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1. Stochastic interest rate models

Example 1 Cox-Ingersoll-Ross model ('85):

dx(t) = (b+ Bx(t))dt + o/ 2x(t)dB(t). (1)

Also known as a CBI diffusion; see Kawazu-Watanabe ('71).

Example 2 Vasicek model ("77):
dz(t) = (b + Bz(t))dt + ov2dB(t). (2)

Also known as an OU diffusion.



Example 3 Affine model:

de(t) = (b1 + Bx(t))dt + o11/2x(t)dB1(t) (3)
dz(t) = badt + 021/ 2x(t)dB(t)

+ 022+/2x(t)dBa(t). (4)
An extension of the Black-Scholes model (geometric BM) to stochas-
tic volatility; Heston ('93).



2. Regular affine Markov processes

Let D = R’ x R™. A Markov semigroup (P%);>o on D is called
affine if

/D exp{(u, §) } Pr(z, d§) = exp{(z, ¢ (¢, uw)) + ¢(t,uw)} (5)
for all w € U (suitably chosen); Duffie et al (AAP 03, 984-1053).



Theorem O (Duffie et al, '03) If (Py)¢>¢ is regular (i.e., 1y (0+, u)

and ¢4 (04, u) exist), then
Yi(t,w) = R(y(t,u)), 9(0,u) = u

and

t
B(t,u) = [ F(d(s,u))ds,
0
where
F(u) = biuy + bausg + au%
+/ (ef®8) — 1 — x(&2)uz)m(de)
D

and R(wu) has a similar representation.

Motivation: Prove that all affine semigroups are regular.

(6)

(7)

(8)



3. A decomposition of affine semigroups

Let D = R4 X R. An affine semigroup (Q(%)):>o is called ho-
mogeneous if

/D exp{(u, £)}Q(t, z, d€) = exp{{x, P(tu))}.  (9)

A family of probabilities (v(t))¢>0 on D is a skew convolution
semigroup (SC-semigroup) if

y(r + 1) = {v(r)Q{#)} x~(), rt=>0. (10)

Proposition 1 If (v(%))¢>0 is @ SC-semigroup, then P(t, x,-) =
Q(t,x,-) * v(t,-) defines a general affine semigroup. Indeed,

/D exp{(u, £)}1(t, d&) = exp{o(t, w)}. (1)



4. Regularity of SC-semigroups

Let (Q(t))¢>0 be ahomogeneous affine semigroup and (v(t)):>0
an associated SC-semigroup, both stochastically continuous.

Proposition 2 We have (infinite divisibility)
P(t,u) = bi(t)ur + ba(t)uz + a(t)u
+ [ (@9 — 1 - x(€umim(t,ae) (@2



and (key relations)

bi(r+t) = bi(r)Bu(t) + bi(?),
ba(r +1t) = by(r)B12(t) + ba(7)B22(t) + ba(t)

L /D QE)x2(8) — Br®)x(E)mE oo
a(r+1) = bi(r)a(t) + a(r)L(t) + alt),

m(r +1,.) = /Dm(r, d§)Q(t, &, -)
+ bi(r)u(t, -) + m(t,-),
where a(t), B;;(t) and u(t, d§) are determined by (¢, u).

(13)

(14)

(15)

(16)



Lemma 1 The function

£ by(t) + /D X(&1)m(t, dg) a7)

IS absolutely continuous.

letO< M <tHi1 <+ <1rp <ty <Tand

On — Z(tJ NS ’I“J) (18)
j=1



Lemma 2 We have

> la(t;) —a(r)] < C(T)[bi(on) +alon)].  (19)
j=1

Lemma 3 Setg(t) = [px(&2)m(t, dE). Then

> lg(tj) —g(rj))] < C(D)[bi(on) +g(on)]l.  (20)
=il

(Roughly, continuity implies absolute continuity.)



Proof of Lemma 3 Form (), g(t) is non-decreasing in ¢ > 0 and

g(t) — g(r) = / m(ts — r1, dE) / 2 (12)Qr, (&, dn)
1+ by(0 / () u(rs, dE)

[ X En(rymits 1, de)
bu(ts =) [ X(En(ri,d¢)

< [ xAC@EImit =i, de)

Fbu(ts =) [ X(En(ri,de)

< o) / X (E2)m(ty — 11, d€) + C(T)by(tr — 1)
< C(T)[br(tr — 71) + g(ts — r1)].

That Is, the result holds for n = 1. The general case follows by
more careful analysis. []



Theorem 1 If t — ba(t) is absolutely continuous, t — ¢(t, ) is
differentiable.

Sketch of Proof (Absolute continuity implies differentiability.)
(1) By Lemmas 1 — 3,
t
s(t,w) = [ llog oa(u)lds (21)
for a family of infinitely divisible probabilities (v5)s>0.

(2) By (), we modify the definition of (rvs)s~0 t0 get an entrance
law for (Q(%))¢>o0.

(3) The Feller property of (Q(%)):>o implies that (vs)s>0 can be
closed by some vg. Then t — ¢(t,u) is differentiable. []



5. Regularities under moment conditions

Suppose that (Q(t)):>o0 and (v(t)):>o are stochastically contin-
uous.

Theorem 2 Suppose that

/D(£1 + |&2] A [€2]%)m(t, d§) < oo, (22)

then t — (&, u) is differentiable.
(Roughly, the first moment condition implies differentiability.)

In particular, () holds if

/D(sl + [&a2)(¢, dE) < oo (23)



Sketch of Proof of Theorem 2 Let x(-) be a Hunt realization.

(1) Find g1 and g5 in the domain of generator so that

exp{(u, 2(t))} = Hy(g1(x(t)), ga((t))) (24)
for a smooth H,,. Then exp{{(u, z(t))} is a semi-martingale.

(2) Prove that

t — @(t,u) = log Egexp{{(u,x(t))} (25)

IS a.e. differentiable.

(3) From () infer that ba(t) is a.e. differentiable and hence continu-
ously differentiable in ¢ > 0. Then apply Theorem 1. []



6. Concluding remarks

The proofs rely heavily on the analysis of the relation

V(r+t) = {v(MQW)} x4(t), mt>0.  (26)

and its consequences. (Stochastic continuity — absolute continu-
ity — differentiability.)

Applications to immigration superprocesses; Li (1995, 1996, 1998,
1999, 2002), Dawson-Li ('03), etc.

Applications to Ornstein-Uhlenbeck processes on Hilbert spaces;
Bogachev et al (1996), Fuhrman-Rockner ('00), Dawson-Li ('04),
Dawson et al ('04), etc.
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