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. Motivation–Evaluate the asymptotic values of cer-
tain Laplace integral∫

Rd
pn(x)enh(x)dx.

The classical Laplace’s Theorem provides explicit esti-
mates for nice p and h. To handle more general cases,
an alternative way is to apply Varadhan’s Theorem in
the theory of large deviations.

1 Large deviation system (LDS)

· Large deviation principle (LDP)

Definition. A sequence {Pn, n ≥ 1} on a topo-
logical space E with its Borel σ-algebra B(E) is said to
satisfy a (full) large deviation principle with rate func-
tion I if

(1) I is lower semi-continuous on E;
(2) For every closed subset F of E,

lim sup
n→∞

1

n
logPn(F ) ≤ − inf

y∈F
I(y); (1.1)

(3) For every open subset G of E,

lim inf
n→∞

1

n
logPn(G) ≥ − inf

y∈G
I(y). (1.2)
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The rate function I is said to be good if it has compact
level sets. (1.1) and (1.2) are called the large deviation
upper and lower bounds respectively.

Varadhan’s Theorem. If {Pn, n ≥ 1} satisfies

the full LDP with the rate function I, then for each

F ∈ Cb(E),

lim
n→∞

1

n
log

∫
enFdPn = sup

y
[F (y)− I(y)]. (1.3)

· Large deviation systems
Suppose that for each x ∈ X, {Pn,x, n ≥ 1} is a

sequence of probability measures on E that satisfies a
full LDP with rate function Ix. The parameter space X
is a topological space, B(X) is the Borel σ-algebra.

Remark 1.1. The terminology LDS was first used
in [DG: Dawson and Gartner (PTRF,1994)]. In theri
definition, a system {Pn,x, n ≥ 1, x ∈ X} is called a
LDS if for any x ∈ X and any sequence {xn, n ≥ 1} in
X with xn → x, the sequence {Pn,xn , n ≥ 1} satisfies
the full LDP with rate function Ix.

Earlier than this, such systems appeared in [DinZ:
Dinwoodie and Zabell (AP,1992)]. They did not use the
term LDS, but called a system with the above property
exponentially continuous. One of the main purposes in
that paper is to study large deviations for exchangeable
random variables, which is a special case of mixture of
LDS.

Large deviation problem for mixture of LDS

Given any probability measures πn on X we obtain
a sequence of mixture {Pn, n ≥ 1} defined by

Pn =
∫
Pn,xπn(dx).

A natural problem is to study the LDP for {Pn, n ≥
1}. [DinZ] studied this problem in the case of X being
compact and πn = π is independent of n. Exponential
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continuity plays the key role in their study. The results
was then applied to exchangeable sequences.

[G: Grunwald (PTRF,1996)] studied this problem
too, and applied the results obtained to the Sherrington-
Kirkpatrick(SK) spin-glass models. A continuous sur-
jection from E to X was involved.

Because of our motivating problem, one of the main
purpose of our investigation on this problem is to obtain
the LDP for mixture for array of some iid sequences
by relaxing the conditions on the exponential continuity
and on the compactness of the parameter space X. LDP
for mixture of general LDS are also discussed.

2 LDP for mixture of general LDS

We assume that E is a Polish space and X is first
countable. Let {Pn,x, n ≥ 1}x∈X , {πn, n ≥ 1} and
{Pn, n ≥ 1} be as in Section 1. Assume that for each
n, Pn,x = Pn(x, ·) is a probability kernel on X × E. In
the general cases, our main result is the following

Theorem 2.1. Suppose that {Pn,x, n ≥ 1}x∈X is

exponentially continuous with the family of rate func-

tion {Ix, x ∈ X}.

(1) If {πn, n ≥ 1} has the large deviation upper

bounds (1.1) (resp. lower bounds (1.2)) with the good

rate function J̄ (resp. J), then {Pn, n ≥ 1} has the

large deviation upper bounds (resp. lower boundes)

with a rate function Ī (resp. I) that is the lower semi-

continuous version of infx[Ix + J̄(x)] (resp. infx[Ix +

J(x)]);
(2) If {πn, n ≥ 1} satisfies the full LDP with the

good rate function J , then {Pn, n ≥ 1} satisfies the full
LDP with the good rate function I which is the lower
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semi-continuous version of infx[Ix + J(x)].

Remark 2.1. If X is compact and πn = π, ∀n ≥ 1,
then J ≡ 0 and thus I = infx Ix. If in addition Ix(y)
is jointly lower semi-continuous in (x, y), then I is also
lower semi-continuous.

3 LDP for mixture of array of iid

sequences

Let X, E and {πn, n ≥ 1} be as before, {Px, x ∈ X}
a family of probability measures on some measurable
space (Ω,F) and for each n ≥ 1, {Xn

k , k ≥ 1} be se-
quence of E-valued random variables that is iid under
each Px. Define

Yn =
1

n

n∑
k=1

Xn
k

and let Pn,x = P (Yn ∈ ·) be the law of Yn under Px.
Then define

Pn =
∫
Pn,xπn(dx).

A direct consequence of Theorem 2.1 is the following

Corollary 3.1. If {Pn,x, n ≥ 1}x∈X is exponentially
continuous with the family of rate functions {Ix, x ∈ X}
and {πn, n ≥ 1} satisfies the full LDP with the good rate
function J , then {Pn, n ≥ 1} satisfies the full LDP with
the rate function I that is the lower semi-continuous
version of infx[Ix + J(x)].

To relax the conditions on the exponential continu-
ity in the above theorem and on the tightness of X in
[DinZ], we consider the special case where πn = π is
independent of n. Instead, we impose certain moment
conditions. We also need the exponential tightness of
{Pn, n ≥ 1}.

Definition. {Pn, n ≥ 1} is said to be exponentially
tight, if for every L > 0, there is a compact subset KL
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of E such that

Pn(Kc
L) ≤ e−nl, ∀n ≥ 1. (3.1)

Remark 3.1. It is well known that the exponential
tightness is necessary for obtaining the LDP with a good
rate function.

The following are our main results.

Theorem 3.2. Under the above notations, assume

that {Pn, n ≥ 1} is exponentially tight. If for each

λ ∈ E ′, the topological dual of E,

Mn,x(λ) =
∫
e<λ,X

n
1 >dPx <∞,

and Mn,x(λ) converges uniformly in x as n→∞ to some

functional Mx(λ) for which d
dt
Mx(tλ1 + (1 − t)λ2)|t=0

exists for any λ1 and λ2, then {Pn, n ≥ 1} satisfies the

full LDP with a good rate function.
In particular, if {Xn

k } = {Xk} is independent of n
and the moment generating function Mx(λ) of X1 w.r.t.
Px is finite on E ′ for each x, then the above conclusion
holds.

Remark 3.2. (1) The technique for proving the full
LDP is to apply the Inverse Varadhan Theorem.

(2) the moment condition can be weakened.
(3) If X is compact and {Xn

k } and πn = π are inde-
pendent of n then I = infx Ix, where Ix is the good rate
function for LDP of {Px(Yn ∈ ·), n ≥ 1}. But if X is
not compact, the above equality need not be true.

Remark 3.3. An important case is that where
Xk = δZk is the Dirac measure concentrated on {Zk}
for some E-valued sequence {Zk, k ≥ 1} which is iid
under each Px. In this case Yn’s are the associated em-
pirical measures. It is obvious that the moment condi-
tion is satisfied. Thus to obtain the full LDP, we only
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need to seek for the required exponential tightness. The
following is a prctical sufficient condition:

Theorem 3.3. If there is a δ > 0 and a measurable

function h on E which is bounded from below and has

compact level sets, such that

lim sup
n→∞

1

n
log

∫
π(dx)[

∫
eδh(Z1)dPx]

n <∞,

then {Pn = P (Yn ∈ ·), n ≥ 1} is exponentially tight.

4 Discussion on potential appli-

cations

1. To Laplace integrals.

Consider the following very simple case. Let −∞ <
a < b <∞, to estimate

rn =
∫ b

a
enh(x)πn(dx).

Suppose that −∞ < h = inf h ≤ suph = h < ∞ and
that {πn, n ≥ 1} satisfies the full LDP with the good
rate function J . Then it cane be checked that

lim
n→∞

1

n
log rn = sup

x
[h(x) + J(x)].

2. To certain ”hidden” Markov models

Let {Xn, n ≥ 1} be a ”strongly ergodic” Markov
chain on some probability space (Ω, F , P) with the
state space E ⊂ R, ν its unique invariant probability
measure, {Yn, n ≥ 1} be iid under P with the distri-
bution P (X1 = 0) = 1 − p = 1 − P (X1 = 1). The two
families are assumed to be independent of each other.
Define Zn = XnYn (a Markove chain with deletion?).
Yn = 1

n

∑n
k=1 Zk and Pn = P (Yn ∈ ·). Under suitable
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conditions it can be varified that {Pn, n ≥ 1} satisfies
the full LDP with the rate function

I(y) = sup
λ

[λy −
∫

Λ(λx)ν(dx)].

Other possible applications....

The end!

Thank you!
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