example

Let qoi = bi, gio = qi, 1 # 0, Zz b; < oo, the strong
ergodicity < inf; ¢; > 0, and « > inf; ¢;. Indeed,

Bij = 1

[ qi+0b;, j=0,i>0
q]’—|—bj, i:O,j>0

| % N gy, 1> 0,7 >0

a < gap < inf; ¢;, thus a = gap = inf; g;.
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Convergence rate: () process

# Monotonicity and Order-preserving coupling
(F, <): partial order, .#: class of monotone functions
Monotonicity: P f(z) < Pf(y), x<vy,fée . #
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Convergence rate: () process

# Monotonicity and Order-preserving coupling
(F, <): partial order, .#: class of monotone functions

Monotonicity: P f(z) < Pf(y), x<vy,fée . #

® (Zhang,Y-H) Assume E = {0,1,2,---} with the usual
order. For monotone process, there exists coupling
X: = (X1, X?) st

Pre(X! < X2 =1, t>0,i <is.
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Convergence rate: () process

# Monotonicity and Order-preserving coupling
(F, <): partial order, .#: class of monotone functions

Monotonicity: P f(z) < Pf(y), x<vy,fée . #

® (Zhang,Y-H) Assume E = {0,1,2,---} with the usual
order. For monotone process, there exists coupling
X: = (X1, X?) st

Pre(X! < X2 =1, t>0,i <is.
# For a monotone process on {0,1,2,---}, we have

a > 1/ sup Elrg

(]
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Convergence rate: () process

Extended branching process with ¢ matrix as:

( . .

q0j g >1=0;

—q0, J=1=0;

r'iPo, ]22_177’217
gij = L .

T'iDk+1, J=1+k, i,k >1;

—ri(l—p1), j=1>1;

0, else, i,je€Z,.

Assume r; = ie, qo; = Pj
let M =, kpi, P(s) = > 1oy pes®™ — s, then

. 1 L1 &t 0—1
Eiry — / (1 — s")|log s ds.
['(0) Jo P(s)
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Convergence rate: () process

® IfM<160>1,then

_ (1= —)r(e)
Y= —DT0O) F1




Convergence rate: () process

® IfM<1,60>1,then

_ (1= —)r(e)
Y= —DT0O) F1

® IfM=10>2,then

- ab(f0 — 2)I'(0)
“ =0 - 2T(0) + 4a

where a = P(1/2),b = P"(1/2).




Discrete spectrum

# In a Banach space B, discrete spectrum ogis.(L|B):
eigenvalues with finite multiplicity
Tess(L|B) = o (L|B) \ qisc(L|B)
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Discrete spectrum

# |n a Banach space B, discrete spectrum ogjs.(L|B):
eigenvalues with finite multiplicity
Tess(L|B) = o (L|B) \ qisc(L|B)
® (Wu,L-M) For diffusion and ) process, cess(L|L®) = ()
iff
Ve >0,dK CC FE, st.supE'rtg <e

X

where 7 is the (first) hitting time of K
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Ultracontractivity

Assume the process is reversible
# (weak) Ultracontractivity: (local)
dtg >0, st ||Pl1mee < 0

then o = gap(L).
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Ultracontractivity

Assume the process is reversible
# (weak) Ultracontractivity: (local)
dtg >0, st ||Pl1mee < 0

then o = gap(L).
# (strong) Ultracontractivity: (globe)

Vi >0, ||P1—oo <00
then

Oess(L| L) = Uess(L‘L2) =0 ogisc(L|L™) = Udisc(L|L2)
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Ultracontractivity

# (strong) Ultracontractivity implied by Nash inequality
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Ultracontractivity

# (strong) Ultracontractivity implied by Nash inequality

® Example: OnRY, L = A+ VV - V with
V(z) = —lz["(Jz| = c0),v > 2.

Strong Ergodicity: Some New Results — p. 21/2



Ultracontractivity

# (strong) Ultracontractivity implied by Nash inequality

® Example: OnRY, L = A+ VV - V with
V(z) = —lz["(Jz| = c0),v > 2.

# Example: Birth-death process: a; = b, =i7,v > 2,by = 1
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Discrete spectrum: diffusion

#® [-Diffusion on Riemannian manifold
p: distance function, D: the diameter

1) = exp ([ (w)a )

D D
F(%D):/O h(%s)_lds/ h(y,u)du
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Discrete spectrum: diffusion

#® [-Diffusion on Riemannian manifold
p: distance function, D: the diameter

1) = exp ([ (w)a )

D D
F(%D):/O h(%s)_lds/ h(y,u)du

# Suppose that v1,v2 € C|0, >0) such that

Ya(p)p < Lp < v1(p)p, then
(1) F(v1,D) < oo implies oegs(L| L) = ()
(2) strong ergodicity implies F(2, D) < oc.
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Single death process

Single death process (downward skip free process):
qi; =0fori—j5>2

# Regularity is assumed
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Single death process

Single death process (downward skip free process):
qij:OfOri—jZQ
# Regularity is assumed

# For single death process, strong ergodicity is equivalent
t0 Oegs(L| L) = ()
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Single death process

Single death process (downward skip free process):
qij:OfOl’i—jZQ

# Regularity is assumed

# For single death process, strong ergodicity is equivalent
t0 Oegs(L| L) = ()

# Application to extended branching process to get the
explicit criteria.
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Random walk on trees

® time—continuous random walk on T
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Random walk on trees

® time—continuous random walk on T
® TreeT = (o,V, FE): root o, vertices V, edges FE.
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Random walk on trees

# time—continuous random walk on T
® TreeT = (o,V, F): root o, vertices V, edges F.
® | ¢V, denote by i* the parent of i, by J(7) all children of

1.
For any i € V, there exists a unique path (no loop) in
the tree connecting : to o, the set of the vertices on the
path (excluding o) is denoted by P(i), I.e.

P(i) = {i,i*, 9%, --- }.
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Random walk on trees

® time—continuous random walk on T

°

Tree T'= (0, V, E): root o, vertices V, edges FE.
® | ¢V, denote by i* the parent of i, by J(7) all children of

1.
For any i € V, there exists a unique path (no loop) in
the tree connecting : to o, the set of the vertices on the
path (excluding o) is denoted by P(i), I.e.

P(i) = {i,i*, 9%, --- }.

# The subtree rooted from i is denoted by T;.
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Random walk on trees

/

4

™~

S

X

Y
T~

N

\Z\V

AN



Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Rectangle

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Pencil


Random walk on trees

® lLeta;,b;,i € V be two sequences of positive reals.
Q=1{qgj:t,7€V}:

zp if ]21*72#07
Gij = b, M jeJ0);
0, for other i # ;.
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Random walk on trees

® lLeta;,b;,i € V be two sequences of positive reals.
Q=1{qgj:t,7€V}:

( : ok
a, It j=1i%1F o0

gGij = § b it j e J(i);
0, for other i # 5.

\

# reversible w.rt. ©# = (m;,¢ € V) defined by

b.
po=1pi= ] (2)

jeP@) 7

with p .= ZiEV 1; < oo so that m; = ,uz-/,u
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Random walk on trees

7 /

ALY —
NN



Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Line

Administrator
Pencil

Administrator
Pencil

Administrator
Pencil


Random walk on trees

# For regular random walk on tree, strong ergodicity iff

u(T5)
150

sup < 00

" jep(i)

which is equivalent to oeg(L| LX) = ()
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ED

Thank You !
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