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- Let P(i) = (p,;(£)){(¢ 22 0) be a wet of real-valued functions on a countable set
E. F[t) 15 ealled a Markov process if .

P(#) =0, P()1=1, P(s+1t) = P()P(),

limP®#) =1. - ' L)

10
It is called weakly symmetrizable, if there is (#; > 0: ¢¢€ E) such that
nlplj(t) == ”ipji(t>7 V"v .7 € E; Vi > 0. ’ (2)

There are two questions: (i) When does Eq. (2) hold for a given P(t)? What
is the corresponding- criterion? (ii) How can we find all (#,) which satisfies (2)9

It is known that for every -Markov process P(?) we have right-hand derivatives

dP(%) oA L
B =gy iiem @
and
0<q;<oo(izj), 0<¢q;=—q;< o, (4
ZQ;}QQ:‘, (ViEET)-

jFi
Then @ = (q,;) is called a @Q-matrix. If Q = (q;) is finite, i. e. ¢;<<+00, Vi€ K,
then P(%) satisfying (3) is called a @-process. The two questions (i) and (ii) men-
tioned above also exist for the @-matrix. Furthermore, there appears another

question: (iii) When does there exist a weakly symmetrizable @Q-process for a given
finite @-matrix? When does there exist the only one?

In this paper, the concept of an abstract field is established. We have given a
powerful criterion of determining whether a field is a potential field. Having 'studied
various properties of a .potential field, we applied the results of the field theory to the
Markov processes, hence questions (i) and (i) for any P(#) and for any @Q-matrix
and question (iii) for some @-matrices have been solved.

Let E be any countable set, T be any index set. Let a(t) = (a;(¥): 4,j€B)
be a set of functions on 7 to [—oo, -+co]. It satisfies the following fundamental
hypotheses:

i) Non-diagonal elements of a() are non-negative and finite;
it)  “Co-zero property™:

a;(t1) =0<>0a;,(t) =0. VieT, Vi,j€R (5)
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Definition 1. If a;() >0, then 4 is called “direct reaching” j at time ¢, and
we write 1 — j. If 4,—>4,—> ++-—14,,, at time ¢, then j is “reachable” from i at
time t, and we write ¢ ~j. Thus, L(¢) = (4, +--, f,4,) i called a path of a(?)
at time t.

The set of all paths of a(4) at time # is denoted &£ (%).
If at time ¢, 2 — j, then we set
(P;j(t) = IOgGii(t) — IOg"hi(’;) (%)
and we write (1) = (¢;(%)). where ¢;(¥) is indefinite when <—t->; at time ¢.

Definition. 2. (I, a(t), & (@), ¢(&)) (simpiy, a(t)) is called a field. If
L)ILE) = (4, 4, *++, 1,31), then

P S vt @

is called the work completed by the field a(#) along L(%).
Definition 3. a(t) is called a potential field, if there is a set U(#)=(u,(t): i € E)
of real-valued funections such that
(1) — u;(t) = @,;(t), for i—j (at time t). (8)
Then U(%) is called a potential of the potential field a($).

Definition 4. a(t) is called weakly symmetrizable, if there is a set V(¢) =
(vi(1): 1€ E) of real-valued functions such that

i) w(t)>0, VicE, VieT, €))
i) vi()e;(#) = vi($)a;(t), Ve T,Vi, j€E. (10)
Then V(%) is called the symmetrizing sequence of a(t).
Definition 5. We say that a(¢) is independent of the path if for every closed
pa't'h L(t) = (/&: il, Tty iﬂ’ 7’)
p(L($)) = 0. (11)
Theorem 1. The following three properties of a field a(t) are equivalent. (i)

a(t) s a potential field; (i) a() is weakly symmetrizable; and (iii) a(t) is path-
independent,

Furthermore, if a(#) has a potential U($) = (;(¢)), then (expl—u;(¢)]1:i¢ E)
is a symmetrizing sequence of a(¢). Conversely, if a(¢) has a symmetrizing sequence
V(t) = (vi(t)), then (—logv,(¥):i€ E) is a potential of a(t).

For fixed £ € I', define an equivalence relation ~ as follows:

i~ j if and only if ir~j or 1 = j, (12)
where “4r~~;” means both “¢-~j and j~". Thus, we may divide E into
equivalent classes (E,(¢):1€ D(t)) by the equivalence relation. For each 1€ D(%),
we choose A, € E,(#) at will; for each 1€ E,(£), © ¥ A;; and we also choose arbitrarily
a path

L;(t) = (Aly 'ily MY 'ikai)y (13)
and put
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bag (D) = @y (D ()0, () (14)

and
a’m,(t) = aiik(t)aikik._l(t) Tt 0., ®. (15)

Let
&AlAl(t) = 1 (16)

and
vi(t) = 8,a,()/ ;0 (1), a7)

The eriterion of determining whether a field s a potential field is as follows.
Theorem 2. A ficld a(t) s a potential ficld «f and only if
(D8, ()d0, (1) = b (s, (£)8,0 ()
VieT, Vi, je E(t), VieD(t).
Some common fields (in particular, n—dimensional lattice fields) are to be discussed

in detail and several more delicate criteria are to be given. Now, take 2-dimensional
lattice field for an example to illustrate them.

(18)

Take E, = (0, 1, +2,+--+), E,=E, X E,, and denote points of %, by (%, j),
(k,1)ore, e.
Defimition 6. A field a = (a(e, ¢'):e, ¢’ € E,) is called a 2-dimensional lattice
field (in the narrow sense) if
>0, for d(e, ¢') =1,
a(e, ¢ Ve, ¢ € B 19
( ){=o, for d(e, ¢’) > 1, ’ (19)
where d(+, -) is the ordinary Euclidean distance.
Theorem 3. A 2-dimensional lattice field a = (a(d, j; k, 1)) is a potential field
if and only f
a('i,j;'i+l,j)a('i+1,j;’5+1,j+1)a('i+l,j+l;i,j+l)a(’i,j+l;i,j)
=a(s,j;0,j+Da,j+1;i+ 1, j+Da(G+1, j+1; ¢+1, ja(i+1, j; 4, 5)
v(i, j) € E,. (20)
The condition (20) cannot be improved.
Theorem 4. If the 2-dimensional lattice field a has a potential, then its potential
is (—log=(t, j): (3, j) € E;):
.. T a(l — 5(4),0;1,0) Loa@i k —s(4); 4, k)
(4, j) = =(0,0) » ; ; =, (21)
zj-l—-':'[n a(l,0;1 — s(@), 0) k=sj) a(i, ks 4, k — s(7))

where n(0,0) is an arbitrary positive constant, and

1, for ¢ >0,
s(i) =< 0, for ¢ =0, (22)
—1, for 7+ << 0.

We apply the results of the field theory to Markov chains, N-tuple random walks,
Markov processes and @Q-matrices, and obtain a series of results. Now, we take Mar-
kov proeesses for an example to illustrate them.

Theorem 5. For co-zero Markov process P(1), the following assertions are equiva-
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lent. (1) P(t) is a potential field; (ii) P(%) is weakly symmetrizable; (iii) P(t)
1s path independent; and (iv) for every 1€ D, Vi, j€ E, we have

B (D ()Bja, (1) = Dai(Dpis(DDia, (B VEET (23)

Definition 7. 'The potential U(¢) is called a conservative one if it does not depend
on't. :

. Theorem 6. The potential of the Markov procsss’ P(t) which kos « pﬂ*'ﬁuml 18
determmed completely by ils conserwtwe potential. . -

From this theorem, we have only to diseuss conservative poteutial and symmetrizing
sequence which dces not depend on £, ka;y g ;unuetnzable will be taken in this
serse later on. Thus, let Q == {q;;) ke finite, @ = (q;;) is conservative if

ZQtl“O

'The Markov. process (Q~process) which has a potentlal will be called a potentlal
Markov process (potential Q—process). : CH

. ~ Theorem 7. The minimal Q-process (pj=(#)) is "a potential Q—process if and
only if its Q-matriz s too.

.. Theorem 8. * Let P(t) is a potential Q-process, then
pi () = g Pt g
olds for @ pair i, j € E if and only if
_ p;i(t) = ;Qik peit) ._
holds. |
We have discussed whether birth-and-death processes, conservative both-side birth-

and-death processes and single exit Q-processes are all potential processes or not. Then,
all of potential @-processes have been found out.

Definition 8. A Q-matrix @ = (q;;) is called a single exit if it is conservative
and if‘the equ;z_tion
— D i =0
j

N I<su, <1

has only one non-zero linear independent solution. A .(Q-process 1;vith such a @-matrix
is called a single exit -process.

(i€ E, ASO)} . (24)

Theorem 9. Let Q be a single exit Q-matriz, then there exists o single ewit
potential Q-process if and only if Q is weakly symmetrizable and
Siaa(d) <o (1>0). (25)

There exists at most one single exit potential Q-process, i. e.,

i) =2 () + EIOTION : (29

A Z :n:kivk<2.)
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where (p;j(2)) s the Laplace transformation of (p;i(3)), (=;) is the symmetrizing
sequence of @ and

z;,(4) =1 - i Z p}’}‘“ (1. P : (27)

Definition 9. A potential process P(%) is symmetrizable, if it is wezkly symmetriz-
able and its symmetrizing sequence is a probadhility measure orc 4.
Definition 10, A Q—proéess P(t) is reversitle, if it has a svirmetrizing proba-
bility measure (=) ard : 0\
lim p;(t) = =, Vi, jeE. (28)
t >0

We have aiso discussed symmetrizable Markov processes and reversible ()-processes
ir.- detail.



