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Abstract. This paper surveys the main progress made in the past dozen years or more in the study
of reaction-diffusion (abbrev. RD) processes. The processes are motivated from some typical models
in the modern non-equilibrium statistical physics and consist an important class of interacting particle
systems which is currently an active research field in probability and mathematical physics. The models
are concrete but as a part of the infinite-dimensional mathematics, the topic is quite hard. It is explained
how new problems arise, how some new ideas and new mathematical tools are introduced. Surprisingly,
the mathematical tools produced from the study on the simple models then turn to have a lot of powerful
applications not only in probability theory but also in other branches of mathematics. Nevertheless, the
story is still far away to be finished, some important open problems are proposed for the further study.
It is hoped that the paper would be readable for non-experts and new comers.

The paper consist of nine short sections. We begin with an introduction of the models (Section 1).
Then we turn to the finite-dimensional case, in which the processes are indeed Markov chains (Section
2). The infinite-dimensional processes are constructed in Sections 3 and 5. The main tool of the
construction is discussed in Section 4. The existence of the stationary distribution, the ergodicity
and the phase transitions of the processes are discussed respectively in Sections 6–8. In the last
section, the relation between the RD-processes and RD-equations are described.

1. The models.
Let S = Zd, the d-dimensional lattice. Consider a chemical reaction in a container. Divide the

container into small vessels. Imagining each u ∈ S as a small vessel in which there is a reaction.
The reaction is described by some Markov chains (abbrev. MCs) with Q-matrices Qu = (qu(i, j) :
i, j ∈ Z+). That is, the rate of the MC jumping from i to j �= i is given by qu(i, j). Throughout the
paper, we consider only totally stable and conservative Q-matrix: −qu(i, i) =

∑
j �=i qu(i, j) < ∞ for

all i ∈ Z+. Thus, the reaction part of the formal generator of the process is as follows:

Ωrf(x) =
∑

u∈S

∑
k∈Z\{0} qu(xu, xu + k)

[
f(x + keu) − f(x)

]
,

where eu is the element in E := ZS
+ whose value at site u is equal to one, and at other sites are

zero. Moreover, we have used the following convention: qu(i, j) = 0 for i ∈ Z+, j /∈ Z+ and u ∈ S.
Mathematically, one may regard xu as the u-th component of x in the product space Z+

S . The other
part of the generator of the process consists of diffusions between the vessels, which are described by
a transition probability matrix (p(u, v) : u, v ∈ S) and a function cu (u ∈ S) on Z+. For instance, if
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there are k particles in u, then the rate function of the diffusion from u to v is cu(k)p(u, v), where
cu satisfies

cu ≥ 0, cu(0) = 0, u ∈ S. (1.1)

Thus, the diffusion part of the formal generator becomes

Ωdf(x) =
∑

u,v∈S cu(xu)p(u, v)[f(x − eu + ev) − f(x)].

Finally, the whole formal generator of the process is Ω = Ωr + Ωd.

Example 1.1 (Polynomial model). The diffusion rate is cu(k) = k and p(u, v) is the simple random
walk on Zd. The reaction rates are of birth-death type:

qu(k, k + 1) = bk =
∑m0

j=0 βjk
(j), qu(k, k − 1) = ak =

∑m0+1
j=1 δjk

(j),

where k(j) = k(k − 1) · · · (k − j + 1), βj , δj ≥ 0 and β0, βm0 , δ1, δm0+1 > 0.

In particular, we have

Examples 1.2. (1). Schlögl’s first model: m0 = 1.
(2). Schlögl’s second model: m0 = 2 but β1 = δ2 = 0.

All these examples have a single type of particles and so the number of the particles is valued in
Z+. If we consider two types of particles, then the reaction part becomes a MC in Z2

+. Here is a
typical example.

Example 1.3 (Brussel’s model). For each type of the particles, the diffusion part of the formal
generator is the same as in Example 1.1. As for the reaction part, the MC has the following transition
behavior.

Z2
+ � (i, j) → (i + 1, j) at rate λ1

→ (i − 1, j) at rate λ4i
→ (i − 1, j + 1) at rate λ2i
→ (i + 1, j − 1) at rate λ3i(i − 1)j/2

where λk’s are positive constants.

These examples are typical models in non-equilibrium statistical physics. Refer to [1] or [2] for
more information about the background and references. About 15 models are treated in these books.
The author learnt the models from Prof. S. J. Yan in 1978[3].

2. Finite-dimensional case.
Replacing S = Zd with a finite set S (which is fixed in this section) in the above definitions of

Ωr and Ωd, the corresponding processes are simply MCs since the state space E = ZS
+ (or

(
Z2

+

)S)
is countable. At the beginning, one may think this step can be ignored because there have already
been a well-developed theory on MCs. However, the subject is not so easy as it stands. Indeed, we
did not know how to prove the uniqueness of the MCs for several years. The usual criterion for the
uniqueness says that the equations

(λ − Ω)u(x) = 0, 0 ≤ u(x) ≤ 1, x ∈ ZS
+

have only the solution zero for some (equivalently, for all) λ > 0. It should be clear that the
equations are quite hard to handle especially in higher-dimensional case. The criterion does not take
the geometry of the MC into account.

To overcome this difficulty, we regard the set {x :
∑

u∈S xu = n} as a single point n (n ≥ 0).
Construct a single birth process (i.e., when k > 0, qi,i+k > 0 iff k = 1) on Z+ which dominates the
original process. Since for single birth processes, we do have a computable criterion for the uniqueness
and then we can prove the uniqueness of the original processes by a comparison argument. This and
related results are presented in [4]. See also Chen1 for some improvement.

By using an approximation of the processes with bounded rates (in this case, the process is always
unique), a more general uniqueness result (even for Markov jump processes on general state space)
was proved in [5]. The following result is also included in [1,2,6].

1Chen M F. Single birth processes, preprint, 1997.
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Theorem 2.1. Let Q = (qij) be a Q-matrix on a countable set E. Suppose that there exist a sequence
{En}∞1 and a non-negative function ϕ such that En ↑ E, supi∈En

(−qii) < ∞, limn→∞ infi/∈En
ϕi = ∞

and
∑

j qij(ϕj − ϕi) ≤ c ϕi for all i ∈ E and some c ∈ R, then the process (MC) is unique.

To justify the power of the theorem, for the above examples, simply take ϕ(x) = c[1+
∑

u xu] and
En = {x :

∑
u∈S xu ≤ n} for some suitable constant c. Indeed, it can be proved that the conditions

of the theorem are also necessary for the single birth processes (see [1] or [2]) and up to now we do
not know any counterexample for which the process is unique but the conditions of Theorem 1.3 do
not hold. The theorem now has a very wide range of applications. For instance, it is basic result
used in study of the RD-processes (cf. [7]–[31]) and the mean field models (cf. [32]–[36]) which will
be discussed later. It was used in Chen [37] to study an extended class of branching processes and it
was actually a key in Song [38] (who knew the result from the author in 1984) to study the Markov
decision programming in unbounded case. The theorem is also included in the book by Anderson [39;
Corollary 2.2.16] and followed with some extension in [40]–[42]. The generalized result of Theorem 2.1
given in [5] is also meaningful in quantum mechanics, refer to [43] and references within.

We have seen that how the models lead us to resolve one of the classical problems for MCs
and produce some effective results. Some new solutions to the recurrence and positive recurrence
problems are also given in [4], [1] and [2]. However, the positive recurrence for the Brussel’s model
was proved only in 1990 by Han [22] in the case of d = 1 and by J. W. Chen (1991) for the general
finite-dimensional situation ([2; Example 4.50]). From the papers listed above, one can see again
a lot of applications of these results but we are not going to the details here. In conclusion, the
finite-dimensional Schlögl’s and Brussel’s models are all ergodic and so have no phase transitions.
Thus, in order to study the phase transition phenomena for the systems, we have to go to the
infinite-dimensional situation.

Before moving further, let us compare the above models with the famous Ising model (refer to [1]
or [2] for instance).

(1) The state space E = {−1,+1}Zd

for Ising model is compact but for Schlögl’s models, the
state space E = ZZd

+ is neither compact nor locally compact.
(2) The Ising model is reversible, its local Gibbs distributions are explicit. But the Schlögl’s

models has no such advantages except a very special case.
(3) The Ising model has at least one stationary distribution since every Feller process with com-

pact state space does. But for non-compact case, the conclusion may not be true.
(4) The generator of the Ising model is locally bounded but it is not so for the Schlögl’s models.

From these facts, it should be clear that the Ising and the Schlögl’s models are very different.

3. Construction of the processes.
The diffusion part of the operator can not be ignored, otherwise, there is no interaction and

then the RD-processes are reduced to the classical MCs. If we forget the reaction part, then the
processes are reduced to the well-known zero range processes. For which, the construction was
completed step by step by several authors. In a special case, the process was constructed by Holley
(1970)[44], the general case was done by Liggett (1973)[45]. Then, Andjel (1982)[46], Liggett & Spitzer
(1981)[47] simplified the construction. For all the models considered in the last paper, the coefficients
of the operator are assumed to be locally bounded and linear. Thus, even in this simpler case, the
construction is still not simple.

A standard tool in constructing Markov processes is the semigroup theory, as was used by Liggett
(1985)[48] to construct a large class of interacting particle systems. However, the theory is not helpful
in the present situation. Even one has a semigroup at hand, it is still quite a distance to construct
the process since in our case we do not have the Riesz representation theorem for constructing the
transition probability kernel. Moreover, from the author’s knowledge, since the state space is so poor,
the usual weak convergence (even on the path space) is not effective for the construction. What we
adopt is a stronger convergence.

Recall for given two probability measures P1 and P2 on a measurable state space (E,E), a coupling
of P1 and P2 is a probability measure P̃ on the product space (E2,E2) having the marginality:
P̃ (A × E) = P1(A) and P̃ (E × A) = P2(A) for all A ∈ E. Next, assume that (E, ρ,E) is a metric
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space with distance ρ. The Wasserstein distance W (P1, P2) of P1 and P2 is defined by

W (P1, P2) = inf
P̃

∫
E2

ρ(x1, x2)P̃ (dx1, dx2), (3.1)

where P̃ varies over all couplings of P1 and P2. Refer to [2] for further properties of the Wasserstein
distance.

Now, our strategy goes as follows. Take a sequence of finite subsets {Λn} of S = Zd, Λn ↑ S.
Using Λn instead of S, we obtain a MC Pn(t, x, ·) as mentioned in the last section. For each n < m,
one may regard Pn(t, x, ·) as a MC on the space Em := ZΛm

+ and hence for fixed t ≥ 0 and x ∈ Em,
the distance W (Pn(t, x, ·), Pm(t, x, ·) of Pn(t, x, ·) and Pm(t, x, ·) is well defined. Clearly, one key step
in our construction is to prove that

W (Pn(t, x, ·), Pm(t, x, ·) −→ 0 as m, n → ∞. (3.2)

Certainly, it is no hope to compute exactly the W -distance since Pn(t, x, ·) is not explicitly known.
In virtue of (3.2), we need only a upper bound of the distance and moreover it follows from (3.1)
that every coupling gives us such a bound. The problem is that a coupling measure of Pn(t, x, ·) and
Pm(t, x, ·) for fixed t and x is still not easy to construct, again due to the fact that these marginal
measures are not known explicitly. What we know is mainly the operators Ωn obtained from Ω but
replacing Zd with Λn. Thus, in order to get some practical coupling, it is natural to restrict ourselves
to the Markovian coupling, i.e., the coupling process itself is again a MC. This analysis leads us to
explore a theory of couplings for time-continuous Markov processes, which dates back to 1983[49].

4. Markovian couplings.
Let us now start from the original point. Given MC Pk(t) on Ek (k = 1, 2), we want to construct

a MC P̃ (t) on the product space E1 × E2 such that

P̃ (t)f̃k(x1, x2) = Pk(t)fk(xk), xk ∈ Ek, k = 1, 2 (4.1)

for all bounded function fk on Ek, where f̃k is a function on E1 ×E2 defined by f̃k(x1, x2) = fk(xk),
k = 1, 2. Recall that there is a one-to-one correspondence between a Q-matrix Q = (qij) and its
operator Ωf(i) =

∑
j �=i qij(fj −fi). We now have the marginal operators Ω1 and Ω2 and furthermore

an operator Ω̃ of P̃ (t) on the product space E1 × E2. In view of (4.1), it is easy to see that Ω̃ must
satisfy the following marginality.

Ω̃f̃k(x1, x2) = Ωkfk(xk), xk ∈ Ek, k = 1, 2 (4.2)

Any operator Ω̃ satisfying (4.2) is called a coupling operator.
The existence of a coupling operator is not a problem and indeed there exist infinitely many

such operators. A real hard problem is the uniqueness of the process for the coupling operators.
Fortunately, for which we do have a complete answer.

Theorem 4.1[5]. The marginal operators determine the processes uniquely iff so does a (equivalently,
any) coupling operator. Moreover, under the uniqueness assumption, (4.1) and (4.2) are equivalent.

Refer to [50] and [51] for additional information about this result. This is our first fundamental
result on couplings. Since then, we have gone a long trip in the field: from MC to general jump
processes[5], from discrete to continuous space[52], from Markovian coupling to optimal Markovian
coupling[50], from the exponential convergence to the estimation of spectral gap[53],[50], from compact
manifold to non-compact one[54]−[56] and from finite dimension to infinite one[8]−[13],[57]−[59]. No
doubt, the coupling method is now a powerful tool and has many applications. The story of our
study on couplings is out of the scope of the paper. The readers are urged to refer to the survey
articles [60]–[62] for an account of the recent progress.
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5. Construction of the processes (continued).
We now return to our main construction. We will restrict ourselves on single reactant for a while.

Let (ku) be a positive summable sequence and set E0 = {x ∈ E : ‖x‖ :=
∑

u∈S xuku < ∞}, i.e., a L1

subspace of E with respect to (ku). Roughly speaking, the key of our construction (which is rather
lengthy and technical) is to get the following estimates:

(1) Pn(t)‖ · ‖(x) ≤ (1 + ‖x‖)ect, x ∈ E0 and
(2) WΛn

(Pn(t, x, ·), Pm(t, x, ·)) ≤ c(t,Λn, x;n,m), x ∈ E0,
where c is a constant independent of n, c(t,Λn, x;n,m) ∈ R+ satisfy lim

m≥n→∞
c(t,Λn, x;n,m) =

0 and WV is the Wasserstein distance restricted on ZV
+, with respect to the underlying distance∑

u∈V |xu − yu|ku. The second condition (2) shows that
{
Pn(t, x, ·) : n ≥ 1

}
is a Cauchy sequence

in the WV -distance (for fixed finite V ). Note that our operators are not locally bounded and the
particles from infinite sites may move to a single site, so the process may be explosive at some single
site. This explains the reason why we use E0 instead of E. Then, the first moment condition (1)
ensures that E0 is a closed set of the process. Finally, in order to prove that the limiting process
satisfies the Chapman-Kolmogorov equation, some kind of uniform controlling in the second condition
is also needed.

To state our main result, we need some assumptions.

sup
v

∑
u p(u, v) < ∞, (5.1)∑

k �=0 qu(i, i + k)|k| < ∞, u ∈ S, (5.2)

sup
k,u

|cu(k) − cu(k + 1)| < ∞, (5.3)

sup
{

gu(j1, j2) + hu(j1, j2) : u ∈ S, j2 > j1 ≥ 0
}

< ∞, (5.4)

where

gu(j1, j2) =
1

j2 − j1

∑
k �=0

(
qu(j2, j2 + k) − qu(j1, j1 + k)

)
k, j2 > j1 ≥ 0,

hu(j1, j2) =
2

j2 − j1

∑∞
k=0

[(
qu(j2, j1 − k) − qu(j1, 2j1 − j2 − k)

)+

+
(
qu(j1, j2 + k) − qu(j2, 2j2 − j1 + k)

)+
]
k, j2 > j1 ≥ 0.

The next result is due to Chen (1985)[8], first reported at the Second International Conference on
Random Fields, Hungary, 1984. See also [9], [1] and [2] for more general theorems.

Theorem 5.1. Denote by E0 the Borel σ-algebra generated by the distance ‖ · ‖ on E0. Under (1.1)
and (5.1)–(5.4), there exists a Markov process on (E0,E0), the corresponding semigroup (Pt) maps the
set of Lipschitz functions on E0 with respect to ‖ · ‖ into itself. Moreover, for every Lipschitz function f
on E0, the derivative of Ptf at the origin coincides with Ωf in a dense set of E0.

The conditions (1.1), (5.1) and (5.2) are technical but natural. For instance, when p(u, v) is the
simple random walk, (5.1) becomes trivial. However, the conditions (5.3) and (5.4) are essential
in this construction, they are keys to the estimates (1) and (2) mentioned above and also to the
study of mean field models discussed below. It is now a simple matter to justify the assumptions of
Theorem 5.1 for Example 1.1 an Examples 1.2. However, up to now, we do not know how to choose
a distance so that our general theorem[9,1,2] can be applied to obtain a Lipschitz semigroup for
Example 1.3. In the case where the diffusion rates are bounded or growing at most as fast as log xu,
a process corresponding to Example 1.3 was constructed by Tang[31] (see also [2; Example 13.38])
and Han[19]−[21] respectively. In the latter papers, the martingale approach was adopted but not the
analytic one used here.

Open Problem 5.2. Construct a Markov process for the Brussel’s model.

The next result is due to Li [24], which improves the author’s [12].
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Theorem 5.3. Under the same assumptions as in Theorem 5.1, if additionally,

sup
u

∑
k �=0 qu(i, i + k)

[
(i + k)m − im

] ≤ const. (1 + im), i ∈ Z+ (5.5)

for some m > 1, then the process constructed by Theorem 5.1 is also unique.

The proof of Theorem 5.3 is also non-trivial. It uses an infinite-dimensional version of the maxi-
mum principle, due to Tang [31] and Li [24]. This is the third mathematical tool developed from the
study of RD-processes.

6. Existence of stationary distributions.
When the state space is compact, it is known that every Feller process has a stationary distribution.

But for non-compact case, there is no such a general theorem and so one needs to work case by case.
The next result is a particular case of [1] (in Chinese) and [10] (in English). See also [23].

Theorem 6.1. There always exists at least one stationary distribution for the polynomial model.

The intuition for the result is quite clear since the order of the death rate is higher than the birth
one, the number of particles at each site is kept to be almost bounded and then we may return to
the compact situation. However, the proof depends heavily on the construction of the process. We
will not go to the details here.

7. Ergodicity.
There are two cases.
a) The general case. By using the coupling method again, some general sufficient conditions for

the ergodicity of the processes were presented in [1] and in [10] . The result was then improved
in Neuhauser [28] and further improved in [11]. In the case where the coefficients of the operator
are translation invariant and with an absorbing state, some refined results are given in Li [25]. A
particular result from [11] can be stated as follows.

Theorem 7.1. For the polynomial model, when β1, · · · , βm0 and δ1, · · · , δm0+1 are fixed, the processes
are ergodic for all large enough β0.

We will come back to this topic at the end of the paper.
b) The reversible case. When the reaction part is a birth-death process with birth rates b(k) and

death rates a(k), the RD-process is reversible iff p(u, v) = p(v, u) and (k + 1)b(k)/a(k) =constant,
independent of k[14].

The next result is due to Ding, Durrett and Liggett [17].

Theorem 7.2. For reversible polynomial model, the process is always ergodic.

The proof of the result is a nice illustration of the application of the free energy method. It also
uses the power of the monotonicity of the processes. The result was then extended by Chen, Ding &
Zhu [14] to the non-polynomial case.

If we replace β0 > 0 with β0 = 0, then we obtain two stationary distributions, one is trivial and the
other one is non-trivial. The question is that starting from a non-trivial initial distribution, whether
the process converges to the non-trivial stationary distribution (ergodic) or not. The affirmative
assertion is called Shiga’s conjecture, which was solved by Mountford [27].

Theorem 7.3. For the reversible polynomial model with β0 = 0, under mild assumption, the Shiga’s
conjecture is correct.

8. Phase transitions.
a) RD-processes with absorbing state. The following result was first proved by Y. Li and X. G.

Zheng (1988) by using color graph representation and then simplified by R. Durrett (1988) by using
oriented percolation (see [2; Theorem 15.8]).
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Theorem 8.1. Take S = Z. Consider the RD-process with birth rates b(k) = λk, arbitrary death
rates a(k) > 0 (k ≥ 1) and the diffusion coefficient xup(u, v), where p(u, v) is the simple random
walk. Then for the process X0(t) starting from x0: x0

0 = 1 and x0
u = 0 for all u �= 0, we have

inf{λ : P[X0(t) �≡ 0 for all t > 0] > 0} < ∞. In other words, for some λ > 0, there exists a non-trivial
stationary distribution except the trivial one.

b) Mean field models. In statistical physics, one often studies the mean field models as simplified
approximation of the original ones. It is usually a common phenomena that the mean field models
are easier to exhibit phase transitions. Roughly speaking, the mean field model of a RD-process is
the time-inhomogeneous birth-death process on Z+ with death rates a(k) as usual but with birth
rates b(k) + EX(t), where X(t) denotes the process. The term EX(t) represents the interaction of
the particle at the present site with the particles at the other sites in the original models. The next
result is due to Feng & Zheng [36].

Theorem 8.2. For the mean field of the second Schlögl model, there always exists at least one stationary
distribution. There is precise one if δ1, δ3 � 1 and there are more than two if δ1 < δ2

1 < 1/2 + (2β2 +
1)/(3δ1 + 6δ3) and β0 is small enough.

For more information about the study on the mean field models, refer to [32]–[36]. In [63], the
models are treated as a measure-valued process. Here, we mention another model, the linear growth
model which exhibits phase transitions, refer to Ding & Zheng [18]. However, we are still unable to
answer the following problem.

Open Problem 8.3. Does there exist more than one stationary distribution for the polynomial model
with no absorbing states?

The last phase means that β0 > 0. In physics, this represents an exchange of the energy between
inside and outside. From mathematical point of view, there is an essential difference between β0 = 0
and β0 > 0. For instance, when β0 = 0, the process restricted on {x :

∑
u xu < ∞} is simply a MC

but this is no longer true when β0 > 0.
Because the RD-processes are quite involved, partially due to the non-compactness of the state

space. Thus, one may construct some similar models with finite spin space to simplify the study.
There are a lot of publications along this direction. Refer to Durrett et al [64]–[66] and references
therein.

9. Hydrodynamic limits.
Consider again the polynomial model. However, we now study the process with the rescaled

operator Ωε = ε−2Ωd + Ωr. Our main purpose is looking for the limiting behavior of the scaling
processes as ε → 0. To do so, let με(ε > 0) be the independent product of the Poisson measures for
which με(xu) = ρ(εu), u ∈ Zd, where ρ is a non-negative, bounded C2(Rd)-function with bounded
first derivative.

Denote by E
ε
με the expectation of the process with generator Ωε and initial distribution με. The

next result is due to Boldrighini, DeMasi, Pellegrinotti & Presutti [7] (See [2], Theorem 16.1). Refer
also to [67].

Theorem 9.1. For all r = (r1, · · · , rd) ∈ Rd and t ≥ 0, the limit f(t, r) := limε→0 E
ε
μεX[r/ε](t),

where [r/ε] = ([r1/ε], · · · , [rd/ε]) ∈ Zd, exists and satisfies the RD-equation:

⎧⎪⎨
⎪⎩

∂f

∂t
=

1
2

d∑
i=1

∂2f

∂(ri)2
+

m0∑
j=0

βjf
j −

m0+1∑
j=1

δjf
j

f(0, r) = ρ(r).

(9.1)

This result explains the relation between the RD-process and RD-equation and it is indeed the
original reason why the processes was named RD-processes in [8]. Certainly, in that time, a result
like Theorem 9.1 did not exist, we had only a rough impression that the RD-equations describe the
macroscopic behavior of the physical systems and our aim was to introduce the processes as the
microscopic description of the same systems.
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To give some insight of the relation of these two subjects, we need some notation. Let f0(t) be a
non-negative, spatially homogeneous solution to (9.1) satisfying

∑m0
j=0 βjf

j − ∑m0+1
j=1 δjf

j = 0. (9.2)

Then f0(t) is called asymptotically stable if there exists a δ > 0 such that for any solution f(t, r)
to (9.1), whenever |f(0, r) − f0(0)| < δ, we have limt→∞ |f(t, r) − f0(t)| = 0.

The following result is due to X. J. Xu (1991) (see [2; Theorem 16.2]).

Theorem 9.2. Denote by λ1 > λ2 > · · · > λk the non-negative roots of (9.2), where λj has multiplicity
mj . Then, f(t, r) ≡ λi is asymptotically stable iff mi is odd and

∑
j≤i−1 mj is even.

All the known results is consistent with the assertion: a model has no phase transition iff every
λj is asymptotically stable and it is the case of the Schlögl’s first model. This leads to the following
conjecture.

Conjecture 9.3. (1). The Schlögl’s first model has no phase transition.
(2). The Schlögl’s second model has phase transitions.

To conclude the paper, we want to show a use of the RD-equation. Note that for the Schlögl’s
second model, the role played by each of the parameters βk and δk is not clear at all. It seems too
hard and may not be necessary to consider the whole parameters. Based on the above observation
and to keep the physical meaning, we fix β2 = 6α (α > 0), δ1 = 9α and δ3 = α. Then, when
β0 ∈ (0, 4α), there are three roots λ1 > λ2 > λ3 ≥ 0, λ1 and λ3 are asymptotically stable but not
λ2. We have thus reduce the four parameters into one only. Now, we want to know for which region
of α, the process can be ergodic. The following result is based on the new progress on couplings[50],
it is a complemental to Theorem 7.1 and is also the most precise information we have known so far.

Theorem 9.4[13]. Consider the second Schlögl model with β0 = 2α, β2 = 6α, δ1 = 9α and δ3 = α.
Then, the processes are exponentially ergodic for all α ≥ 0.7303.
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