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• Let {Ft}t≥0 be a filtration.
Ft represents the information acquired by an economic agent,

i.e.,(an individual, a firm, or a market) during the period [0, t].
• X ∈ mFt := the collection of Ft–measurable random variables.

Example: X = max{St − q, 0}: an option with the maturity t.
• At the present time s, this agent evaluates a future risky

payoff X (e.g. an option) with maturity t ≥ s.
• His payoff at time t is X. This money based value that will be

known at the time t: X ∈ mFt.



Problem: At time s, How much he will pay to buy this X?

• We denote his evaluation of X at time s by Es,t[X] (∈ mFs)
• We then have a family of mappings

Es,t[·] : mFt → mFs, 0 ≤ s ≤ t < ∞

We make the following:

1.1. Axiomatic assumptions:

for each 0 ≤ r ≤ s ≤ t, for each X, X ′ ∈ mFt,

(A1) Es,t[X] ≥ Es,t[X
′], if X ≥ X ′;

(A2) Et,t[X] = X;
(A3) Er,s[Es,t[X]] = Er,t[X];
(A4) 1AEs,t[X] = Es,t[1AX], ∀A ∈ Fs.
where 1A(ω) is the indicator of A

1A =

{
1, ω ∈ A;
0, ω 6∈ A.

Interpretation:
♠ The meaning of (A1) and (A2) are obvious.
♠ In (A3): Er,s[Es,t[X]] = Er,t[X], r ≤ s ≤ t

at the time r, the value Es,t[X] is also regarded as a risky payoff with
the maturity s. The price of this risky payoff Er,s[Es,t[X]] is the same
as the price of the original derivative X with maturity t, i.e., Er,t[X].

♠ In (A4): 1AEs,t[X] = Es,t[1AX], ∀A ∈ Fs

1A is considered as a “digital option”. (A4) means that, at time s,
the agent knows whether 1A worths 1 or zero.
If 1A = 1, then the value Es,t[1AX] is the same as Es,t[X] since the two

outcomes X and 1AX are exactly the same. Otherwise it costs zero.

Definition. A family of mappings {Es,t[·]}0≤s≤t<∞ satisfying (A1)-(A4) is
called an Ft–consistent evaluation.
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1.2. A particular situation: F–consistent nonlinear expectation

If in the place of (A2) we make a more strong condition:
(A2′) Et,T [X] = X, ∀t ∈ [0, T ], ∀X ∈ mFt

We define: E [X|Ft] := Et,T [X], E [X] := E [X|F0] = E0,T [X]
We have, ∀X ∈ mFT , s ≤ t ≤ T
E [E [X|Ft]|Fs] = Es,t[Et,T [X]] = Es,T [X] = E [X|Fs]
E [E [X|Fs]|Ft] = Et,T [Es,T [X]] = Es,T [X] = E [X|Fs]
In particular, ∀t ≤ T, A ∈ Ft, X ∈ mFT

E [X1A] = E0,t[Et,T [X1A]]

= E0,t[Et,T [X]1A]

= E0,t[Et,T [Et,T [X]1A]]

= E0,T [Et,T [X]1A]

i.e.,
E [X1A] = E [E [X|Ft]1A], ∀A ∈ Ft.

We call E [·] : mFT → R : an Ft–consistent nonlinear expectation.

2. F–Consistent Evaluation by BSDE

A large kind of F–consistent evaluation can be derives via BSDE

♦ (Ω,F , P ): A probability space

♦ Bt, t ∈ [0, T ]: a d–dimensional Brownian motion on [0, T ]

Ft := σ{Bs, 0 ≤ s ≤ t}.

♦ L2(Ft) the collection of Ft–measurable random variables such that

E[X2] < ∞.

♦ L2
F(0, t; Rm): all Rm–valued and {Fs}s≥0–adapted stochastic
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processes such that

E
∫ t

0
|φs|2ds < ∞

♦ D2
F(0, t): RCLL processes in L2

F(0, t) = L2
F(0, t; R) such that

E[ sup
0≤s≤t

|φs|2] < ∞.

♦ S2
F(0, t): processes in D2

F(0, t) with continuous paths.

We consider an Ft–consistent evaluation:

Es,t[·] : L2(Ft) → L2(Fs), 0 ≤ s ≤ t ≤ T.

Our axiomatic assumptions are

for each 0 ≤ r ≤ s ≤ t, for each X, X ′ ∈ L2(Ft),

(A1) Es,t[X] ≥ Es,t[X
′], if X ≥ X ′;

(A2) Et,t[X] = X;
(A3) Er,s[Es,t[X]] = Er,t[X];
(A4) 1AEs,t[X] = Es,t[1AX], ∀A ∈ Fs.

A special situation: when (A2) is replaced by a more strong condition:
(A2′) Es,t[X] = X, ∀X ∈ L2(Fs), 0 ≤ s ≤ t.
Interpretation: zero interest rate.
We set E [X|Ft] := Et,T [X]
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3. g–Evaluation and g–expectations

For a given X ∈ L2(Ft), we solve the following BSDE:

Ys = X +
∫ t

s
g(r, Yr, Zr)dr −

∫ t

s
ZrdBr, s ≤ t. (BSDE)

Here the function

g(ω, t, y, z) : Ω× [0, T ]×R×Rd → R

g satisfies condition





(i) g(·, y, z) ∈ L2
F(0, T ), g(t, 0, 0) ≡ 0;

(ii) |g(t, y, z) −g(t, y′, z′)| ≤ µ(|y − y′|+ |z − z′|),
∀y, y′ ∈ R, z, z′ ∈ Rd

(g)

Theorem. We assume (g). Then there exists a unique pair

(Y, Z) = (Y t,X , Zt,X) ∈ S2
F(0, t)× L2

F(0, t; Rd)

solution of (BSDE).

Remark. The Lipschitz condition in (g) can be generated to the case
where g is continuous in y, z and

(a) |g(t, y, z)| ≤ µ(|y|+ |z|), ∀(y, z) ∈ R×Rd,

or

(b) |g(t, y, z)| ≤ µ(1 + |y|+ |z|2), ∀(y, z) ∈ R×Rd.

(see Kobylanski, and San Martin & Lepeltier). If g is only continuous
in (y, z), there is no uniqueness. We should consider the smallest or
the largest solution.
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Definition. We set

Eg
s,t[X] := Y t,X

s .

The system of operators

Eg
s,t[X] : X ∈ L2(Ft) → L2(Fs), 0 ≤ s ≤ t.

is called g–evaluation.
It is a typical dynamic pricing mechanism!

Theorem. Assume that the function g satisfies (g). Then

{Eg
s,t[·]}0≤s≤t≤T

is an (Ft)t≥0–consistent nonlinear evaluation, i.e. it satisfies:

for each 0 ≤ r ≤ s ≤ t and for each X, X ′ ∈ mFt,

(A1) Eg
s,t[X] ≥ Es,t[X

′], if X ≥ X ′;

(A2) Eg
t,t[X] = X;

(A3) Eg
r,s[Eg

s,t[X]] = Eg
r,t[X];

(A4) 1AEg
s,t[X] = Eg

s,t[1AX], ∀A ∈ Fs.
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Sketch of proof.
• (A1): the comparison theorem of BSDE ([P1991], [EPQ1997])
• (A2)–(A3) are clear,

• We now prove (A4): ∀ u ∈ [s, t], we have

1AYu = 1AX +
∫ t

u
1Ag(r, Yr, Zr)dr −

∫ t

u
1AZrdBr.

Namely

1AYu = 1AX +
∫ t

u
g(r, 1AYr, 1AZr)dr −

∫ t

u
1AZrdBr. 2

4. Example: Risk measure of contingent claims

Let X ∈ L2(FT ) be a contingent claim (X ≥ 0) with maturity T , writ-
ten at the time t < T in a financial market. At the time T , the market
must pay the buyer X given from the writer. The minimum cash de-
posited in the market at the present time t is denoted by Et,T [X]. This
is a mapping

Et,T [·] : L2(FT ) → L2(Ft).

• A safty but bad policy is Et,T [X] =esssupω X(ω).

• An ideal policy is the replicating cost of X: Er,θ
t,T [X] := Y r,θ

t ,
Solution the BSDE

− dY r,θ
s = [−r(s)Y r,θ

s − θ(s) · Zr,θ
s ]ds− Zr,θ

s dBs, t ≤ s ≤ T,

Y r,θ
T = X

where θ(t) = σ(t)−1(b(t)− r(t)).

A big problem: at time t, we don’t know r(s) and θ(s), t ≤ s ≤ T .
Usually we only know a range:

K = {(r(·), θ(·)) ∈ L2
F(0, T ) : (r(s), θ(s)) ∈ K, ∀s}

7



where K ⊂ Rd+1 is given.

A wise Solution: define

gK(y, z) = max
(r,θ)∈K

[−ry − θ · z]

and then EgK

t,T [X] := Yt, solution of the nonlinear BSDE:

−dYs = gK(Ys, Zs)ds− ZsdBs, 0 ≤ s ≤ T,

YT = X.

We can prove that ([EPQ1997]),

(i) EgK

t,T [X] ≥ Y r,θ
t , ∀(r(·), θ(·)) ∈ K;

(ii) there exists (r∗(·), θ∗(·)) ∈ K such that, for each t ≤ T ,

EgK

t,T [X] = Y r∗,θ∗
t .

• EgK

t,T [X] is also the price given most conservative writer at the

time t.

• Observe the price of the most conservative buyer is EgK
t,T [X]

gK(y, z) = min
(r,θ)∈K

[−ry − θ · z]

We have

EgK

t,T [X] ≥ EgK
t,T [X]. If X 6≡ EX, then P (EgK

t,T [X] > EgK
t,T [X]) > 0.

4.1. A Special case: nonlinear expectations

If we assume furthermore that

g(t, y, 0) ≡ 0 (g0)

Then, for each 0 ≤ s ≤ t

Eg
s,t[X] = X, ∀X ∈ L2(Fs).
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Indeed, the pair of processes (Y t,X
u , Zt,X

u ) ≡ (X, 0), u ∈ [s, t] solves

Y t,X
s = X +

∫ t

s
g(r, Y t,X

r , Zt,X
r )dr −

∫ t

s
Zt,X

r dBr, s ≤ t.

Definition. Assume (g0). For each X ∈ L2(FT ) and t ≤ T , we set
Eg[X|Fs] := Eg

s,T [X],
Eg[X] := Eg[X|F0] = Eg

0,T [X].
• Eg[·] : L2(FT ) → R is called the g–expectation of X,
• Eg[·|Fs] : L2(FT ) → L2(Fs) is called the conditional

g-expectation of X under Fs.

(A1)–(A4) become:
(A1) If X ≥ X ′, a.s. then Eg[X] ≥ Eg[X ′] and Eg[X|Ft] ≥

Eg[X ′|Ft];
(A2) Eg[c] = c, more generally Eg[X|Ft] = X, ∀X ∈ L2(Ft);
(A3) Eg[Eg[X|Ft]|Fs] = Eg[X|Ft∧s];
(A4) Eg[X1A] = 1AEg[X|Ft], ∀A ∈ Ft.

Remark. For each X ∈ L2(FT ), Eg[X|Ft] is the unniqe r.v. in
L2(Ft) s.t.

Eg[X1A] = Eg[1AEg[X|Ft]], ∀A ∈ Ft.

• This formula uniquely defines the conditional
g–expectation under Ft!!!

4.2. Many properties in classical stochastics still holds!!

Definition. A process Y ∈ D2
F(0, T ) is called

a g–martingale if Eg[Yt|Fs] = Ys;
a g–supermartingale if Eg[Yt|Fs] ≤ Ys;
a g–submartingale if Eg[Yt|Fs] ≥ Ys;

∀0 ≤ s ≤ t ≤ T
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In general,

Definition. Y ∈ D2
F(0, T ) is called

a g–martingale if Eg
s,t[Yt] = Ys;

a g–supermartingale if Eg
s,t[Yt] ≤ Ys;

a g–submartingale) if Eg
s,t[Yt] ≥ Ys;

∀0 ≤ s ≤ t ≤ T

Theorem. (Nonlinear Decomposition Theorem of g–supermartingale).
If g(ω, t, 0) ≡ 0, ∀(ω, t, y). Let Y ∈ D2

F(0, T ) be a g–supermartingale.
Then there exists a unique increasing process A ∈ D2

F(0, T ) such that
Y + A is a g–martingale:

Eg[Yt + At|Fs] = Ys + As, ∀0 ≤ s ≤ t.

General case (without g(ω, t, y, 0) ≡ 0) For each X ∈ L2(Ft) and
K ∈ D2

F(0, T ) we consider the BSDE

Y t,X,K
s = X+Kt−Ks+

∫ t
s g(r, Y t,X,K

r , Zt,X,K
r )dr−∫ t

s Zt,X,K
r dBr, s ≤

t.

and set Eg
s,t[X; K] := Y t,X,K

s .

(A1) Eg
s,t[X; K] ≥ Es,t[X

′; K], if X ≥ X ′;

(A2) Eg
t,t[X; K] = X;

(A3) Eg
r,s[Es,t[X; K]; K] = Er,t[X; K];

(A4′) 1AEg
s,t[X; K] = 1AEg

s,t[1AX; K], ∀A ∈ Fs.

Theorem (Nonlinear Decomposition Theorem of g–supermartingale
[P1999])
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Let Y ∈ D2
F(0, T ) be a g–supermartingale. Then there exists a

unique increasing process A ∈ D2
F(0, T ) such that

Eg
s,t[Yt; A] = Ys, ∀0 ≤ s ≤ t.

Sketch of Proof.
Penalization approach (introduced in [E-K-P-P-Q 1997])

Eg
t,T [Y

(n)
t ; n

∫ ·

0
(Y (n)

r − Yr)
−dr] = Y

(n)
t , t ≤ T, (Y n)

The key point: we can prove that Y (n) ≤ Y . Thus by comparison
theorem

Y n ↗ Y.

We also have

A(n) : = n
∫ ·

0
(Y (n)

r − Yr)
−dr ⇀ A (weakly in L2).

By a technique introduced in [Peng 1999] (monotonicity limit theorem,
we can pass the limit in (Y (n)).

Eg
t,T [Yt; A] = Yt

2
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5. Ft–evaluation determined by a function g

A more interesting problem: given Ft–consistent evaluation
E [·], is it a g–evaluation?

In general, this is not true. We oberve an key fact: Eg
s,t[·] is domi-

nated by Egµ

s,t [·] in the following sense:

Eg
s,t[X]− Eg

s,t[Y ] ≤ Egµ

s,t [X − Y ], ∀s ≤ t, ∀X, Y ∈ L2(Ft).

where gµ(y, z) := µ|y|+ µ|z|.

Thus we ask the following question: If an Ft–consistent nonlinear
evaluation is dominated by Egµ [·] : can we find a function g such that
E [·] ≡ Eg[·]?

Theorem A. ([Peng, 2003]) Let {Es,t[·]}0≤s≤t be an Ft–consistent
evaluation. If it is dominated by Egµ [·]

Es,t[X]− Es,t[Y ] ≤ Egµ

s,t [X − Y ], ∀X, Y ∈ L2(Ft). (H2)

Then there exists a unique function g(ω, t, y, z) satisfying (Lip) and
g(·, 0, 0) ≡ 0 such that,

Eg
s,t[X] = Es,t[X], ∀s ≤ t, ∀X ∈ L2(Ft).

A special case of this result was obtained in [C-H-M-
P,2002]

6. Behaviors of g–evaluations

Recent results
Proposition. Let g, ḡ satisfy (Lip). Then
(i) g(t, y, z) ≥ ḡ(t, y, z), for each (y, z) ∈ R×Rd, for a.e. t ∈ [0, T ], a.s.
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m
(ii) ∀ 0 ≤ s ≤ t, ∀X ∈ L2(Ft)

Eg
s,t[X] ≥ E ḡ

s,t[X].

Proposition. We have
(i) g(t, y, z) is concave (resp. convex) in (y, z),
m
(ii) Eg

s,t[X] is concave (resp. convex) in X.

Proposition. We have
(i) Eg

s,t is positively homogenous: Eg
s,t[λX] = λEg

s,t[X], ∀ λ ≥ 0;
m
(ii) g is positively homogenous: g(t, λy, λz) = λg(t, y, z), ∀ λ ≥ 0.

Proposition. We have
(i) Eg

s,t is subadditive, i.e. Eg
s,t[X + X ′] ≤ Eg

s,t[X] + Eg
s,t[X

′];
m
(ii) g is subadditive in (y, z), i.e., for almost all t ∈ [0, T ].

Similarly Eg
s,t[·] is superadditive (resp. sublinear, superlinear, linear)
m

g is superadditive (resp. sublinear, superlinear, linear).
Proposition. We have

(i) g is independent of y;
m

(ii) Eg
s,t[X + η] = Eg

s,t[X] + η, ∀X ∈ L2(Ft), η ∈ L2(Fs).
Prop. (i) Eg

s,t[·] satisfies the self–financing condition: Eg
s,t[0] ≡ 0;

m
(ii) g(t, 0, 0) ≡ 0.

Zero–interesting rate condition:
Prop. (i) Eg

s,t[·] satisfies Eg
s,t[η] = η, ∀ η ∈ L2(Fs);

m
(ii) g(t, y, 0) = 0, ∀t and y.

Prop. (i) For each z̄i0· ∈ L2
F(0, T )
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Et,T [X] +
∫ t

0
z̄i0

s dBi0
s = Et,T [X +

∫ T

t
z̄i0

s dBi0
s ]

m
(ii) g(s, y, z) does not depends on the i0th component zi0 of z ∈ Rd.

7. How to find g(ω, t, y, z) through the black box Eg[·]
7.1. Non–parameter cases

General case

Xs = x +
∫ s

t
b(X t,x

r )dr +
∫ s

t
a(X t,x

r )dBr, s ≥ t.

Prop. ([BCHMP], 2003) For each (t, x, p, y) ∈ [0,∞)×Rn×Rn×R,
we have

L2– lim
ε→0

1

ε
[Eg

t,t+ε[y + p · (X t,x
t+ε − x)]− y] = g(t, y, aT (x)p) + p · b(x).

In practice

g(t, y, aT (x)p) ≈ {Eg
t,t+ε[y + p · (X t,x

t+ε − x)]− y}1

ε
− p · b(x)

log P (t)

Markovian Properties: An Ft–progressively meas. process (Xt)t≥0

is said to be Markovian under E [·] if for each s ≤ t and Φ ∈
Cb(R

n), we have

E [Φ(Xt)|Fs] is σ{Xs}–measurable.
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Example. Assume g = g0(Xt, y, z)+ qt · z, q ∈ L∞F (0, T ; Rd). Then

dXt = (b(Xt)− qt)dt + dWt, X0 = x ∈ Rn

is an Eg–Markovian process.

Sketch of Proof of Theorem A.

We need:

Theorem (Nonlinear Decomposition Theorem of E–supermartingale
[Peng 2003] ). Let Y ∈ D2

F(0, T ) be a E–supermartingale dominated
by Egµ [·]. Then there exists a unique increasing process A ∈ D2

F(0, T )
such that

Es,t[Yt; A] = Ys, ∀0 ≤ s ≤ t.

Step 1. Since Y t,X
s := Es,t[X] is a gµ–submartingale and −gµ–

supermartingale, there exists an increasing process At,X ∈ D2
F(0, T )

and Āt,X ∈ D2
F(0, T ), such that

Y t,X
s = Egµ

s,t [X;−At,X ] = E−gµ

s,t [X; A].

i.e.,

−dY t,X
s = gµ(Y t,X

s , Zt,X
s )ds− dAt,X

s − Zt,X
s dBs,

−dY t,X
s = −gµ(Y t,X

s , Z̄t,X
s )ds + dĀt,X

s − Z̄t,X
s dBs.

It then follows that

Zt,X
s ≡ Z̄t,X

s , d(At,X
s + At,X

s ) ≡ gµ(Y t,X
s , Zt,X

s )ds.
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Thus there exists gt,X ∈ L2
F(0, T ) such that

−dY t,X
s = gt,X

s ds− Zt,X
s dBs,

and
|gt,X

s | ≤ µ(|Y t,X
s |+ |Zt,X

s |).

Step 2. Since Y t,X
s − Y t,X′

s is dominated by Egµ

s,t [X −X ′], using the
similar argument,

|gt,X
s − gt,X′

s | ≤ µ(|Y t,X
s − Y t,X′

s |+ |Zt,X
s − Zt,X′

s |).

Step 3. For each fixed (y, z) ∈ R1+d, consider a forward SDE

−dY t0,y,z
s = gµ(Y t0,y,z

s , z)ds− zdBs, s ≥ t0,

Y t0,y,z
t0 = y.

Since Y t0,y,z
s is a E–supermartingale

Y t0,y,z
s = Es,t[Y

t0,y,z
s ; At0,y,z]

Thus Y t0,y,z is a Es,t[·; At0,y,z]–martingale

⇒ Egµ

s,t [·; At0,y,z]-submartingale.

We use again g–submartingale decomposition theorem:

−dY t0,y,z
s = gt0,y,z

s ds− Zt0,y,z
s dBs, s ∈ [t, T ].

7.2. A special situation: g = g(z)

Eg
t,T [z(BT −Bt)] = g(z)(T − t).
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