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Abstract

In [1] and [2], we introduced the concept of Markov skeleton pro-

cesses(MSP). Since then, we have begun to study MSP and their appli-

cations to queueing theory, risk theory, etc. Some remarkable results have

been obtained ([3],[4]). For example, using MSP, we derive the transient

distribution of the length of GI/G/N queueing systems, which was a open

problem for almost 60 years.

This paper first gives the basic concepts of MSP and presents concise and

strict treatments of the major results, then we discuss the limit behavior of

MSP. In the following, we apply the major results in MSP to study queueing

systems, inventory theory and reliability theory.
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1. Markov skeleton processes

1.1. The Concept of Markov skeleton processes

Markov processes(MP): have the Markov property everywhere.

Markov skeleton processes(MSP) : have the Markov property at a series

of stopping times(the only requirement).

{MP} ⊂ {MSP}

In the following, we give a strict definition of MSP.



(E, E): a measurable space.

(Ω,F , P ): a complete probability space

X = {X(t, ω), 0 ≤ t < ∞}: a stochastic process defined on (Ω,F , P )

taking values in (E, E)

{FX
t , t ≥ 0}: the natural flow of σ-algebras generated by X

θt:a shift operator, (θtw)s = wt+s, (ws)s≥0 ∈ Ω.

Definition 1.1.1 A stochastic process X = {X(t, ω), 0 ≤ t < ∞)} is

called a MSP if there exists a sequence of stopping times {τn}n≥0, satisfying

(C1) τn ↑ ∞ with τ0 = 0, and for each n ≥ 0, τn < ∞ =⇒ τn < τn+1;

(C2) for all n = 0, 1, · · ·, we have τn+1 = τn + θτnτ1;

(C3) For any n > 0, X has the Markov property at τn,i.e. for every τn



and any bounded E [0,∞)-measurable function f defined on E [0,∞)

E[f (X(τn + ·))|FX
τn

] = E[f (X(τn + ·))|X(τn)] P-a.s., (1.1.1)

where Ωτn = (ω : τn(ω) < ∞), and FX
τn

= {A : ∀t ≥ 0, A∩ (ω : τn ≤ t) ∈

FX
t } is the σ−algebra on Ωτn. {τn}∞n=0 is called skeleton time sequence of

the MSP X. Furthermore, if on Ωτn

E[f (X(τn + ·))|FX
τn

] = E[(f (X(τn + ·))|X(τn))]

= EX(τn)[f (X(·))](1.1.1′)

P-a.s. holds, where Ex(·) denotes the expectation corresponding to P (·|X(0) =

x). Then we say that X is a time homogeneous MSP.



Remark 1.1.1 Here, suppose E to be a Polish space, E the Borel σ-

algebra, and Ω be the right-continuous function space defined on IR+(=

[0,∞)) with values in E.



1.2. Backward equations

Let

q<n>(x, t, A) = P (τn ≤ t,Xτn ∈ A|X(0) = x)

q(x, t, A)
∆
= q<1>(x, t, A) = P (τ1 ≤ t,Xτ1 ∈ A|X(0) = x)

q(x, ds, dy) = P (τ1 ∈ ds, Xτ1 ∈ dy|X(0) = x)

Lemma 1.2.1 q<n>(x, t, dy),x ∈ E, t ≥ 0, A ∈ ε satisfying the following

conditions:

(i) for fixed A ∈ ε,q<n>(·, ·, A) is a ε×B(R+) measurable function on

E ×R+;

(ii) for fixed x ∈ E, t ≥ 0, q<n>(x, t, ·) is a finite measure on (E, ε);



(iii) for any t ≥ 0, A ∈ ε and m ∈ Z+ = {0, 1, 2, · · ·}

q<n>(X(τm), t, A) = P{X(τm+n) ∈ A, τm+n ≤ t|X(τm)}, P − a.s.

Lemma 1.2.2 For any n ∈ N, t ≥ 0, A ∈ ε, x ∈ E,

q<n+1>(x, t, A) =

∫
E

∫ t

0

q<n>(x, ds, dy)q(x, t− s, A)

=

∫
E

∫ t

0

q(x, ds, dy)q<n>(x, t− s, A)

Definition 1.2.1 A time homogeneous MSP X = {X(t, ω),≤ t < ∞}

is called normal, if there exists a function h(x, t, A) on E ×R+ × ε, such

that

(i) for fixed x, t, h(x, t, ·) is a finite measure on ε;



(ii) for fixed A ∈ ε,h(·, ·, A) is ε × B(R+) measurable function on

E ×R+;

(iii) for any t ≥ 0, A ∈ ε,

h(X(τn), t, A) = P{X(τn + t) ∈ A, τn+1 − τn > t|X(τn)} P − a.s.

Let

P (x, t, A) = P{X(t) ∈ A|X(0) = x}

Theorem 1.2.1 Suppose X = {X(t); t ≥ 0} is a normal MSP with

{τn}∞n=0 as its skeleton time sequence, then for any x ∈ E, t ≥ 0, A ∈ ε,

P (x, t, A) = h(x, t, A)+

∫
E

∫ t

0

∞∑
n=1

q<n>(x, ds, dy)h(y, t−s, A) (1.2.1)



thus P (x, t, A) is a minimal non-negative solution to the following non-

negative equation system:

P (x, t, A) = h(x, t, A)+

∫
E

∫ t

0

q(x, ds, dy)P (y, t−s, A) x ∈ E, t ≥ 0, A ∈ ε

(1.2.2)

Proof. For any x ∈ E, t ≥ 0, A ∈ ε, n ∈ N,

P (X(t) ∈ A, τn ≤ t < τn+1|X(0) = x)

=

∫
E

∫ t

0

P (X(τn) ∈ A, τn ≤ t < τn+1|X(τn) = y, τn = s, X(0) = x)

·P (X(τn) ∈ dy, τn ∈ ds|X(0) = x)

=

∫
E

∫ t

0

P (X(t−s+τn) ∈ A, t−s < θτn·τ1|X(τn) = y, τn = s, X(0) = x)

q<n>(x, ds, dy)



From τn+1 = τn+θτnτ1, we know τn+1−τn = θτnτ1 is σ(X(τn + t); t ≥ 0)−

measurable. And since that X = {X(t); t ≥ 0} is homogeneous on τn and

X = {X(t); t ≥ 0} has the Markov property at τn, immediately we get

P (X(t− s + τn) ∈ A, t− s < θτn · τ1|X(τn) = y, τn = s, X(0) = x)

= P (X(t− s) ∈ A, t− s < τ1|X(0) = y) = h(y, t− s, A)

thus

P (X(t) ∈ A, τn ≤ t < τn+1|X(0) = x) =

∫
E

∫ t

0

q<n>(x, ds, dy)h(y, t−s, A)

hence

P (x, t, A) = P (x(t) ∈ A|X(0) = x)

= P (X(t) ∈ A, t < τ1|X(0) = x)+

∞∑
n=1

P (X(t) ∈ A, τn ≤ t < τn+1|X(0) = x)



= h(x, t, A) +

∫
E

∫ t

0

∞∑
n=1

q<n>(x, ds, dy)h(y, t− s, A)

i.e. {P (x, t, A); t ≥ 0, x ∈ E} satisfies equation (1.2.1). So {P (x, t, A)}

is the minimal non-negative solution to the equation system (1.2.2).

Equation system (1.2.2) is called backward equation system of the normal

MSP{X(t), t ≥ 0}.

Denote {h(x, t, A)} by H, and {q(x, dt, dy)} by Q. From Theorem

1.2.1, we know that one-dimensional distribution of X(t) can be uniquely

determined by (H, Q).

In our later discussion, MSP we may refer to are all normal.



Theorem 1.2.2

{X(t)} is a MSP + its paths have left-hand limits with probability 1

=⇒ {X(t)} is normal.



1.3. Limit distribution

Definition 1.3.1 Suppose X(t)is a stochastic process on (Ω,F ,P) taking

values in (E, E).Let P (x, t, A) = P (X(t) ∈ A|X(0) = x).If for any x ∈

E, A ∈ E , limt→∞P (x, t, A) exists and is independent of x, and P (A) ≡

limt→∞ P (x, t, A) (A ∈ E) is the probability distribution on (E, E), then

we say that limit(probability) distribution of X(t) exists, and P (·)

is called the limit (probability) distribution of X(t),

Definition 1.3.2 Suppose X(t) is a MSP with {τn}∞n=0 as its skeleton

time sequence. If there exists probability measure π(·) on (E, E), such that



for any A ∈ E ,

P (X(τ1) ∈ A|X(0) = x, τ1 = s) = P (X(τ1) ∈ A) = π(A) (1.3.1)

then X(t) is called a Doob skeleton process, π(·) is called the char-

acteristic measure of X(t) and τn, n = 1, 2, · · · is the regeneration

point of X(t).

Remark 1.3.1 The Doob skeleton process is a generalization of the Doob

process in homogeneous denumerable MP. In applications, Doob skeleton

processes or those obtained after choosing an appropriate skeleton time

sequence are often encountered.



Let

F (x, t) = P (τ1 ≤ t|X(0) = x), F (t) =

∫ ∞

0

π(dx)F (x, t)

Definition 1.3.3 Suppose X(t) is a Doob skeleton processes, if
∫∞

0 tdF (t) <

∞ and for any x ∈ E, F (x, 0) = 0, F (x,∞) ≡ 1, then X(t) is called a

positive recurrent Doob skeleton process.

In the following, we give a sufficient condition for the existence of the

limit distribution of a positive recurrent Doob skeleton process.



Theorem 1.3.1 Suppose X(t) is a positive recurrent Doob skeleton pro-

cess. If π(x : F (x, ·) is absolutely continuous)= 1. then the stationary

distribution P (·) of X(t) exists, and we have

P (A) =

∫∞
0

∫
E h(y, t, A)Π(dy)dt∫∞

0 tdF (t)
, (∀A ∈ E)



1.4. Generalized limit distribution and invariable probabil-

ity measure

Definition 1.4.1 Suppose X(t) is a stochastic process on (Ω,F ,P) tak-

ing values in (E, E). If Π(·) is the probability measure on (E, E), then for

any A ∈ E , x ∈ E,

P ( lim
t→∞

∫ t

0 IA(X(s))ds

t
= Π(A)|X(0) = x) = 1,

we call Π(·) is the generalized limit(probability) distribution of

X(t).

Theorem 1.4.1 Suppose X(t) is a positive recurrent Doob skeleton pro-

cess with {τn}∞n=0 as its skeleton time sequence, then generalized limit



distribution Π(·) exists and

Π(A) =

∫∞
0

∫
E h(y, t, A)π(dy)dt∫∞

0 tdF (t)
, ∀A ∈ E .

Theorem 1.4.2 Suppose {X(t)} is a homogeneous MP taking values in

(E, E), and is a positive recurrent Doob skeleton process, then

Π(A) =

∫∞
0

∫
E h(y, t, A)π(dy)dt∫∞

0 tdF (t)
, (A ∈ E)

is the unique invariable probability measure of {X(t)}.

Theorem 1.4.3 Suppose X(t) is a positive recurrent Doob skeleton pro-

cess, if the limit distribution P (A) (A ∈ E) exists, then the generalized

limit distribution Π(A) (A ∈ E) exists, and

P (A) = Π(A) =

∫∞
0

∫
E h(y, t, A)π(dy)dt∫∞

0 tdF (t)



2. Queueing Systems

2.1. Introduction

GI/G/1 queueing system discussed here is as follows:

(i) the customers arrive in succession at times · · · τ−2, τ−1, τ0, τ1, τ2, · · ·

and the interarrival times tm = τm−τm−1(m ∈ Z = (· · · ,−2,−1, 0, 1, 2, · · ·))

are independent and uniformly distributed with distribution function A(x)



A(x) = P (tm ≤ x) (m ∈ Z) (2.1.1)

(ii) the service times for each customer · · · ν−3, ν−2, ν−1, ν0, ν1, ν2, · · ·

are independent of each other and so are all the {tm, m ∈ Z}. And all νm

are uniformly distributed with distribution function

B(x) = P (νm ≤ x) (m ∈ Z) (2.1.2)

(iii)there is a service station which provides services according to the rule

of FCFS(First Come, First Served)

Denote by L(t) the length of GI/G/1 queuing system at time t (i.e. the

total number of of waiting customers and those currently being served at

time t).



Let θ1(t) be the interval between time t and the arrival time of the last

customer before time t.

θ2(t) is defined as follows: if service station is idle at time t, then θ2(t) =

0, otherwise let θ2(t) be the elapsed service time for the customer currently

in service at time t.

It is well known that L(t) itself may not be a MP, but (L (t) , θ1 (t) , θ2 (t))

is a MP and also a MSP.

Let

Aθ1 (t) =
A (θ1 + t)− A (θ1)

1− A (θ1)
(2.1.3)

Bθ2 (t) =
B (θ2 + t)−B (θ2)

1−B (θ2)
(2.1.4)

Denote by B(IR+) all the Borel sets on IR+ = [0,∞), and r0 ≡ 0, r1, r2, · · ·



be the discontinuous points of (L(t), θ1(t), θ2(t))(i.e., a customer arrives

and/or a customer finishes the service and departs at time rn).

rn ↑ +∞, (n ↑ +∞) . (2.1.5)

Then (L(t), θ1(t), θ2(t)) is a MSP with {rn} as its skeleton time se-

quence.

For i, j ∈ E = (0, 1, 2, · · ·), θ1, θ2 ∈ IR+, A1, A2 ∈ B(IR+), let

h(i, θ1, θ2, j, A1, A2, t)

= P (L (t) = j, θ1 (t) ∈ A1, θ2 (t) ∈ A2, t < r1|L (0) = i, θ1 (0) = θ1, θ2 (0) = θ2)

q(i, θ1, θ2, ds, j, A1, A2) =

P (r1 ∈ ds, L (r1) = j, θ1 (r1) ∈ A1, θ2 (r1) ∈ A2|L (0) = i, θ1 (0) = θ1, θ2 (0) = θ2)



(2.1.6)

In particular, for a, b ∈ IR+,

q(i, θ1, θ2, ds, j, a, b)
∆
= q(i, θ1, θ2, ds, j, {a}, {b}) (2.1.7)

P (i, θ1, θ2, j, A1, A2, t)

= P (L (t) = j, θ1 (t) ∈ A1, θ2 (t) ∈ A2|L (0) = i, θ1 (0) = θ1, θ2 (0) = θ2)

(2.1.8)

Lemma 2.1.1

h(i, θ1, θ2, j, A1, A2, t)

=


0, j 6= i

IA1(θ1 + t)(1− Aθ1(t))IA2(0)I{0}(θ2), j = i = 0

IA1(θ1 + t)(1− Aθ1(t))IA2(θ2 + t)(1−Bθ2(t)) j = i > 0,

(2.1.9)



Lemma 2.1.2

q (i, θ1, θ2, ds, j, A1, A2)

=



dAθ1(s), i = 0, j = 1, θ2 = 0, 0 ∈ A1, 0 ∈ A2

(1−Bθ2(s))dAθ1(s), i 6= 0, j = i + 1, 0 ∈ A1, s + θ2 ∈ A2

(1− Aθ1(s))dBθ2(s), i 6= 0, j = i− 1, s + θ1 ∈ A1, 0 ∈ A2

(Aθ1(s)− Aθ1(s−))(Bθ2(s)−Bθ2(s−)), j = i 6= 0, 0 ∈ A1, 0 ∈ A2

0, otherwise

(2.1.10)

In particular
q(0, θ1, 0, ds, 1, 0, 0) = dAθ1(s)

q(i, θ1, θ2, ds, i + 1, 0, s + θ2) = (1−Bθ2(s))dAθ1(s), i 6= 0

q(i, θ1, θ2, ds, i− 1, s + θ1, 0) = (1− Aθ1(s))dBθ2(s), i 6= 0

q(i, θ1, θ2, ds, i, 0, 0) = (Aθ1(s)− Aθ1(s−))(Bθ2(s)−Bθ2(s−)), i 6= 0

(2.1.11)



Theorem 2.1.1 {P (i, θ1, θ2, j, A1, A2, t)} is the minimal nonnegative so-

lution and also the unique bounded solution to the following nonnegative

linear equation

P (i, θ1, θ2, j, A1, A2, t)

= h (i, θ1, θ2, j, A1, A2, t)

+I{0}(i)

∫ t

0

dAθ1(s)P (i + 1, 0, θ2 + s, j, A1, A2, t− s)

+I{1,2,···}(i)(

∫ t

0

(1− Aθ1 (s)) dBθ2 (s) P (i− 1, θ1 + s, 0, j, A1, A2, t− s)

+
∑
s≤t

(Aθ1(s)− Aθ1(s−))(Bθ2(s)−Bθ2(s−))P (i, 0, 0, j, A1, A2, t− s)

+

∫ t

0

(1−Bθ2(s))dAθ1(s)P (i + 1, 0, θ2 + s, j, A1, A2, t− s)) (2.1.12)



Let

d =

{
inf {t|L (t) = 0} , if {t|L (t) = 0} is a non-empty set,

+∞, otherwise,

and

γ0 = 0,

γ1 =

{
inf {t > d|L (t) = 1} , if {t > d|L (t) = 1} is a non-empty set,

+∞, otherwise.

γn+1 = γn + θγn ◦ γ1, (n = 1, 2, · · ·) (2.1.13)

r̂0 = 0, r̂n = rn ∧ γ1, (n = 1, 2, · · ·) (2.1.14)



Define

ĥ (i, θ1, θ2, j, A1, A2, t) =

P (L (t) = j, θ1 (t) ∈ A1, θ2 (t) ∈ A2, t < r̂1|L (0) = i, θ1 (0) = θ1, θ2 (0) = θ2)

(2.1.15)

q̂ (i, θ1, θ2, ds, j, A1, A2) =

P (r̂1 ∈ ds, L (r̂1) = j, θ1 (r̂1) ∈ A1, θ2 (r̂1) ∈ A2|L (0) = i, θ1 (0) = θ1, θ2 (0) = θ2)

(2.1.16)

P̂ (i, θ1, θ2, j, A1, A2, t) =

P (L (t) = j, θ1 (t) ∈ A1, θ2 (t) ∈ A2, t < γ1|L (0) = i, θ1 (0) = θ1, θ2 (0) = θ2)

(2.1.17)



then we have

ĥ (i, θ1, θ2, j, A1, A2, t) = h (i, θ1, θ2, j, A1, A2, t) . (2.1.18)

q̂ (i, θ1, θ2, ds, j, A1, A2)

=

{
0, i = 0

q(i, θ1, θ2, ds, j, A1, A2), i > 0.

(2.1.19)

P̂ (0, θ1, θ2, j, A1, A2, t) = h (0, θ1, θ2, j, A1, A2, t) (2.1.20)

Theorem 2.1.2 {ĥ(i, θ1, θ2, j, A1, A2, t)} is the minimal nonnegative so-

lution to the following nonnegative linear equation.

P̂ (0, θ1, θ2, j, A1, A2, t) = ĥ (0, θ1, θ2, j, A1, A2, t)

P̂ (i, θ1, θ2, j, A1, A2, t)



= ĥ (i, θ1, θ2, j, A1, A2, t)

+I{1,2,···}(i)

∫ t

0

(1− Aθ1(s))dBθ2(s)P̂ (i− 1, θ1 + s, 0, j, A1, A2, t− s)

+
∑
s≤t

(Aθ1(s)− Aθ1(s−))(Bθ2(s)−Bθ2(s−))P (i, 0, 0, j, A1, A2, t− s)

+

∫ t

0

(1−Bθ2(s))dAθ1(s)P̂ (i + 1, 0, θ2 + s, j, A1, A2, t− s).

(i = 1, 2, · · · , j = 0, 1, 2, · · · , 0 ≤ θ1, θ2, t < ∞, A1, A2 ∈ B(IR+)

(2.1.21)



2.2. Statistical Equilibrium Theory (queue length)

In this section, we assume

0 <
1

λ
=

∫ ∞

0

tdA (t) < ∞,

0 <
1

µ
=

∫ ∞

0

tdB (t) < ∞,

Let ρ = λ
µ.

Theorem 2.2.1 If ρ < 1 then the generalized limit distribution Π(·) of

(L(t), θ1(t), θ2(t)) exists:

Π(j, A1, A2) =

∫∞
0 P̂ (1, 0, 0, j, A1, A2, t)dt

1
λ exp{

∑∞
k=1

1−ak
k }

(2.2.1)



In particular

Π(j) =

∫∞
0 P̂ (1, 0, 0, j, [0,∞), [0,∞), t)dt

1
λ exp{

∑∞
k=1

1−ak
k }

(2.2.2)

where ak =
∫∞

0 (1 − A<k>(t))dB<k>(t), and A<k>(t), B<k>(t) denote

convolutions of order k of A(t), B(t) respectively.

Theorem 2.2.2 If ρ < 1 and that A(t) is absolutely continuous, then the

limit distribution of (L(t), θ1(t), θ2(t)) exists and is equal to its generalized

limit distribution.

Theorem 2.2.3 The necessary and sufficient condition for the existence

of invariable measure of (L(t), θ1(t), θ2(t)) is that there exists a generalized

limit distribution and they are equal when exist.



2.3. Statistical Equilibrium Theory (waiting time)

Let W (t) be the waiting time(including the service time) of the customer

who arrives at time t in GI/G/1 queueing systems. And let θ (t) = θ1 (t),

obviously (W (t) , θ (t)) is a MP and also a MSP.

Using similar method in treating queue length, we can obtain some re-

sults.



3. Inventory Theory

3.1. Perishable inventory model

Perishable inventory can often be found in such fields as putrescible food

inventory in supermarkets, easily-expired medicines in hospitals and weapons

management in armies.

The above category of problems can be generalized as follows:

(1) Assume lifetimes of inventory commodities are i.i.d random variables,



with a common distribution function F (t).

(2) Sell one commodity each time and the sale times of each commodity

are i.i.d random variables, with a common distribution function G(t). The

sale times are also independent of the commodities’lifetimes.

(3) The maximum capacity of the warehouse is a fixed value Smax .

When the capacity of the warehouse becomes s(s < 0) (i.e. the quantity of

OOS(Out Of Stock) arrives −s), buy in new commodities to increase the

stocks until it reaches Smax.

S(t) denotes the amount of stocks at time t. The path of {S(t); t ≥ 0}

is shown in the following graph.



-

6

t

Smax

S

O

S(t)

Generally speaking, {S(t); t ≥ 0} is not a MP.

Denote the lifetime of the commodity in stock at time t by θ(t), the

time interval between the last sale before t and time t by θ̂(t). Obviously

(S(t), θ(t), θ̂(t)) is a MP. Let τ0 = 0, τn be the n−th discontinuous point

of (S(t), θ(t), θ̂(t)) on [0,∞). Evidently (S(t), θ(t), θ̂(t)) is a MSP with

{τn}∞n=0 as its skeleton time sequence , therefore we can determine the



transient distribution of (S(t), θ(t), θ̂(t)) by the backward equations of the

MSP.

Let T0 = 0, and Tn denote the n−th time when (S(t), θ(t), θ̂(t)) returns

to the state of (Smax, 0, 0), i.e. Tn denotes the n−th stocking time after

the initial time 0. Obviously, (S(t), θ(t), θ̂(t)) is a Doob skeleton process

with skeleton time sequence {Tn}∞n=0.

Let

hj(t) = P{S(t) = j, t ≤ T1|S(0) = Smax, θ(0) = θ̂(0) = 0},

M = E{T1|S(0) = Smax, θ(0) = θ̂(0) = 0}.

Following the method in proving Theorem 2.1.2, hj(t) can be uniquely



determined by the minimal nonnegative solution to the nonnegative equation

system. While

M =

∫ ∞

0

Smax∑
i=s

hj(t)dt.

From Theorems 1.3.3,1.4.1, 1.4.2 and 1.4.3, immediately we get:

Theorem 3.1.1 (1)P{T1 < ∞|S(0) = Smax, θ(0) = θ̂(0) = 0} = 1.

(2)if and only if
∫∞

0 tF (dt) < ∞ or
∫∞

0 tG(dt) < ∞, M < ∞. Here the

generalized limit distribution Π(·) of (S(t), θ(t), θ̂(t)) exists, in particular

Π(j) =

∫∞
0 hj(t)dt

M
,

and Π(·) is the unique invariable probability measure of (S(t), θ(t), θ̂(t)).

(3)if M < ∞ and G(t) is absolutely continuous, then the limit distribu-



tion of (S(t), θ(t), θ̂(t)) exists and equals limit distribution.

3.2. Reservoir Storage Model

In real reservoirs storage, the water drainage depends on the ingoing water

speed and the water reserves in general, therefore a more practical reservoir

model can be characterized as follows:

(1) Assume there is a reservoir with a capacity of V̄ = Md0( where

d0 > 0, M ∈ IN). When the capacity of the reservoir reaches V̄ , the water

in the reservoir will overflow automatically. md0, m = 1, 2, · · · , M is called

the water mark level. Denote the water reserves of the reservoir at time t

by V (t) ;



(2) There are N kinds of ingoing water speed C1, · · · , CN . The water

speed is controlled by a semi-Markov process X(t) taking values in E =

{1, 2, · · · , N}, and the water speed at time t is CX(t) ;

(3) The outgoing water speed depends on the water reserves and the

incoming water speed. To be concrete, when the water reserves is v ∈

[md0, (m + 1)d0), and the incoming water speed is Ci, the outgoing wa-

ter speed is C̄(v, Ci) = ϕ(m, i), where ϕ(m, i)is a function of m ∈

{1, 2, · · · , M} and i ∈ E.

(4)Assume for any m ∈ {0, 1, 2, · · · , M}, there exists i, j ∈ E, such

that

ϕ(m, i) > Ci, (3.2.1)



ϕ(m, j) < Cj. (3.2.2)

For any i ∈ E,

ϕ(M, i) > Ci, (3.2.3)

ϕ(0, i) < Ci. (3.2.4)

First, we shall introduce some notations.

For any v ∈ [0, V̄ ] if v ∈ [md0, (m + 1)d0), m = 0, 1, · · · , N , then let

[v] = md0.

For any v ∈ [0, V̄ ], i ∈ E , let

S(v, i) =

{
v−[v]

C̄(v,Ci)−Ci
, if C̄(v, Ci) > Ci;

[v]+d0−v
Ci−C̄(v,Ci)

if C̄(v, Ci) < Ci.



S(v, i) denotes the time needed for the water reserves v to reach the

next water mark level when the water reserves is v , the incoming water

speed is Ci, and the outgoing speed is C̄(v, Ci).

Let θ(t) = inf{s ≥ 0, X(t − s) 6= X(t)}, and θ(t) denotes the time

interval between the last discontinuous point X(·) before t and time t. Let

τ0 = 0, and τn is the n−th discontinuous point of (C̄(V (t), CX(t)), X(t)) on

[0,∞). Generally speaking, the water reserves process {V (t); t ≥ 0} is not

a MP, while {(V (t), X(t), θ(t))} is a MP,and also a MSP with {τn}∞n=0 as

its skeleton time sequence, thus we can determine the transient distribution

of {(V (t), X(t), θ(t))} by the backward equations of MSP.

For this model, we can add some restrictions, for instance, the reservoir



(V = 0) can dry out with probability 1 , then (V (t), X(t), θ(t)) is a Doob

skeleton process and then we can judge its limit behavior. We will not

discuss this problem here.



4. Reliability Theory

4.3. Parallel System

Suppose the system is composed of two different components and a repair-

man. The system is in good work state if two components work or one

works and the other fails. The system is in failure state only if the two

components fail. If a component breaks down, the repairman will repair the

failed components immediately and when the failed component is repaired,



it will begin to work at once. If the failed component is still in repairing

process and the other component breaks down and in a to-be-repair state,

we call the system in failure state.

Suppose the two components can be restored to the original state af-

ter each failure, the distribution function of the lifetime Xi of the i − th

component is

FXi
(t) = P {Xi ≤ t} E [Xi] =

∞∫
0

tdFXi
(t) = 1

λi

the distribution function of the repairing time Yi after the failure of the

i− th component

GXi
(t) = P {Yi ≤ t} E [Yi] =

∞∫
0

tdFYi
(t) = 1

µi

Suppose X1, X2, Y1, Y2 are independent random variables.



Suppose L (t)denote the system state at time t, if

L(t) =



0, if two components work at time t

1, if component 1 is being repaired and component 2 works at time t

2, if component 2 is being repaired and component 1 works at time t

3, if component 1 is being repaired and component 2 is to be repaired at time t

4, if component 2 is being repaired and component 1 is to be repaired at time t

then {L (t) , t ≥ 0} is a stochastic process with the state space E =

{0, 1, 2, 3, 4}. The working state set is W = {0, 1, 2}, and the failure

state set is F = {3, 4}.From the assumption, we know {L (t) , t ≥ 0} is

not a MP generally. Now, introduce the supplementary variable:

Xi(t) =


before time t the last continuous working time for component i

up to time t, if component i is working at time t;

0, if component i is being repaired at time t.



Xi(t) is called the lifetime for component i at time t.

Yi(t) =


the elapsed repairing time for component i at time t

if the component is being repaired

0, if the component i is working at time t

i = 1, 2

then {L (t) , X1 (t) , X2 (t) , Y1 (t) , Y 2 (t)} constitutes a MP and also a

MSP, therefore we can determine the transient distribution of the process

using the backward equation of the MSP.

Let τ0 = 0, and τn denotes the n−th time when the process (L(t), X1(t), X2(t),

Y1(t), Y2(t)) returns to state (2, 0, 0, 0, 0), i.e. τn denotes the n-th time

when component 1 just starts to work and component 2 starts the repair-

ing process. Obviously (L(t), X1(t), X2(t), Y1(t), Y2(t)) is a Doob skeleton

process with (τn) as its skeleton time sequence.



Let

hj(t) = P{L(t) = j, t ≤ τ1|L(0) = 2, X1(0) = X2(0) = Y1(0) = Y2(0) = 0},

M = E{τ1|L(0) = 2, X1(0) = X2(0) = Y1(0) = Y2(0) = 0}.

Following the same method in proving Theorem 2.1.2, we can prove that

hj(t) is uniquely determined by a minimal solution to a nonnegative linear

equation system.

Theorem 4.3.1 (1) For any j = 0, 1, 2, 3, 4, xk, yk ∈ [0,∞), we have

P{τ < ∞|L(0) = j, X1(0) = x1, X2(0) = x2, Y1(0) = y1, Y2(0) = y2} = 1.

(2)if and only if
∫∞

0 tFi(dt) < ∞,
∫∞

0 tGi(t) < ∞, i = 1, 2, for any



j = 0, 1, 2, 3, 4, xk, yk ∈ [0,∞), we have

E{τ |L(0) = j, X1(0) = x1, X2(0) = x2, Y1(0) = y1, Y2(0) = y2} < ∞.

thus there exists a generalized limit distribution Π(·) for (L(t), X1(t), X2(t), Y1(t), Y2(t)),

Π(j) =

∫∞
0 hj(t)dt

M
,

and Π(·) is the unique invariable probability measure for (L(t), X1(t), X2(t), Y1(t), Y2(t)).

(3)if M < ∞ and Fi(t), Gi(t) is absolutely continuous, then the limit

distribution of (L(t), X1(t), X2(t), Y1(t), Y2(t)) exists and equals its gener-

alized limit distribution.



4.4. Serial System

Suppose the system is composed of two different components and a repair-

man. The system is in good work state if two components work . The

system is in failure state if one of the two components fails. If one com-

ponent breaks down, the system is in failure state and the repairman will

repair the failed components immediately and the other component will in

rest state. When the failed components is repaired, the two components go

back to work at once and the system enters the working state.

Suppose the two components can be restored to the original state af-

ter each failure, the distribution function of the lifetime Xi of the i − th



component is

Fi (t) = P {Xi ≤ t} ,

the distribution function of the repairing time Yi after the failure of the

i− th component is

Gi (t) = P {Yi ≤ t} ,

Suppose X1, X2, Y1, Y2 are independent random variables.

In previous study, all assume that there exist the densities of Fi(t), Gi(t) (i =

1, 2), and one or two of them will have negative exponential distribution.

Here, we assume Fi(t), Gi(t) (i = 1, 2) are just general distribution.



Let L (t) be the system state after time t, if

L(t) =


0, if two components work at time t

1, if component1 is being repaired at time t

2, if component 2 is being repaired at time t

then {L (t) , t ≥ 0} is a stochastic process with its state space E = {0, 1, 2}.The

working state set of the system is W = {0} while the failure system set is

F = {1, 2}. From assumption, {L (t) , t ≥ 0} is not a MP generally. Now,

introduce the supplementary variables:

Xi (t) : the lifetime for component i at time t, i = 1, 2

Yi(t) =


the elapsed repairing time for component i at time t,

if the component is being repaired

0, if the component is working at time t

i = 1, 2

then {L (t) , X1 (t) , X2 (t) , Y1 (t) , Y 2 (t)}constitutes a MP and also a MSP,



therefore we can determine the transient distribution of the process using

the backward equation of MSP.

In general cases, there is no practical method to discuss the limit behavior

of the serial system. But, when one lifetime of the components has nega-

tive exponential distribution, {L(t), X1(t), X2(t), Y1(t), Y 2(t)} becomes a

Doob skeleton process, so we can deal with its limit behavior.
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