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1. Introduction Strong Liouville Theorem Every non-negative
harmonic function on Rn must be a constant.

∆u = 0, u ≥ 0 =⇒ u = Cte. (1)

Weak Liouville Theorem Every bounded harmonic function on
Rn must be a constant.

∆u = 0, u ∈ L∞ =⇒ u = Cte. (2)

Feller property The set C0(Rn) is stable under the heat semi-
group Pt = et∆ on Rn.

f ∈ C0(R) =⇒ Ptf ∈ C0(R), ∀ t > 0. (3)

Here C0(R) = {f ∈ C(R) : lim
|x|→∞

f(x) = 0}.
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Proof I : Strong Liouville follows from elliptic Harnack inequality

Let u be any non-negative solution of ∆u = 0 in a geodesic ball
B(o, R). Then the elliptic Harnack inequality (EHI) holds

sup
B(o,R/2)

u ≤ C inf
B(o,R/2)

u,

where C is independent of u and B(o, R). Let u be a solution of
∆u = 0 in M which is bounded from below. Applying the EHI to
v = u − inf

M
u in a geodesic ball B(o, 2R), we obtain

sup
B(o,R)

(u − inf
M

u) ≤ C inf
B(o,R)

(u − inf
M

u).

Letting R → ∞, the (RHS) tends to zero. Hence u = inf
M

u.
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Elliptic and parabolic Harnack inequalities for uniformly ellip-
tic operator

(PHI)=⇒ (EHI)=⇒ Strong Liouville=⇒ Weak Liouville

Consider a second order elliptic operator (in divergence form) on
Rn:

L =
n∑

i,j=1

∂i(aij(x)∂j) +
∑
i

bi(x)∂i + c(x).

Assume that L is uniformly elliptic: A(x) = (aij(x)) is symmet-
ric, and there exists a constant λ ∈ (0, 1) such that

λI ≤ A(x) ≤ λ−1I, ∀ x ∈ Rn.

Question Under what condition on A, b and c, (PHI), (EHI), Strong
and Weak Liouville hold ?
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Theorem (De Giorgi-Nash-Moser) Let L =
∑
i,j

∂i(aij(x)∂j) be

a uniformly elliptic operator with some λ > 0. Then, for any
δ ∈ (0, 1), there exists a constant C = C(n, λ, δ) such that
any positive solution u of Lu = 0 in a ball B ⊂ Rn satisfies the
elliptic Harnack inequality

sup
δB

u ≤ C inf
δB

u.

Theorem (see Gilbarg and Trudinger) Let L =
∑
i,j

∂i(aij(x)∂j)+∑
i

bi(x)∂i + c(x). Suppose that there exists a constant λ > 0

such that

λI ≤ A(x), ‖A(x)‖HS ≤ Λ2,
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|b(x)|2

λ2
+

|c(x)|
λ

≤ ν2.

Let u ∈ W 1,2(Ω) be a nonnegative solution of Lu = 0 in a
domain Ω ⊂ Rn. Then, for any ball B(x, 4R) ⊂ Ω, there exists
a constant C = C(n, Λ/λ, νR) such that

sup
B(x,R)

u ≤ C inf
B(x,R)

u.

Remark ν 6= 0 cannot implies the strong Liouville.
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In 1964, Moser proved the parabolic Harnack inequality (PHI) which
is stronger than (EHI). In 1992, based on some earlier works of
Bombieri-Giusti (72) and S.T. Yau (75), Grigor’yan and Saloff-Coste
independently extended Moser’s (PHI) to complete non-compact
Riemannian manifolds.

Theorem (Grigor’yan 92, Saloff-Coste 92): Let M be a complete
Riemannian manifold satisfying
(a) The doubling volume property holds on M , i.e., there exists a
constant A > 0 such that

V (B(x, 2R)) ≤ AV (B(x, R)), ∀ x ∈ M, R > 0.

(b) The local Poincaré inequality holds on any geodesic ball, i.e.,
there exists a constant a > 0 such that for any x ∈ M, R > 0
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and any f ∈ C1(B(x, R)),∫
B(x,2R)

|∇f |2dx ≥
a

R2
inf
c∈R

∫
B(x,R)

|f(x) − c|2dx.

Then there exists a constant C > 0 such that for any positive
solution of ∂tu = ∆u, the parabolic Harnack inequality holds: for
any x ∈ M and R > 0,

sup
C1

u ≤ C inf
C2

u,

where C1 = B(x, R)×[R2, 2R2], C2 = B(x, R)×[3R2, 4R2].

Moreover, the converse is also true. That is,

(a) + (b) ⇐⇒ (PHI) =⇒ (EHI)
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Proof II : Using the mean value theorem and the gradient estimate

Let u(x) be a harmonic function on D ⊂ Rn. Then the mean
value theorem holds

u(x) =
1

ωnRn

∫
∂B(x,R)

u(y)dσn−1(y).

Since u is harmonic, ∂u
∂xi

is also harmonic. Thus

∂u(x)

∂xi
=

1

ωnRn

∫
∂B(x,R)

∂u(y)

∂xi
dσ(y).

By divergence theorem, we can prove that

|∇u(x)| ≤
nωn−1

(n − 1)ωnd
(M − m), (4)

where d = dist(x, ∂D), M = sup
M

u, m = inf
M

u.
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As pointed out in M. H. Protter and H.F. Weinberger (Maximum
Principles in Differential Equations, Prentice-Hall, 1967), for a gen-
eral type of second order uniformly elliptic operator

L =
∑
i,j

∂i(aij(x)∂j) +
∑
i

bi(x)∂i + c(x),

the derivatives of the solution of Lu = 0 satisfy some gradient es-
timates which are very similar to (4). However, the method to es-
tablish these gradient estimates is not elementary, since the mean
value property does not hold in general, and the partial deriva-
tives v = ∂iu of u are not solutions of the same elliptic equation
Lv = 0. See L. Bers, F. John and M. Schechter: Partial Dif-
ferential Equations, New York, Interscience Publishers, Inc., 1964,
C. Miranda: Equazioni alle derivate parziali di tipo ellittico, Berlin,
Springer-Verlag OHG, 1955, Gilbarg and Trudinger’s book.
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2. Liouville theorem on complete Riemannian manifold

Let (M, g) be a complete non-compact Riemannian manifold with
Riemannian metric g, ∆ be the Laplace-Beltrami operator on M .
In a local coordinate x = (x1, . . . , xn), for any f ∈ C2

c (M),

∆f(x) =
1√

detg(x)

∑
i,j

∂

∂xi

(
gij(x)

√
detg(x)

∂f

∂xj

)
. (5)
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Theorem (S.T. Yau, 75) (1) Let M be a complete non-compact
Riemannian manifold. Then for any 1 < p < ∞, every non-
negative Lp-subharmonic function on M or every Lp-harmonic
function must be a constant.

∆u = 0, u ∈ Lp(ν) =⇒ u = Cte, (6)

where

ν(dx) =
√

detg(x)dx (7)

denotes the Riemannian volume measure on (M, g).

(2) Let (M, g) be a complete non-compact Riemannian manifold
with non-negative Ricci curvature. Then the strong Liouville theo-
rem holds.

∆u = 0, u ≥ 0 =⇒ u = Cte. (8)
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To prove this result, Yau first established a gradient estimate for
the harmonic function u which is bounded from below on a com-
plete Riemannian manifold with Ricci curvature bounded from be-
low. Suppose that Ric ≥ −K, where K ≥ 0. Then

|∇u| ≤
√

(n − 1)K(u − inf
M

u).

Thus, if Ric ≥ 0, then every non-negative harmonic function
must be a constant.

Theorem (S.T. Yau, 76) Let (M, g) be a complete non-compact
Riemannian manifold with Ricci curvature bounded from below.
Then every non-negative bounded solution to (∆ − α)u = 0

on (M, g) is identically zero.

(∆ − α)u = 0, u ∈ L∞ =⇒ u = 0. (9)
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Remarks Equivalence between analytic and probabilistic charac-
terisations
(see e.g. E.B. Davies, Grigor’yan, K.T. Sturm, Wu-Zhang)

(1)

strong Liouville for Lu ≤ 0

⇐⇒ weak Liouville for Lu ≥ 0

⇐⇒ recurrence of L−diffusion

=⇒ strong Liouville for Lu = 0.

Question : What is the probabilistic characterisation of the strong
(weak) Liouville theorem for harmonic function ?

strong Liouville ⇐⇒ Martin boundary is trivial

Martin, Doob, Hunt, Ancona, Kief, Murata
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weak Liouville ⇐⇒ BM has succesful coupling

Linvall-Rogers, Kendall, Cranston, M.F. Chen, F.Y. Wang

(2) The L∞-Liouville property of

(∆ − α)u = 0 for some or all α > 0,

i.e., every non-negative L∞-(sub)solution of (∆ − α)u = 0 is
identically zero, is equivalent to the stochastically completeness,
which says that, for all x ∈ M , and all t > 0,∫

M
pt(x, y)dν(y) = 1. (10)
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By Khas’minskii (60), these are equivalent to the uniqueness of the
heat equation ∂tu = Lu with initial date u(0) = f ∈ L∞.

non explosion of L −diffusion

⇐⇒ L∞ − Liouville(∆ − α)u = 0 for all α > 0

⇐⇒ L∞ − Liouville(∆ − α)u = 0 for some α > 0

⇐⇒ L∞ − uniqueness ∂tu = ∆u.
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Theorem (Karp and P. Li, 83 unpublished) Let (M, g) be a com-
plete Riemannian manifold on which

ν(B(x, R)) ≤ eCR2
.

Then (M, g) is stochastically complete.

This result was also proved by different methods by E.B. Davies
(J.d’Analyse Math. 92) and M. Takeda (Osaka J. Math. 89).

The optimal condition for the stochastical completeness is due to
A.A. Grigor’yan.

Theorem (Grigor’yan, DAN SSSR 86, Soviet Math. Dokl. 87) Let
(M, g) be a complete Riemannian manifold. Suppose that there
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exists a point x ∈ M such that∫ ∞

1

r

logν(B(x, r))
dr = ∞.

Then (M, g) is stochastically complete.

Remarks (1) Let K(r) be a lower bound of the Ricci curvature on
the geodesic ball B(x, r), i.e.,

Ric(x) ≥ −K(r) on B(x, r).

By the Bishop-Gromov volume comparison theorem, we have

ν(B(x, r)) ≤ Crn exp{
√

(n − 1)K(r)r}.

(2) Let (M, g) be a complete Riemannian manifold on which there
exists a fixed point o ∈ M such that the Ricci curvature on M
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satisfies

Ric(x) ≥ −C(1 + d2(o, x)).

Then M is stochastically complete (P. Li, JDG, 86).

(3) Using a probabilistic approach, E. Hsu (Ann. Prob., 89) proved
that (M, g) is stochastically complete provided that∫ ∞

1

dr√
K(r)

= +∞.

(4) The conditions given by the Ricci curvature are not stable under
the quasi-isometry on the given manifold, while the conditions on
the volume of geodesic ball are stable under quasi-isometry.
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(5) (T. Lyons, JDG 87) The strong and the weak L∞-Liouville prop-
erties as well as the stochastical completeness are not stable un-
der the quasi-ismotry on complete non-compact Riemannian man-
ifolds.

(6) Grigor’yan’s criterion has been extended to a general setting of
Dirichlet spaces by K.T. Sturm (J. Reine. Angew. Math. 94).

(7) Examples of complete non-compact Riemannian manifolds ad-
miting non-constant non-negative and bounded harmonic functions:
Cartan-Hadamard manifold with −a ≤ Sect ≤ −b, where a >

b > 0. See E. Dynkin (65), Prat (75), Anderson (82), Sullivan (82),
Hsu and March (85), Hsu and Kendall (86), Anderson and Schoen
(86), Ancona (87), Kief (87). See also S.Y. Cheng (92?), Ancona
(00?), Hsu (03) for further results.
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Question : What is the condition for the L1-Liouville theorem ?

Theorem (1) (P. Li and R. Schoen, Acta Math. 84) Let (M, g) be
a complete Riemannian manifold with

Ric(x) ≥ −C(1 + r(x)2)[log(1 + r(x)2]−α, ∀ x ∈ M,

where C > 0 is a constant, r(x) = d(o, M) is the distance
function from a fixed point o ∈ M . Then M satisfies the L1-
Liouville property.

(2) (P. Li, JDG 84) The optimal condition for the L1-Liouville prop-
erty is given by

Ric(x) ≥ −C(1 + r(x)2), ∀ x ∈ M.
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Remarks

(1) Azencott (Bull. Soc. Math. Fr. 74) constructed complete two-
diemnsional surfaces which have sectional curvature behaving like

K(x) ≡ −Cr2+ε(x)

for some C > 0 and ε > 0. The Laplace-Beltrami operator on
these surfaces has infinite many of fundamental solutions to the
heat equation with the property that pt(x, y) ≥ 0 and∫

M
pt(x, y)dy ≤ 1.

Grigor’yan (87, 88) gave other counter-examples for the stochasti-
cal completeness.
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(2) P. Li and Schoen (Acta Math. 84) and L.O. Chung (83) con-
structed counter-examples of complete non-compact Riemannian
manifold on which the L1-Liouville does not hold for L = ∆.

(3) The non-negativity of the Ricci curvature (Yau 75) is not neces-
sary for the L∞-Liouville property.

(3.1) If (M, g) is quasi-isometric to a complete non-compact Riemannian
manifold with nonnegative Ricci curvature, then Grigor’yan and Saloff-Coste’s
parabolic Harnack inequality (PHI) holds. This implies the strong and the weak
Liouville theorem.

(3.2) A. Ancona (Revista Math Iberoamerica 00) constructed a CH manifold on
which the Brownian motion converges to a single point in the sphere at infinity.

(3.3) F.-Y. Wang (SPA 02) found out a class of Liouville Riemannian manifolds

with negative Ricci curvature
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3. Feller property on complete Riemannian manifold

The heat semigroup Pt = et∆ on a complete non-compact Rie-
mannian manifold is called to satisfy the Feller property (or the
C0-property) if

Pt(C0(M)) ⊂ C0(M),

where

C0(M) = {f ∈ C(M) : lim
r(o,x)→∞

f(x) = 0}.

By Azencott (74), the Feller property holds iff for each t > 0 and
for all compact subset K ⊂ M , it holds that

lim
x→∞

Px(TK < t) = 0, (11)
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where

TK = inf{t > 0 : Xt ∈ K}

is the entrance time of {Xt, t ≥ 0} in K.

Intuitively, Pt has the C0-property iff the probability of the L-diffusion
process starting from very far (near infinity) to visit any fixed com-
pact subset before any fixed time is very small. Equivalently, Pt

has C0-property iff for λ > 0 the minimal positive solution of

(L − λ)u = 0 on M \ K

with boundary condition u ≡ 1 on ∂K must tend to zero at
infinity (the exterior Liouville property).

Azencott (74): C-H mainifold and homogenuous spaces Hsu-March
(CPAM, 85): C-H manifold, Hsu (89): Ricci condition
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Theorem (Hsu Ann.Prob. 89) Let M be a complete Riemannian
manifold on which there exists a positive increasing continuous
function K(r) on [0, ∞) such that

inf{Ric(x) : d(o, x) = r} ≥ −K(r)

and ∫ ∞

1

dr√
K(r)

= ∞.

Then the heat semigroup of the Laplace-Beltrami operator on M

has the Feller proverty.
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4. Case of diffusion operator on complete Riemannian mani-
fold

Let (M, g) be a complete Riemannian manifold, φ ∈ C1(M).
Let L be a diffusion operator of the form

L = ∆ − ∇φ · ∇
which has an invariant measure given by

dµ(x) = e−φ(x)
√

detg(x)dx.

The purpose of this talk is to study the following

Question : What is the natural and optimal condition on (M, g)

and φ so that L has the L∞, L1-Liouville properties, the stochas-
tical completeness and the Feller property ?
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Remarks (1) Bakry (CRAS 84) proved that if

Ric(L) := Ric + ∇2φ

is uniformly bounded from below, then L is conservative. This is a
natural extension of Yau’s (75) result: If Ric is uniformly bounded
from below, then (M, g) is stochastically complete.

(2) X.-M. Li (1993) extended Bakry’s result to diffusion operator L

satisfying

E sup
t≤T

[
exp −

1

2

∫ t

0
Ric(L)(Xs)ds1[t≤ξ(x)]

]
< +∞, ∀ x ∈ U,

for some open set U ⊂ M and some constant T > 0.

Question What happens when Ric(L) is not uniformly bounded
from below ?
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Curvature-dimension condition CD(K, m)

Following Bakry, we call that L satisfies the curvature-dimension
CD(K, n) condition, if

Γ2(u, u) ≥
1

n
(Lu)2 + K|∇u|2, ∀ u ∈ C∞(M),

where

Γ2(u, u) :=
1

2
L|∇u|2− < ∇Lu, u > .

By the classical Bochner-Weitzenböck formula, we can show that

Γ2(u, u) = |∇2u|2+ < Ric(L)∇u, ∇u > .

Thus, CD(K, n) holds when L is the Laplace-Beltrami operator
∆ on a complete Riemannian manifold with Ric ≥ K. Moreover,
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using the elementary inequality

(a + b)2 ≥
a2

1 + α
−

b2

α
, ∀ α > 0,

we obtain

G2(u, u) ≥
1

n
|∆u|2+ < Ric(L)∇u, ∇u >

=
1

n
|Lu + ∇φ · ∇u|2+ < Ric(L)∇u, ∇u >

≤
1

n(1 + α)
|Lu|2 −

|∇φ|2|∇u|2

nα
+ < Ric(L)∇u, ∇u > .

Hence

Γ2(u, u) ≥
1

n(1 + α)
|Lu|2 +

(
Ric(L) −

|∇φ|2

nα

)
|∇u|2.
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Setting

m := (1 + α)n,

then

Γ2(u, u) ≥
1

m
|Lu|2 +

(
Ric(L) −

|∇φ|2

m − n

)
|∇u|2.

That is, the diffusion operator L = ∆ − ∇φ · ∇ on any n-
dimensional complete Riemannian manifold (M, g) satisfies the
CD(Km,n, m) condition for all m > n, where

Km,n = Ric + ∇2φ −
|∇φ|2

m − n
.
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Bakry-Emery Ricci curvature via warped product metric

The Bakry-Emery Ricci curvature was introduced when Bakry and
Emery (82) studied the logarithmic Sobolev inequality for diffusion
operator on a complete Riemannian manifold. Since then it has
played an important role in the study of functional inequality for
symmetric Markovian semigroup. In recent papers by G. Perel-
man, it has been used in the proof of Poincar’e’s conjecture on 3-
manifold by modifying R. Hamilton’s Ricci flow. In a recent paper,
Lott gave a new understanding of the Bakry-Emery Ricci curvature
by using the warped product metric.

Suppose that q = m−n ∈ N . Given k ∈ Z+, consider Sq×M



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

with the warped product metric defined by

gSq×M
k = gM + k−2e

−2φ
q gSq

.

Equivalently, the Bakry-Emery Ricci curvature-dimension tensor
satisfies

RicM
n+q,n(L)(X, X) = π∗

(
RicSq×M(X, X)

)
.

Lott pointed out that, if Ricq ≥ Kg, then as k → ∞, (M, g, φ)

is the Hausdroff limit of a sequence of m = n + q-dimensional
manifolds (Sq × M, gSq×M

k ) with Ricci curvature bounded from
below by K.
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The main result of this talk is the following

Theorem (X.D. Li, 04) Let (M, g) be a complete Riemannian man-
ifold, φ ∈ C2(M). Suppose that L = ∆ − ∇φ · ∇ satisfies the
following curvature-dimension condition: there exists a fixed point
o ∈ M and a constant C ≥ 0 such that for all x ∈ M ,

Ric(x) + ∇2φ(x) −
∇φ(x) ⊗ ∇φ(x)

m − n
≥ −C(1 + r2(x)).(12)

Then (1) The strong and the weak L∞-Liouville properties hold
providing C = 0.

Lu = 0, u ≥ 0 =⇒ u = Cte, (13)

Lu = 0, u ∈ L∞ =⇒ u = Cte. (14)
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(2) The stochastical completeness (i.e., the L∞-Liouville property
for L − α, α > 0) holds:

(L − α)u = 0, u ∈ L∞ =⇒ u = 0. (15)

(3) The L1-Liouville property holds for L:

Lu = 0, u ∈ L1(µ) =⇒ u = Cte. (16)

where

µ(dx) = e−φ(x)
√

detg(x)dx

denotes an invariant measure of L.

(4) The Feller property (i.e., the exterior Liouville property) holds:

f ∈ C0(M) =⇒ Ptf ∈ C0(M).
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5. The Lp-uniqueness of the heat equation

Strichartz (JFA 83) For p ∈ (1, ∞), the Laplace-Beltrami operator
generates a unique strongly continuous contractive Lp semigroup.
Equivalently, for every f ∈ Lp, the heat equation ∂tu = ∆u has
a unique solution such that u(0) = f .

Theorem (X.D. Li 04) Suppose that

Ric + ∇2φ −
∇φ ⊗ ∇φ

m − n
≥ −C(1 + r(x)2), ∀ x ∈ M.

(1) Let v(x, t) be a non-negative function on M × R+ such that

(L − ∂t) v(x, t) ≥ 0,

∫
M

v(x, t)dµ(x) < +∞
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for all t > 0, and

lim
t→0

∫
M

v(x, t)dµ(x) = 0.

Then v(x, t) = 0 for all (x, t) ∈ M × R+.

(2) For any f ∈ L1(µ), there exists a unique L1(µ)-solution to
the heat equation ∂tu = Lu with the initial condition u(0) = f .

(3) For any f ∈ Cb(M), there exists a unique bounded solution
to the heat equation ∂tu = Lu with the initial condition u(0) = f .
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6. Three Lemmas

Lemma 1 (Bakry-Qian 03) Suppose that

Ricm,n(L) := Ric + ∇2φ −
∇φ ⊗ ∇φ

m − n
≥ −K(r(x)).

Then

Lr(x) ≤ a(r), (17)

where a(r) is the solution of the Riccati equation

−a′(r) = −K(r) +
a2(r)

m − 1

with initial condition

lim
x→0

ra(r) = m − 1.
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Lemma 2 (Qian 97, Gong-Wang 01, Lott 03, Bakry-Qian 03) Sup-
pose that there exists a constant k > 0 such that

Lr(x) ≤ mkcoth[kr(x)], ∀ x ∈ M \ cut(o). (18)

Then for all r > 0, and α > 1,

µ(B(o, αr)) ≤ µ(B(o, r))αm+1ekcoth[mk(α−1)r]. (19)

Lemma 3 (Kendall Ann.Prob 87, Cranston JFA 91) Let Xt be a
L-diffusion process starting at X0 ∈ M . Then there exist a stan-
dard one-dimensional Brownian motion βt and a nondecreasing
process Lt which is increasing only on {t : Xt ∈ cut(X0)} such
that

r(xt) = βt +
1

2

∫ t

0
Lr(Xs)ds − Lt.
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7. Li-Yau type differential Harnack inequality

The Li-Yau differential Harnack inequality for the heat equation
∂tu = ∆u has been improved by Bakry and Qian. Their tech-
nique and result remain valid for diffusion operator under curvature-
dimension condition.
Theorem (Bakry-Qian Revista Mat. Iberoamer. 99) Suppose that
L = ∆ − ∇φ · ∇ satisfies the curvature-dimension condition

Ric + ∇2φ −
∇φ ⊗ ∇φ

m − n
≥ −K

with K ≥ 0. Let f = logu, where u is a solution to the heat
equation ∂tu = Lu. Then

|∇f |2 − ft ≤
√

mK

√
|∇f |2 +

m

2t
+

mK

4
+

m

2t
. (20)
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8. Sketch of Proof of the Main Theorem

(1) To prove the L∞-Liouville property, we follow Yau’s method to
establish gradient estimate for the positive solution of Lu = 0.

(2) To prove the stochastical completeness, we verify that the Karp-
Li condition holds:

µ(B(x, r)) ≤ C1r
neC2r2

. (21)

This follows from the Bishop-Gromov volume comparison theorem
and the Bakry-Qian L-comparison theorem.

(3) To prove the Feller property, we follow the method used in Azen-
cott, Hsu-March and Hsu. Using the Bakry-Qian L-comparison



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

theorem and the Kendall-Cranston formula, the following key esti-
mate can be estabished.

Key Lemma Under the curvature-dimension condition, there exist
two constants C1 > 0 and C2 > 0 such that for all n ≥ 0,

Px (θn ≤ C/K(r(x) − n + 1)) ≤ e−C2K(r(x)−n+1). (22)

where θn = τn − σn, σ0 = 0, and

τn = inf{t > σn : d(Xt, Xσn) = 1},

σn = inf{t ≥ τn−1 : d(o, Xt) = d(o, x) − n}.

That is, σn is the entrance time of the L-diffusion process Xt

(starting at x ∈ M ) in the geodesic ball B(o, r(x) − n), θn :=

τn−σn is the amount of time during which the L-diffusion process
moves from Xσn ∈ ∂B(o, r(x) − n) to Xτn ∈ ∂B(Xσn, 1),
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and σn+1 − τn is the amount of time during which the L-diffusion
process leaves from ∂B(Xσn, 1) and hits ∂B(o, r(x)−(n+1)).

(4) The key steps in the proof of the L1-Liouville property:
(4.1) for any nonnegative L1-subharmonic function g, defining

etLg(x) :=

∫
M

pt(x, y)g(y)dµ(y),

we need to prove the integration by parts formula∫
M

Lypt(x, y)g(y) =

∫
M

pt(x, y)Lg(y)dµ(y)

so that

∂t

(
etLg

)
(x) =

∫
M

pt(x, y)Lg(y)dµ(y).
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For this, we need to prove that

lim
R→∞

∫
∂B(o,R)

|∇ypt(x, y)|g(y)dµ(y) = 0,

lim
R→∞

∫
∂B(o,R)

pt(x, y)|∇g(y)|dµ(y) = 0.

(4.2) use the co-area formula and Bakry-Qian L-comparison theo-
rem to prove

sup
Bo(R)

g(y) ≤ Ceα
√

K(R)Rµ−1(Bo(2R))

∫
Bo(2R)

g(y)dµ(y)

for some constants C, α > 0 depending only on m., where −K(R)

is the lower bound of the Ricci curvature-dimension Ricm,n(L) on
the geodesic ball Bo(10R).
(4.3) use the Li-Yau differential Harnack inequality for ∂t − L to
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prove the Li-Yau heat kernel upper bound under local Ricm,n(L)

lower bound condition. That is, for any ε > 0 there exists a con-
stant C(ε) > 0 such that for all t > 0, x, y ∈ Bx0(R), and some
constant α depending only on m,

pt(x, y) ≤
C(ε)exp

(
−d2(x,y)
(4+ε)t

+ αε(K(R) + R−2)t

)
√

µ(Bx(
√

t)µ(By(
√

t)
.

(4.4) prove the Cheng-Yau-Li type estimate for the heat kernel
(need not to use the sectional curvature)∣∣∣∣∫

M
|Lypt(x, y)|2dµ(y)

∣∣∣∣ ≤
Cpt(x, x)

t2
, ∀ x ∈ M.

(4.5) using the conservativity result
∫
M pt(x, y)dµ(y) = 1 to
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prove that every non-negative L1-subharmonic function g must be
harmonic. This is standard argument as used by P. Li. Then use
the following result to conclude the L1-Liouville theorem.

Theorem (Grigor’yan 88) Let L be a conservative diffusion oper-
ator, i.e.,

∫
M pt(x, y)dy = 1, for all x ∈ M and t ≥ 0. Then

every non-negative L1-supsolution of Lu ≤ 0 must be a constant.
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Thanks!


