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Ergodic i ty  of Revers ible  Reac t ion  Diffusion 

Processes  w i th  General  React ion  Rates  

Chen Mufa* & Ding Wanding  & Zhu Dongjin** 

Abstract .  In tltis paper, a class of reaction diffusion processes with general reaction rates is 
studied. A necessary and sufficient condition for the reversibility of this calss of reaction diffusion 
processes is given, and then the ergodicity of these processes is proved. 

w I n t r o d u c t i o n  

React ion diffusion processes come f rom non-equil ibrium statistical physics. Existence 

theorems for most  models have been established [1, 2, 4, 11]. In the case when the reaction 

rate is linear, the ergodicity was studied in [5], where the s t ructure  of the set of  invariant 

measures was partially described. Some sufficient conditions for the ergodicity of  general 

reaction diffusion processes were presented in [1]. However, a complete answer for the 

ergodicity is known only in the reversible case with a polynomial  reaction rate. In this 

paper ,  we consider the general reaction rates. We give a necessary and sufficient condition 

for the reversibility of the reaction diffusion processes, and then extend the results in [6] to 

the general case. 

First of  all, we introduce some notat ions.  Let  Z be a set of  integers and Z+ be a set of  

nonnegat ive integers endowed with discrete topology. Let X = Z z with p roduc t  topology, 

and let j r  denote the Borel a-algebra on X .  T h r o u g h o u t  this paper,  we always assume (II): 

(i)/3, 6 are two nonnegative functions on Z+ with 6(0) = 0 and /3 (n )  > O, 6(n + 1) > 0 for 

n _> 0, and (ii) p(x, y) is the transit ion probabil i ty of  an irreducible symmetr ic  r a n d o m  walk 

on Z with p(x, z)  = 0, z E Z. 
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The reaction diffusion processes studied in this paper are continuous time Markov pro- 

cesses on X with a formal generator as follows: 

~ f (q )  "- Z (/3(q(x))[f(q -I- ez) - f(r/)] -t- df(q(z))[f(r/-- e.) -- f(r/)] 

(I.1) 
+ ~ ~(u)pCu, x)0'(~ + e. - e~) - f(~)]}, 

Y 

where the sums are taken over all z and ~tin Z and e~ �9 X has values e~(z) = 1 and 

e~(y) = 0 for all ~/~ z. The processes considered here are constructed on a subspace of X. 

Since the transition probabifity (P(z,  ~l))~,~ez is symmetric, it follows that  there exists a 

positive function p(.) on Z' and a positive constant M such that  

~pC~,u)pCu) _< ~tp(~), ~ �9 z ,  (1.2) 
Y 

~p(z) < oo .  (1 .3)  

In what follows we fix a p with Properties (1.2) and (1.3) and set 

x.,  = {,~ �9 X :lloll., = y'~,7(z)':(~) < oo}. 

When m = 1, simply write II0111 as I1~1[. Let s be a set of Lipschitz functions with respect 

to the distance llq- r = ~ 10(~) - ((z)lp(z) and denote by c(f)  the Lipschitz constant of 
z 

f � 9 1 6 3  
(Existence and ~nique~e~ Wh~rem ) [2,4]. Let ~, ~ s~tisfy the foUo~i~g T h e o r e m  0 

conditions: 

K := sup{/~(n ,1,1) - fl(n) ,1, 6(n) - 6(n ,1, 1)} < oo, 
l 't 

and there are constants Ci,( i  = 1,2) and a positive integer k such that for all n > 1 

~(n) .+6(n)  <C1(1 .+nk), 

(1.4) 

(1.5) 

where P(t,  17, A) denotes the transition function of the process. 

P(t)f07 ) -- Eqf(rh) - f f (~)P( t ,  T1, d~), 

and 
/3(n)[(n -t- 1) k - n k] ,1, 6(n)[(n - 1) k - n k] < C2(1 + n~). (1.6) 

Then there ezists a unique positive operator semigroup P(t),  t > 0 such that P(O) = I; P(t) 
is strong contraction on the uniform elosure s of s and 

(i) P ( t ) f  �9 s c (P( t ) f )  < c(f)  exp[(K + M + 2)t], 

(it) ~tP(t)f(~l)  = f lP(t) f07 ) = P(t)fIf(T1) , t > O, f �9 s q �9 Xk.  
Moreover, there exists a Markov process ({rh}t>__0 , P" ,  r / � 9  Xx)on  X1 so that  



Chen Mufa et M. Ergodicity of Reversible Reaction Diffusion Processes 101 

In what follows, when we are talking about (1.5) or (1.6), the positive integer k will be 

fixed. 

Our first result is concerned with the necessity of the reversibilitY. Denote by 7~(fl) the 

set of all reversible measures of the process. 

T h e o r e m  1. Let (H)(i), (1.4), (1.5) and (1.6) hold. Suppose that 7~(f~) ~ 0 and there is 

a ~, e ~(f~) with f Iloll~i,(do) < co. The ,  there is a consta. t  ,X > 0 such that 6(n + 1) = 

(n + 1)fl(n)/A and p(z , y )  = p(y, z) for all z, y e Z. Moreover, the reversible measure is 

unique, and it is the product measure v in which each marginal distribution is Poissonian 

with mean A. 

T h e o r e m  2. Let (H) and lhe following conditions be satisfied: 

(i) There is a positive constant A > 0 such that 6(n) = nfl(n - 1)/A for all n > 1, 

(it) sup,>0{fl(n_ + 1) - (1 + ~ - L ) f l ( n )  + ~fl(n - 1)} < ~ and l-~m,--.oo nil(nil(n)-1) < X'I 

(iii) There are constants e > O, c > O, d > 0 and a positive integer k such that 

cn t+" < 6(n) < dn k, for all n > O. 

Then there exists a unique reaction diffusion process {F]i}i:>0, which is ergodic with a unique 

invariant measure v mentioned above. 

In view of Theorem 1, Condition (i) means that Theorem 2 deals with the reversible 

processes. The first condition in (it) is for the Lipschitz property of the semigroup. Actually, 

it implies (1.4). The second condition in (it) is quite natural. For instance, considering a 

birth-death process with birth rate fl and death rate 6(n) = nfl(n - 1)/A, the uniqueness 

criterion of the process leads naturally to this condition. It is interesting that this condition 

also implies (1.6). To see this, take e < 1, sufficiently near 1, and take an integer N1 > 0 

such that for all n > Nx 
fl(n) e 1 

n~'(n- 1) -< ~ -< ~" 
On the other hand, for a fixed e < 1 there is an integer N2 > 0 such that for all n > N2, 

c r r : - ~  (n + 1) < e Z r ~ ( n  + 1) < (n - 1). 

Thus, when n > N = max{Nr, N2}, the left hand side of (1.6) equals 

k-1  
E nm[1~(n)(n -~- 1)k-l-m -- (~(n)(rl -- i )  k - l - m ]  

rn:O 

: ~ n'+1~(n- 1) + 
.,=0 t n ~ ( - -  1) (n 
k-1  n m + l / ~ ( n  1) [ ( e ~ ( n  + I)) k-1-'n (n - I) ~-I-~] -<~ ;, 
rrl,~ 0 

_<0. 

So (1.6) holds. The Condition (iii) is technical. The upper bound of 6 (and hence of fl) is 

used to control the integration of f l f ( f  E E) with respect to a stationary measure #. The 
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lower bound of 6 is used to estimate the moment starting from infinity (cf. Section 3 below), 

it can be slightly weakened but has to be faster than linear. 

I f /3(n)  --, n o for some 0 > 0, particularly, /~(n) is a polynomial in n, and /f(n) = 

n ~ ( n -  1)/A for some A > 0, then ]t,/f satisfy the conditions of Theorem 2. Therefore, 

Theorem 2 is a generalization of the result in [6]. 

Combining Theorem 1 with Theorem 2, .we obtain the following result. 

T h e r o e m  3. Let (H) (i), and (1.4) hold. Suppose that 
..--- ~(n~[3n 

(i) supn>o{/3(n -t- 1) - ]3(n) - 6(n -I- 1) -I- 6(n)} < oo, lirnn._.~ ~ < 1; 

(it) there are constants ~ > O, c > O, d > 0 a n d  a positive integer k such thai 

cn l + ' < 6 ( n ) < d n  k, for all n > O. 

Then T~(f~) r 0 if  and only if there is a positve constant )~ > 0 such that 6(n) = n~(n- 1)/A 

for all n >_ 1; and p(x,y) = p(y,z) for all z , y  e Z. Moreover, 7~([2) = Z = {v}, where Z 
denotes the set of invariance measures for {rh}t>o. 

�9 The proof of Theorem 2 and Theorem 3 will be completed in Section 4. Some techniques 
needed for proving these theorems will be given in Section 3. In the nezt section, we prove 
Theorem 1. 

w R e v e r s i b i l i t y  

To prove Theorem I, we begin with the following lemma. 

L e m m a  2.1. Let (H)(i), (1.4), (1.5) and (1.6) hold. Given iz 6 7~(f2) with 

/ ll,711k/,(do) < 

we hav.e for any bounded cylinder function f and •, y E Z, 

/ fl(zl(x))fCT1)#(dq) = f 6(O(z))f(rl - e,)p(drl) , 

Proof. By assumption, p is concentrated on X~. p E T~(f~) means that 

/ fP(t)gdlJ = f gP(t)fdlz 

holds for all bounded cylinder functions f and g. From this it follows that 

f x ,  f(rl) P(t)g(q) - g(rl) p(drl) = I x ,  g(rl) P(t)f(rl) - f(rl) tz(drl)" 
t t 

By the'assumptions and the dominated convergence theorem, letting t --* 0, we get 

f f lgdp = ] gf~ f dl~. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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Noticing that any cylinder function f with base A belongs to a uniform closure ofspan{l[{Gxx(z\^)l ,  

E X(A)}, it suffices to prove (2.2) and (2.3) for those functions having the form I[{Q• ~ E 

X(A). For ~ E X ( A ) , z , y  E Z, let f = l[{e}• = l[{~-, ,+, ,}• By an ele- 
mentary computation, we get 

f (~ )ag(~)=~(z )P~X,Y) f (o ) ,  

g(rl)af(rl) -- rl(y)p(y , z)f ( r / - -  ex + ey). 

Substituting these into (2.4), we see that (2.3) holds. Similarly, let f = l[{~}xx(z\^)l and 

g = l[{~+,,}• By an elementary computation, we have 

/ (0)ag(~)  = fl(~(x))/(0) + ~ ~(v)v(v, z)f(~) ,  
vl~A 

g(rl)l~f(rl) = 5(r/(z))f(r/-- e.) + E r/(z)p(z, u) f (o  - e . . +  eu). 
uCA 

Now, (2.2) follows from (2.4) and (2.3). 

Proof of Theorem I. Let # be a probability measure on Xx. For x ,y  E Z and k , l  E Z+, let 

p~(k) = ~(~:  ~(x) = k), ~ ,~ (k , l )  = P(0:  ~(z) = k,~(y) = l); 

and let 
1, ifr/(x) = k 

f~0?) = 0, otherwise. 

kz f l ,  ifr/(z)=k,r/(y)=l 
g~i~(71) = ~ O, otherwise. 

Clearly, -k k,a I~, g~,y are both bounded cylinder functions. Substituting them into (2.2) and (2.3), 
we get 

fl(k)p=(k) = 6(k + l )#r (k  + 1), k > 0; (2.5) 

fl(k)/z~,y(k, l) = df(k + 1)/z,,u(k + 1, l), k, l > 0. (2.6) 

Making an exchange of z and y, we also have 

D(l)#=,u(k,l ) = 6(1-1- 1)la=,u(k,l + 1), k, i  ~ O. 

and 

lp(y,x)tz~,y(k,l) = (k + 1)p(z ,y)#, ,y(k  + 1 , 1 -  1), k_> 0,1 >_ 1. 

From (2.5) it follows that for all k >_ 0 

 z(k + 1) = "k" = . .  �9 ) " =  

Summing up k from 0 to oo, we get 

1 = ~,(k) = 1 +  5 ~ ] ) "  ) p.(O). 
k = O  = 

(2.7) 

(2.8) 
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So 
c o  

k:0 ~ffZT~,__, ..~(1) < oo; 

f t  ~ ~(k) . . .~(0)  } - '  (2.9) 

And hence the following expression 

1 #=(k+ 1) = ~ (k ) . . . ~ (0 )  ~ /~(k).../~(0) (2.10) 
di(k'~'i)TT.:~'(1) 1 + 6('k~I')--.6(1) 

is independent of z. 

Similarly, from (2.6) it follows that 

~,, ,(k + 1,t) = ~(k) . . .p(0)  iT.:.-R-(1)..,.(0,0, k >_ 0. 

Summing up k from 0 to co and noting (2.9), we have 

~,~(0, t) = ~(0)l , , ( t) .  

Substituting this into the previous equation, we get 

#,~,y(k + 1,/) = #=(k + 1)#~(/). 

This means that  0(z) and rl(y) are independent under #, and 

p, , , (k ,0  = ~,(k)~,Ct) > 0, k,t >__ 0, (2.11) 

here we utilize the fact that #=(k) is independent of x. By induction, we can prove that 

~/(x), z E Z are i.i.d under #. 

Taking l = 1,k = 0 in (2.8), we get 

p(y, x),a,,~ (0, 1) = p(x, y)#=,, (1, 0). 

But/~x,y(0, 1) = pr,~(1,0) > 0, hence for any x,.y E Z, 

p(x, y) = pCy, x). (2.12) 

Since (p(z, y))=,y is a transition probability, there are z and y in Z such that p(z, y) > O. 
For this fiXed pair (x, y), reducing (2.8) by p(2:, y) = p(y, r), we get 

ll~=,~(k, l) = (k + 1)/~, ,(k + 1, l - 1). 

Letting ! = 1 and noting (2.5), we have 

~'(k) . k 0 /~ , (k)p , (1)  = (k + 1) ~--T-7-TT, ,~#= ( ) # ~ ( ) .  
otx..r- t) 
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Hence 
6(k + 1) - (k + 1)fl(k) , (2 .13)  

here A = ~ fl6fl(~l 0 is independent of y. (2.10), (2.12), (2.13) and the independence of u (0) = 

T;(z), z E Z imply that # is a product measure of Poisson distributions with mean A. 

To complete the proof of Theorem 1, we still need to show that v is a reversible measure 

of the process whenever 6(n+ 1) = (n+ 1)/3(n)/A for some A > 0 and p(z, y) being symmetric. 

This can be done in two steps. First, the assumptions imply (2.4) by replacing # with v in 

the finite dimensional case, which implies the reversibility of the finite dimensional Markov 

chains. Next, the reversibility of the infinite dimensional process follows from the finite 

dimensional ones in the li$ht of the construction of the process (el. [i] or [2]). 

~3. M o m e n t s  

Let Z denote the set of all stationary distributions for {0t}, and S denote the set of all 

translation invariant probability measures on XI. The proof of Theorem 2 can be divided 

into two steps. The first step is to prove that there exist maximal and minimal stationary 

distributions ~ and # in the sense of partial order defined in II, [8]. Both ~ and ~_ are in 

Z f] $. The second step is to prove # = v for all # E Z f] S by the free energy technique. 

The ergodicity then follows from the attractivity of the process. These two steps will be 

completed in this and the next section respectively. 

We begin to show that all moments of {qt ]t>0 starting from any configuration are finite, 

which are then used to construct ~ and # . Throughout this section, suppose that  the 

hypotheses of Theorem 3 hold. This means that the hypotheses of Theorem 2 are also 

satisfied except the Condition (i) there and the symmetry of p(x, y). 

L e m m a  3.1. There is a constant C such that 

K 
EnTlt(z) < e - c '  E ~7(Y)P(t' y' z)  + ~-(1 - e-C') ,  (3.1) 

Y 

for any z .  h.re = . - '  
t r t  ---- O 

Proof. By (i), (ii) of Theorem 3, there is a positive constant G such that  for a sufficiently 

large n, 

i _< - c .  
6(, ,)  

Therefore 

/9(n) - 6(n) = 6(n) - 1] < - C 6 ( n )  < 
L (n) - - 

Thus ,  we can choose a positive constant K so that 

f l (n)  - 6(?2) _<< I~" - C n  l+e ,  (3.2)  

for all n >_ 0. Now, the assertion follows by a standard argument (of. [I]). 
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The following result is also standard. 

L e m m a  3.2. Let {r/t}, {~t} denote the processes starling from r/,~ respectively with the 

same generator 12. For 0,~ E XI  with r /<  ~, {r/,} and {~,} can be constructed on the same 

probability space in such a way that ~t < ~ for all t > O. 

This lemma means that the process is attractive. Particularly, let r/~' deriote the process 

starting from r/~(x) = ~  (x) = n, according to Lemma 3.2 when m < n, r/~ n < rj~ for all 

t > 0. This implies that for each t > 0, y~ increases to a limit y~o. We will show that r/~o is 

also finite for all t > 0. 

L e m m a  3.3. Let E'* denote the expectation of Tl~. There is a nonnegative, decreasing 

function ~(t)  on [0, co) which is independent of n and finite in (0, oo) so that 

Enr/,(x) < ~(t),  for all t > 0. (3.3) 

Proof. By Lemma 3.1, 

K e_Ct ) ne_C~ I f  E'~n, Cz) < e-C'  ~'-~ np( t ,y ,x )  + -~(1 - < + ~- < oo. 
v 

Next, by Theorem 0, 

d ,~ 
- ~ E  ll,(x ) = E'~3Co,(x)) - 6(rh(z)) - rhCz ) + ~ ]  r/,(y)pCy, x)]. 

Since 6-g is translation invariant, so is the distribution of rff. Hence the last two terms cancel 

= E"[/3(rh(x)) - 6(rh(z)) = K - CE"[r/,(x) 1+'1 

<_ K - C(E"r/ , (z ) )  1+'. 

Here the first inequality comes from (3.2), and the last inequality comes from HSlder's 

inequality. Write g , ( t )  = Enr/,(z). Combining the previous arguments gives the differential 

inequality: 

g ' ( t )  < g - Cg~,+'(t). (3.4) 

here g,(0) = n. Repeating the last part of the proof of Lemma 2.3 in [6] gives the desired 

conclusion. 

L e m m a  3.4. For each m > 1, there is a nonnegative, decreasing function ~rn(t) on [0, oo) 

which is independent of n and finite in (0, oo) so that 

E"Crl,(z)) 'n <_ ~,~(t), for all t > 0. (3.5) 

Proof. At present f~nz (r/) = ~(z) m is not in f ,  so we ca~,not use Theorem 0 directly. Fortu- 

nately, we can utilize the truncation technique mentioned at the end of the proof of Lemma 

2.3 in [6]. Here we only give the computations in brief and leave the justification to our 

readers. 

Y 

-[6(rh(x)) + r/,(z)] A,,~ (rh(x) -- 1)}, 

each other. Thus we get 

~t Enrh(z) 
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where Am(x) = (z + 1)" - z m. We use the fact that - rh (z  ) Am (rh(z) - 1) ~ 0 to drop out 

the last term. Using tISlder's inequality and the translation invariance, we know that 

En[~T l , (Y )P(Y , z ) lA ,~ ( r ] , ( z ) )<_CEn(rh (x ) )  '~ 

for some constant C depending on m only. To deal with the remaining terms, notice that  

lira ( n + l ) " - n  'n = m > 0 .  
" - ~  (n + 1) ' ' - x  

Taking a sufficiently small A > O, which will be fixed later on, gives for a sufficiently large 

n ,  

(m - z~)(n + 1) m-1 < (n + 1) m - n m < (m + A) (n  + 1) 'n - l .  (3.6) 

Next, 
(m - A)fl(n)(n + 1) m-1 - (m - A)6(n)n ''*-1 + n m+'/~ 

_ nl+ , /~]  

but 
- n 1 + r  

= (m - zx)~ - (m - zx), 

where ~ = ~ _ . ~  ~ < 1. When ZX = (m - 1)(1 - o) 2(I + a) , there is a positive integer N such 

that  (3.6) holds for all n > N and 

(m -- A) t3(n) (n  -1- 1) m - 1  - -  ( m  - -  A ) ~ ( n ) n  m - 1  -.1.- n m+r/2  < O. 

Therefore, there is a constant a such that  

(m - / \ ) Z ( n ) ( -  + 1) " ~ - '  - -  ( m  - / \ ) 6 ( n ) n  " ~ - '  < .  - n',,+./2 

for all n. Now 

E"{fl(rl;(x)) Am (rh(~:))  -- & ( rh ( x ) )  Z~,,, ( r / , ( x )  - 1)]. 

= E"{PCv, Cx)) am (v,(x)) - 6(v,(~)) z~.~ (~,(~) - 1), v,(~) < N}  

+ E "  {fl(r/,(z)) Am (rh(z)) - 5(rh(z)) Am (r/,(z) - 1), rh(z ) > N} 

< a' + E"{(m + Z~),6 ' ( r / , (z) ) ( rh(z ) + 1) m-~ 

- ( m  - A)5(rh(x))~h(X) '~-1, rh(x ) > N}  

< a '+ E'~{a - (rh(z))m+'/2, r/,(x) > N} 

<_ A - CE"(rl,(z) ) 'n+`]2, 
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here aJ,A and C are constants. Combining these estimates gives 

d E n ( r h ( x ) )  m < A + SE'*(Ti~(z)) m - CEn(rh(z))  m+tD. 

Using 

(3.7) 

< 

and writting u(t) = E'*(Ch(x)) 'n in (3.7), we have 

u'(t) < A + Su( t )  - Cu(t)  1+6, 

where & = ~m > 0. So the rest of the proof is the same as before. 

Now, we are in a position to show that ~/~o E XI,  a.e. for all t > 0 and there exist 

maximal and minimal stationary distributions ~ and p_. In fact, by Lemma 3.3, 

E~/~Cz)_<~( t )<co,  for all t > 0 ,  

SO 

Thus 

_< < oo. 

This implies that r/~ ~ E X, ,  a.s. 

Next, by Lemma 3.2, we can adopt the way mentioned at the end of Section 2 in [6] to 

obtain the required conclusions. Lemmas 3.3 and 3.4 imply that all moments of B are finite. 

Therefore all moments of any stationary distributions also are finite. 

~4. F ree  E n e r g y  

Assume p E 27 f3 S and let A C Z be finite. Define p(~) = p(r/:  7/= ~ on A), ~ E X(A).  

When A = (z) ,  and ~(z) = j ,  write p=(j) = #(~). 

Lemana  4.1. Assume p E Z 0 S.  Then for any integer m >_ 1 and z E A, 

- E &'nC~(z))P(~)log p(~) < co, (4.1) 
( 

where the summation extends over X(A). 

Proof. By assumption (iii) of Theorem 2, 

-&n~(~(x))p(~) log p(~) <--dm~(x)k'np(~) log #(~). (4.2) 

On the basis of Lemma 3.4, 

co / .  
E j m k + l ] d ( j )  = / < oo. 

J j=0 

Combining this with (4.2) and Lemma 4,2 in [6], we obtain (4.1). 
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L e m m a  4.2. Let # �9 Z. Then for any finite A C Z and ~ �9 X(A), we have lt(~) > O. 
Proof. If the conclusion were not true, then there would be some ( �9 X(A) so that /~(()  = 0. 

Let f~(r/) = 1 if r t = ( on A, and = 0 otherwise. # �9 2" implies 

/nf~(rl)#(dq) --- (4.3) 0. 

By an elementary computation, under #( ( )  = 0, (4.3) is equivalent to 

xEA 

+(r + 1 / ~  ~(~, v)~(r + e~ - e~) 

+ ( ( ( r )  + 1) Ep(;r,y)p(( + e'=) . 

+ ~ f ~(vlp(v, ~)f~_..C~l~(d~)} 
yeA 

= 0 .  

But fl(n) > 0 for all n > 0,6(n) > 0 for all n _> 1, it follows that # ( ( 4 - e = )  = 0. Using 

induction gives # ( ( +  ke=)= 0 for all r �9 A and k > 1,  provided that ( 4- ke= �9 X(A). This 

means that/~(~) = 0 for all ~ �9 X(A) which contradicts p(X(A))  = 1. 

Now, we are in a position to show that # = v for all # �9 2.NS. To do this, let An = I -n ,  n]. 

For each ( �9 X ( A , )  since fr is a bounded cylinder function and/a �9 Z, we have 

Therefore 

f v(d~)nf~(~) = o. 

E / #(dq)Qfr (q) [log # ( ( )  - log v(()] = 0, (4.4) 

here the summation extends over X(A). Repeating almost the same computations done in 

Section 3 of [6], we get 

0= ~ ~ ~(~11[~(0-(r 11~(~ +e~lllog ~(c +e~)~(~)+ 1 
=cA. r I,(r a 

+ ~ ' l o  , ( r 1 6 2  + 1 
+ ~ ~ ~p(.,,)(r j g (r 

.~A. v~A. ( (4.5) 

xEA,, yfA~ ( 
o o  

+ E E t,(r 
xCA,,yEA~ ( k=0 

tlere Lemmas 3.3 and 3.4 guarentee that all series appearing in the computation are ab- 

solutely convergent; hence order exchange is permitted.  Rearranging, using symmetry of 
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p(z,y) in the second sum of (4.5), exchanging z and y in the fourth sum, and writting, for 

any z ,y  E An, 

D,  Cx) = E fl(~_z))[Ap(r - (r + 1)p(r + e=)] log .#(r + e=) ('(z) + 1 ~(r ~ , 
r 

Dn(z,y) 

we get 

Lemma 4.3. 

= : / 2 E p ( z , y ) [ ( r  ) + 1)p(r + e=) 

-(r  + 1)#(r + %)]log # r + % r + 1 

R~ = - E E ~p(z,y)[(r + 1)p((+ e=) 
zEA. y~A,. C 
oo 

- E k#(r x k=)] log p(r + e=) ((z)  + 1 
~=o l,(r .x ' 

E D,~(z)+ E Dn(z ,y ) ' -R~ .  
s s  s,~6A,, 

For any integers m,n  with 0 < m < n and z ,y  E [-re,  m], we have 

(4.6) 

(4.7) 

0 < Din(x) < Dn(z); 0 _< Dm(z,y) < D,,(z,y). (4.8) 

Proof. The idea of the proof is similar to that of Lemma 3.8 in [6]. 
If D,(z)  ~ 0  for some z and n, Lemma 3.7 and the translation invariance imply that the 

left hand side of (4.7) is greater than Cn for large n. On the other hand, using inequality 
log a < a 112 and HSlder's inequality, we have 

c o  

< k=o I,(r 
oo 

< ~Ek.(r • k.) (.(:+_'-)~ I/' 
r k=0 \ ~(0 , /  

.(r + e.) 

L r ~=o 

= [E"(r t/= ~,(r + e,) < E,[Cr < oo. 

k.) log ( ( ' ~  oo ~ k . ( r  • + 1 _< ~ ~ k ~ ( r  • k.)log(r + :) 
C k=0 C k=0 

OO 

+llogM ~ ~ k•(r x k=) 
( t=0 

_< E"(r ~ + I log AIE"r < oo. 
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Next, using inequality - z  logz < e -1 for z > 0, we have 

< 

< 

(r + 1)~(r + e.) log ~(r + ~*) ,(r 

[ log 
~(r  + ~)~(:) - ~(r J r 

e-i(l + E•r < oo, 

s,(r + e~) 

and 

- ~ ( r  + 1).(r + e~llog r + 1 _< ~e-'. 
( 

Combining the above inequalities gives 

P~ _< c ~ ~ p( . ,y )=  o(n). (4.9) 
xEA,L yeA,, 

The last equality holds since 

2 n + l  o o  

�9 EA= y~'A,~ z=l y=z 

For an arbitray r > 0, pick N such that ~ '  p(0,y) < e, and then 

I~I>N 

2n+l vo 
ff'~[p(0, y) + p(0, -Y)I -< (2n + 1)r + (2N + 1). 

Thus, (4.9) contradicts the fact that the left hand side of (4.7) >__ Cn. This implies that  

Dn(x) = 0 for all x and n. Therefore, for all n, 

A 
p ( r  ( ( z ) + l p ( r  forall ( E X ( A , ) , z E A , , .  

It follows that  p = v. 

Proof of Theorem 3. The proof of Theorem 2 shows that  all invariance measures possess 

finite moments. Thus Theorem 1 gives the "only if" part and Theorem 2 gives the "if" part.  

N o t e .  This paper had been completed before the first author wrote his book "From Markov 

Chains to Non-Equilibrium Particle Systems" (World Scientific, 1992). Part  IV of that book 

is mainly devoted to the subject of reactlon:diffusion processes. Slightly different t reatment 

on the reversibility and the estimate of the moments are also included in that book. 
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