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[Markov processes and related topics; BNU; Sep. 6-9, 2004]

On the regularity of affine
Markov processes

Zenghu Li

(Beijing Normal University)

Based on a part of the preprint “Skew convolution semigroups and
affine Markov processes” (by Dawson and Li).
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1. Stochastic interest rate models

Example 1 Cox-Ingersoll-Ross model (’85):

dx(t) = (b+ βx(t))dt+ σ
√

2x(t)dB(t). (1)

Also known as a CBI diffusion; see Kawazu-Watanabe (’71).

Example 2 Vasicek model (’77):

dz(t) = (b+ βz(t))dt+ σ
√

2dB(t). (2)

Also known as an OU diffusion.
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Example 3 Affine model:

dx(t) = (b1 + βx(t))dt+ σ11

√
2x(t)dB1(t) (3)

dz(t) = b2dt+ σ21

√
2x(t)dB1(t)

+σ22

√
2x(t)dB2(t). (4)

An extension of the Black-Scholes model (geometric BM) to stochas-
tic volatility; Heston (’93).
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2. Regular affine Markov processes

Let D = Rm+ × Rn. A Markov semigroup (Pt)t≥0 on D is called
affine if∫
D

exp{〈u, ξ〉}Pt(x, dξ) = exp{〈x, ψ(t, u)〉 + φ(t, u)} (5)

for all u ∈ U (suitably chosen); Duffie et al (AAP ’03, 984-1053).
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Theorem 0 (Duffie et al, ’03) If (Pt)t≥0 is regular (i.e., ψ′
t(0+, u)

and φ′
t(0+, u) exist), then

ψ′
t(t, u) = R(ψ(t, u)), ψ(0, u) = u (6)

and

φ(t, u) =

∫ t

0
F (ψ(s, u))ds, (7)

where

F (u) = b1u1 + b2u2 + au2
2

+

∫
D

(e〈u,ξ〉 − 1 − χ(ξ2)u2)m(dξ) (8)

and R(u) has a similar representation.

Motivation: Prove that all affine semigroups are regular.
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3. A decomposition of affine semigroups

Let D = R+ × R. An affine semigroup (Q(t))t≥0 is called ho-
mogeneous if∫

D
exp{〈u, ξ〉}Q(t, x, dξ) = exp{〈x, ψ(t, u)〉}. (9)

A family of probabilities (γ(t))t≥0 on D is a skew convolution
semigroup (SC-semigroup) if

γ(r + t) = {γ(r)Q(t)} ∗ γ(t), r, t ≥ 0. (10)

Proposition 1 If (γ(t))t≥0 is a SC-semigroup, then P (t, x, ·) =

Q(t, x, ·) ∗ γ(t, ·) defines a general affine semigroup. Indeed,∫
D

exp{〈u, ξ〉}γ(t, dξ) = exp{φ(t, u)}. (11)
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4. Regularity of SC-semigroups

Let (Q(t))t≥0 be a homogeneous affine semigroup and (γ(t))t≥0

an associated SC-semigroup, both stochastically continuous.

Proposition 2 We have (infinite divisibility)

φ(t, u) = b1(t)u1 + b2(t)u2 + a(t)u2
2

+

∫
D

(e〈u,ξ〉 − 1 − χ(ξ2)u2)m(t, dξ) (12)
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and (key relations)

b1(r + t) = b1(r)β11(t) + b1(t), (13)
b2(r + t) = b1(r)β12(t) + b2(r)β22(t) + b2(t)

+

∫
D

[Q(t)χ2(ξ) − β22(t)χ(ξ2)]m(r, dξ), (14)

a(r + t) = b1(r)α(t) + a(r)β2
22(t) + a(t), (15)

m(r + t, ·) =

∫
D

m(r, dξ)Q(t, ξ, ·)

+ b1(r)µ(t, ·) +m(t, ·), (16)

where α(t), βij(t) and µ(t, dξ) are determined by ψ(t, u).
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Lemma 1 The function

t 7→ b1(t) +

∫
D
χ(ξ1)m(t, dξ) (17)

is absolutely continuous.

Let 0 ≤ r1 < t1 < · · · < rn < tn ≤ T and

σn =
n∑
j=1

(tj − rj). (18)
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Lemma 2 We have
n∑
j=1

[a(tj) − a(rj)] ≤ C(T )[b1(σn) + a(σn)]. (19)

Lemma 3 Set g(t) =
∫
D χ

2(ξ2)m(t, dξ). Then

n∑
j=1

[g(tj) − g(rj)] ≤ C(T )[b1(σn) + g(σn)]. (20)

(Roughly, continuity implies absolute continuity.)
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Proof of Lemma 3 Form (), g(t) is non-decreasing in t ≥ 0 and

g(t1) − g(r1) =

∫
R
m(t1 − r1, dξ)

∫
R
χ2(η2)Qr1(ξ, dη)

+ b1(t1 − r1)

∫
R
χ2(ξ2)µ(r1, dξ)

=

∫
R
χ2(β22(r1)ξ2)m(t1 − r1, dξ)

+ b1(t1 − r1)

∫
R
χ2(ξ2)µ(r1, dξ)

≤
∫

R
χ2(C(T )ξ2)m(t1 − r1, dξ)

+ b1(t1 − r1)

∫
R
χ2(ξ2)µ(r1, dξ)

≤ C(T )

∫
R
χ2(ξ2)m(t1 − r1, dξ) + C(T )b1(t1 − r1)

≤ C(T )[b1(t1 − r1) + g(t1 − r1)].

That is, the result holds for n = 1. The general case follows by
more careful analysis. �
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Theorem 1 If t 7→ b2(t) is absolutely continuous, t 7→ φ(t, u) is
differentiable.

Sketch of Proof (Absolute continuity implies differentiability.)

(1) By Lemmas 1 – 3,

φ(t, u) =

∫ t

0
[log ν̂s(u)]ds (21)

for a family of infinitely divisible probabilities (νs)s>0.

(2) By (), we modify the definition of (νs)s>0 to get an entrance
law for (Q(t))t≥0.

(3) The Feller property of (Q(t))t≥0 implies that (νs)s>0 can be
closed by some ν0. Then t 7→ φ(t, u) is differentiable. �



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5. Regularities under moment conditions

Suppose that (Q(t))t≥0 and (γ(t))t≥0 are stochastically contin-
uous.

Theorem 2 Suppose that∫
D

(ξ1 + |ξ2| ∧ |ξ2|2)m(t, dξ) < ∞, (22)

then t 7→ φ(t, u) is differentiable.

(Roughly, the first moment condition implies differentiability.)

In particular, () holds if∫
D

(ξ1 + |ξ2|2)γ(t, dξ) < ∞. (23)
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Sketch of Proof of Theorem 2 Let x(·) be a Hunt realization.

(1) Find g1 and g2 in the domain of generator so that

exp{〈u, x(t)〉} = Hu(g1(x(t)), g2(x(t))) (24)

for a smooth Hu. Then exp{〈u, x(t)〉} is a semi-martingale.

(2) Prove that

t 7→ φ(t, u) = logE0 exp{〈u, x(t)〉} (25)

is a.e. differentiable.

(3) From () infer that b2(t) is a.e. differentiable and hence continu-
ously differentiable in t ≥ 0. Then apply Theorem 1. �
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6. Concluding remarks

The proofs rely heavily on the analysis of the relation

γ(r + t) = {γ(r)Q(t)} ∗ γ(t), r, t ≥ 0. (26)

and its consequences. (Stochastic continuity → absolute continu-
ity → differentiability.)

Applications to immigration superprocesses; Li (1995, 1996, 1998,
1999, 2002), Dawson-Li (’03), etc.

Applications to Ornstein-Uhlenbeck processes on Hilbert spaces;
Bogachev et al (1996), Fuhrman-Röckner (’00), Dawson-Li (’04),
Dawson et al (’04), etc.
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——————
Thanks!

——————

E-mail: lizh@email.bnu.edu.cn

Website: http://math.bnu.edu.cn/˜lizh


