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Ergodicity of Reversible Reaction Diffusion
Processes with General Reaction Rates

Chen Mufa* & Ding Wanding & Zhu Dongjin**

Abstract. In this paper, a class of reaction diffusion processes with general reaction rates is
studied. A necessary and sufficient condition for the reversibility of this calss of reaction diffusion
processes is given, and then the ergodicity of these processes is proved.

§1. Introduction

Reaction diffusion processes come from non-equilibrium statistical physics. Existence
theorems for most models have been established [1, 2, 4, 11]. In the case when the reaction
rate is linear, the ergodicity was studied in [5], where the structure of the set of invariant
measures was partially described. Some sufficient conditions for the ergodicity of general
reaction diffusion processes were presented in {1]. However, a complete answer for the
ergodicity is known only in the reversible case with a polynomial reaction rate. In this
paper, we consider the general reaction rates. We give a necessary and suflicient condition
for the reversibility of the reaction diffusion processes, and then extend the results in [6] to
the general case.

First of all, we introduce some notations. Let Z be a set of integers and Z, be a set of
nonnegative integers endowed with discrete topology. Let X = Zf with product topology,
and let F denote the Borel o-algebra on X. Throughout this paper, we always assume (H):
(i) B,8 are two nonnegative functions on Z; with 6(0) = 0 and B(n) > 0,6(n + 1) > 0 for
n > 0, and (ii) p(z, y) is the transition probability of an irreducible symmetric random walk
on Z with p(z,z) =0,z € Z.
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The reaction diffusion processes studied in this paper are continuous time Markov pro-
cesses on X with a formal generator as follows:

Qf(m= . {ﬁ(n(z))[f(n +ez) = f(m)] +6(n(z))[f (n — ez) — f(n)]

' 1.1
+_nWp(u, ) (n+ ez — ey) —.f(n)]}, v
y

where the sums are taken over all r and y'in Z and e; € X has values e;(z) = 1 and
ez(y) = 0 for all y # z. The processes considered here are constructed on a subspace of X.
Since the transition probability (P(z,y))syez is symmetric, it follows that there exists a
positive function p(-) on Z and a positive constant M such that

Zp(z,y)p(y) < Mp(z), T€Z, (1'2)
y

> p(z) < oo (1.3)

In what follows we fix a p with Properties (1.2) and (1.3) and set

Xm = {r] EX :|nllm = Eq(z)"‘p(z) < oo} .

When m = 1, simply write |[n|]; as [|]|. Let £ be a set of Lipschitz funttions with respect
to the distance ||n—(|| = Z In(z) — ¢(z)|p(z) and denote by ¢(f) the Lipschitz constant of
z

fecL.
Theorem 0 (Existence and Uniqueness Theorem ) [2,4]. Lei 8,8 satisfy the following
condilions:

K :=sup{B(n+1)— B(n) + 6(n) — §(n+ 1)} < oo, (1.4)
and there are constanis C;, (i = 1,2) and a posilive integer k such that for alln > 1
B(n) + 8(n) < Ci(1 + n*), (1.5)

and
B(n)[(n + 1)F — n*] 4 6(n)[(n - 1) — n*] < Co(1 + n¥). (1.6)

Then there erists a unique positive operator semigroup P(t),t > 0 such that P(0) = I; P(t)
is slrong contraclion on the uniform closure L of £ and

(i) P(t)f € L,c(P(t)f) < e(f) exp[(K + M + 2)t],

(i) £P(1)f(n) = QP(E)f(n) = P(O)QF(1),t 2 0, € L, € Xi.

Moreover, there exists a Markov process ({n¢}:>0, P",n € X1) on X; so that

P()f(n) = Eyf(m) = / F)P(t,n, de),

where P(t,7,A) denotes the transition function of the process.
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In what follows, when we are talking about (1.5) or (1.6), the positive integer k will be
fixed.

Our first result is concerned with the necessity of the reversibility. Denote by R(Q2) the
set of all reversible measures of the process.
Theorem 1. Let (H)(i), (1.4), (1.5) and (1.6) hold. Suppose that R(Q2) # 8 and there is
a p € R(Q) with [||nf[xp(dn) < co. Then there is a constant A > 0 such that §(n+1) =
(n + 1)B(n)/X and p(z,y) = p(y,z) for all z,y € Z. Moreover, the reversible measure is
unique, and it is the product measure v in which each marginal distribution s Poissonian
with mean A.
Theorem 2. Let (H) and the following conditions be satisfied:

(i) There is a positive constant A > 0 such that 6(n) = nfB{(n —1)/A foralln > 1,

(i) sup 30 {B(n + 1) = (1 + BL)8(n) + $9(n - D)} < 00 and Tt on 0 15 < 4,
(iii) There are constanis € > 0,¢ > 0,d > 0 and a positive integer k such that

cn'te < §(n) < dn*, forall n>0.

Then there exists a unique reaction diffusion process {n;}i>o, which is ergodic with a unique
invariant measure v menlioned above.

In view of Theorem 1, Condition (i) means that Theorem 2 deals with the reversible
processes. The first condition in (ii) is for the Lipschitz property of the semigroup. Actually,
it implies (1.4). The second condition in (ii) is quite natural. For instance, considering a
birth-death process with birth rate 8 and death rate §(n) = nf(n — 1)/A, the uniqueness
criterion of the process leads naturally to this condition. It is interesting that this condition
also implies (1.6). To see this, take € < 1, sufficiently near 1, and take an integer Ny > 0

such that for all n > Ny
_ By _e _1
<=<-=-
nBn—1) " A= X’
On the other hand, for a fixed € < 1 there is an integer N2 > 0 such that for all n > Ny,

e (n+1) < €T (n+ 1) < (n— 1).

Thus, when n > N = max{Nj, N,}, the left hand side of (1.6) equals

k-1

Z n"‘[ﬂ(n)(n + l)k‘l—m _ 6(71)(" _ l)k—l—m]
= k=1-m

n™HB(n — A(n) k-1-m _ (n=1)

=2, [ﬁ( e+ (=) ]
k=1 m41

D i R

<0

So (1.6) holds. The Condition (iii) is technical. The upper bound of § (and hence of ) is
used to control the integration of Qf(f € £) with respect to a stationary measure u. The
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lower bound of § is used to estimate the moment starting from infinity (cf. Section 3 below),
it can be slightly weakened but has to be faster than linear.

If B(n) ~ n® for some § > 0, particularly, B(n) is a polynomial in n, and §(n) =
nfB(n — 1)/ for some A > 0, then 3,6 satisfy the conditions of Theorem 2. Therefore,
Theorem 2 is a generalization of the result in [6].

Combining Theorem 1 with Theorem 2, we obtain the following result.

Theroem 3. Let (H) (i}, and (1.4) hold. Suppose that

(i) supp0{B(n + 1) = B(n) - 8(n + 1) + 8(n)} < oo,m_.wyg;l} <1
(ii) there are constants € > 0,¢ > 0,d > 0 and a positive integer k such that

en!te < §(n) < dn*, | forall n>0.

Then R(Q) # 0 if and only if there is a posilve constant A > 0 such that §(n) = nf(n—1)/2
for alln > 1; and p(z,y) = p(y,z) for all z,y € Z. Moreover, R(Q) =T = {v}, where T
denotes the set of invariance measures for {n:}i>0.

.The proof of Theorem 2 and Theorem 3§ will be completed in Section {. Some techniques
needed for proving these theorems will be given in Section 3. In the nezt section, we prove
Theorem 1.

§2. Reversibility

To prove Theorem 1, we begin with the following lemma.
Lemma 2.1. Let (H)(i), (1.4), (1.5) and (1.6) hold. Given u € R(Q) with

[ Inlentan) < e 2.1

we have for any bounded cylinder function f and z,y € Z,
[ o smutan = [ sa@)sn- eeutan, (2.2)
/ n(0)p(y, ) f (n)u(dn) = / 1(@)p(, ¥)F (1~ e + eg)u(dn). (2.3)

Proof. By assumption, p is concentrated on Xi. p € R(2) means that

/ fP()gdp = / gP(t)fdu

holds for all bounded cylinder functions f and g. From this it follows that
P(t - P(t -
/X s & )g(nt) 9 dn) = /X o) & )f(nt) 1) ).
] k

By the assumptions and the dominated convergence theorem, letting t — 0, we get

[ r90au= [sasap. (2.4)



Chen Mufa et al. Ergodicity of Reversible Reaction Diflusion Processes 103

Noticing that any cylinder function f with base A belongs to a uniform closure of span{1((¢}x x(z\A)}>
€ € X(A)}, it suffices to prove (2.2) and (2.3) for those functions having the form 1jt¢y x(z\a)}, € €
X(A). For £ € X(A),z,y € Z,let f = I{eyx x(2\A) I = L[{¢—ecte,}xX(2\A)}- By an ele-
mentary computation, we get

F(mQ(n) = n(z)p(z,y) f(n),

9(mQU () = n(¥)p(y, z) f(n — ez + ¢y)-

Substituting these into (2.4), we see that (2.3) holds. Similarly, let f = 1f{¢jxx(z\a)] and
9 = l[{¢+e.}xx(2\A))- By an elementary computation, we have

F(mQg(n) = B(n()f(n) + D n(v)p(v, 2) f(n),

vgA

oM (n) = S(n(E)F(n— ex) + 3 n(@)p(®, u)f(n — e + eu).

ugA

Now, (2.2) follows from (2.4) and (2.3).
Proof of Theorem 1. Let u be a probability measure on X;. For z,y € Z and k,l € Z,, let

Hz(k) = p(n:n(z) = k), pey(k, 1) = p(n:n(z) = kn(y) =1);

and let ]
= {1 0=

0, otherwise.

1, ifn(z) =kn(y) =1
0, otherwise.

gry(n) = {

Clearly, f£, gﬁ"!" are both bounded cylinder functions. Substituting them into (2.2) and (2.3),
we get
Bk pz (k) = 6(k+ Dp(k+1), k>0 (2.5)

BBz y(k,1) = 6(k + Dpey(k+1,1), k1> 0. (2.6)

Making an exchange of z and y, we also have

B(Dpzy(k, 1) = 6(1+ Npzy(k, 1+ 1), k,1>0. (2.7)
and
Ip(y, 2z ,y (k1) = (k + Dp(z, Y)ps y (k+1,1-1), k20,121 (2.8)
From (2.5) it follows that for all £ > 0
_ _B(k) _ . _ _Bk)---B(0)
be(k+1) = 5k + 1) kK)=---= mﬂ:(ﬂ).

Summing up k from 0 to oo, we get

= k)---B(0
1= g"’(k) = (1 +Z 5(i(+ 1)- ﬂ(é()1)> +(0)-
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So

< 00;

 _B(k)--- B(0)
;:5(k+1) -5(1)

B(k)--- B(0)
#=(0) = {1 + E < §(k +1) - 6(1) }

And hence the following expression

_ _B)---B0) B(E)--8(0)
ek +1)"m1—){1+26(k+1) 6(1)} 210

(2.9)

is independent of z.
Similarly, from (2.6) it follows that

pey(k+1,0)= —%H% zy(0,1), E2>0.

Summing up k from 0 to oo and noting (2.9), we have
e (0,1) = o (O)ny 1),
Substituting this into the previous equation, we get
Hey(k + 1,1) = pz(k+ py(1).
This means that 7(z) and n(y) are independent under g, and
pzy(k, 1) = pz(B)py (1) >0, k,1>0, : (2.11)

here we utilize the fact that p (k) is independent of z. By induction, we can prove that
n(z),z € Z are i.i.d under p.
Taking { = 1,k = 0 in (2.8), we get

P(¥, 2)p2,4(0,1) = p(z, ¥)pz,y(1,0).
But p;4(0,1) = pzy(1,0) > 0, hence for any z,y € 2,
p(z,y) = p(y, ) (2.12)

Since (p(z,y))s,y is a transition probability, there are z and y in Z such that p(z,y) > 0.
For this fixed pair (z,y), reducing (2.8) by p(z,y) = p(y, z), we get

iz (k1) = (k + D g (k + 1,1 - 1),

Letting ! = 1 and noting (2.5), we have

B(k)

#e(R)y (1) = (k+ Dgrs

pz(k)py (0).
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Hence (k + 1)B(E)
A y

S(k+1) = (2.13)

here A = ﬁ’-%—;— = ’?J(-?% is independent of y. (2.10), (2.12), (2.13) and the independence of
n(z),z € Zyimply that g is a product measure of Poisson distributions with mean A.

To complete the proof of Theorem 1, we still need to show that v is a reversible measure
of the process whenever 6(n+1) = (n+1)8(n)/X for some A > 0 and p(z, y) being symmetric.
This can be done in two steps. First, the assumptions imply (2.4) by replacing y with v in
the finite dimensional case, which implies the reversibility of the finite dimensional Markov
chains. Next, the reversibility of the infinite dimensional process follows from the finite

dimensional ones in the light of the construction of the process (cf. [1] or [2]).

§3. Moments

Let Z denote the set of all stationary distributions for {7;}, and S denote the set of all
translation invariant probability measures on X;. The proof of Theorem 2 can be divided
into two steps. The first step is to prove that there exist maximal and minimal stationary
distributions 77 and g in the sense of partial order defined in II, [8]. Both 7 and y are in
I NS. The second step is to prove g = v for all g € ZN S by the free energy technique.
The ergodicity then follows from the attractivity of the process. These two steps will be
completed in this and the next section respectively. -

We begin to show that all moments of {#,};>0 starting from any configuration are finite,
which are then used to construct 7 and p . Throughout this section, suppoée that the
hypotheses of Theorem 3 hold. This means that the hypotheses of Theorem 2 are also
satisfied except the Condition (i) there and the symmetry of p(z, y).

Lemma 3.1. There is a constant C such that

Byn(e) <% S alodnlona) + S-e, (3.)
(=] tm
X Z, here p(t =e 'y —p™(y,z).
Joranyne X1,z € Z, er‘ep(,y,x) € r;)m!P (y,:z:)
Proof. By (i), (ii) of Theorem 3, there is a positive constant C such that for a sufficiently
large n,
B(»)
——-1< -C.
5n) 1<-C
Therefore

B(n) —é(n) = 6(n) [?T(:% - 1] < —C&(n) < —Cn'te

Thus, we can choose a positive constant K so that
B(n) —6(n) < K — Cn'te, (3.2)

for all n > 0. Now, the assertion follows by a standard argument (cf. [1]).
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The following result is also standard.

Lemma 3.2. Let {m},{¢t} denote the processes starting from n,( respectively with the
same generalor Q. For n,{ € X, with n < {,{m} and {(:} can be constructed on the same
probability space in such a way that 9, < (¢ for allt > 0.

This lemma means that the process is attractive. Particularly, let 57 denote the process
starting from n(z) =n (z) = n, according to Lemma 3.2 when m < n,5]* < 5P for all
t > 0. This implies that for each t > 0,7} increases to a limit 5{°. We will show that n{° is
also finite for all ¢ > 0.

Lemma 3.3. Let E™ denote the ezpeclation of n. There is a nonnegative, decreasing
Junction o(t) on [0, c0) which is independent of n and finite in (0,00) so that

E"ni(z) < (t), forall ¢2>0. (3.3)
Proof. By Lemma 3.1,

K K
-Ct -Ct ~Ct
E'm(z) <e zv:"P(t,y,z)+—5(l—e ) Sne”+ = <oo.

Next, by Theorem 0,
%E"m(Z) = E"[B(me(2)) — 6(ne(=)) — m(=z) + D_ m(y)p(y, =))-

Since 6 is translation invariant, so is the distribution of 7y’ Hence the last two terms cancel
each other. Thus we get

LE (=) = E"[B(m(2)) - 6(m(2)) = K - CE"[ni(z)'*+]

< K - C(E™m(z))'**.

Here the first inequality comes from (3.2), and the last inequality comes from Hdlder’s
inequality. Write g,(¢) = E™n(z). Combining the previous arguments gives the differential
inequality:

9n(t) S K = Cgp* (1) (3.4)
here g,(0) = n. Repeating the last part of the proof of Lemma 2.3 in [6] gives the desired
conclusion.
Lemma 3.4. For each m > 1, there is a nonnegative, decreasing function pm(t) on [0, 00)
which is independent of n and finite in (0,00) so that

E™"(u(2))™ < om(t), forall ¢2>0. (3.5)

Proof. At present fI*(n) = n(z)™ is not in £, so we cannot use Theorem 0 djrectly. Fortu-
nately, we can utilize the truncation technique mentioned at the end of the proof of Lemma
2.3 in [6]. Here we only give the computations in brief and leave the justification to our
readers.

LB (@)™ = B [8n(@) + 3 m(@)p(3,2)] B (m(2))
y
~[6(n(2)) + 1(2)] Am ((z) = 1},
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where Ap,(z) = (z+1)™ — 2™. We use the fact that —n(z) A, (m:(z) — 1) < 0 to drop out
the last term. Using Hélder’s inequality and the translation invariance, we know that

Eﬂ

> m(y)e(y, 1‘)] B (m(2)) < CE™(m(z))™

for some constant C depending on m only. To deal with the remaining terms, notice that

o (Rt )™ -

oo (n+ l)m_l =m>0.

Taking a sufficiently small A > 0, which will be fixed later on, gives for a sufficiently large

’ (m=8)n+1)"' < (n+1)™ = n™ < (m+ D)(n + 1)L, (3.6)
Next,
(m = A)B(n)(n + 1)1 = (m — A)§(n)n™=1 4 nmte/2
= n""1§(n) [(m -4) (1 + %)m-l %ﬁ% ~(m-0)+ %’Tg] :
but

oo [(m—A) (u%—)m—l%ﬁf"(m“m*%/;]
=(m—A)O’—(m_.A)1

— - D1 - . e .
where a = hm,,..oosésg <1 Whe_n A= %T%ral, there is a positive integer N such
that (3.6) holds for all n > N and

(m—=AD)B(n)(n+ 1™ - (m—A)s(n)n™" ! +am+e/2 < .
Therefore, there is a constant a such that
(m—=2A)B()n+1)™"t = (m - A)s(n)n™"! < g — n™+e/2

for all n. Now

E*{B(m(2)) Dm (me(2)) = 8(ne(2)) Bem (me(2) = 1)}

= E™{B(m(z)) B (m(z)) — 8(m(2)) Am (m(2) — 1), () < N}
+EM{B(ni(z)) Bm (m(2)) — 6(m(2)) Am (m:(z) = 1), m(z) > N}
< d + E*{(m+ 8)B(m(z))(ne(z) + 1)1

—(m = 8)s(ne(z))ne(z)™ 1 (=) > N}

< d' + EMa— (ni(z))™ /%, ny(z) > N}

< A= CEM(ni(z))™ /3,
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here @/, A and C are constants. Combining these estimates gives
d
7 F (m(2))™ < A+ BE"(n(2))™ - CE™ (n:(=))™*/2. (3.7)

Using 2
(E'"(q,(z))'")"—t.'L < E"(r)‘(z))’"“/z

and writting u(t) = E™(1;(z))™ in (3.7), we have
u'(t) < A+ Bu(t) — Cu(t)'*¢,

where 6§ = Q%n' > 0. So the rest of the proof is the same as before.
Now, we are in a position to show that 7° € X, a.e. for all ¢ > 0 and there exist
maximal and minimal stationary distributions 7@ and g. In fact, by Lemma 3.3,

Eng(z) < p(t) < oo, forall t>0,

En®(z) < ¢(t) < oo

Thus

E {Z n:*’(z)p(z)} <o) Y () < co.

This implies that ° € Xi, as.

Next, by Lemma 3.2, we can adopt the way mentioned at the end of Section 2 in [6] to
obtain the required conclusions. Lemmas 3.3 and 3.4 imply that all moments of 1 are finite.
Therefore all moments of any stationary distributions also are finite.

§4. Free Energy

Assume p € TN S and let A C Z be finite. Define p(§) = p(n: =€ on A),§ € X(A).
When A = {z}, and &(z) = j, write - (j) = p(é).
Lemma 4.1. Assume p € INS. Then for any inleger m > 1 and z € A,

=Y 5™(E(2))n(€) log p(€) < o0, (4.1)
3

where the summation eztends over X(A).

Proof. By assumption (iii) of Theorem 2,

—6™(E(2)) () log () < —d™E(z)*™ p(€) log p(€)- (4.2)

On the basis of Lemma 3.4,
o]
2™ u) = / n(z)™+ u(dn) < oo.
j=o

Combining this with (4.2) and Lemma 4.2 in [6], we obtain (4.1).



Chen Mufa et al. Ergodicity of Reversible Reaction Diffusion Processes 109

Lemma 4.2. Let p € I. Then for any finite A C Z and £ € X(A), we have u(§) > 0.
Proof. If the conclusion were not true, then there would be some ¢ € X(A) so that u({) = 0.
Let f¢(n) =1if n=C on A, and = 0 otherwise. u € T implies

/ Qfc(n)p(dn) = 0. (4.3)
By an elementary computation, under p(¢) = 0, (4.3) is equivalent to

2 AB(((2) = Da(¢ = ) + 8(¢(2) + (¢ + e2)

ZEA

+¢(@) +1) D p(z, y)n(C +ec —ey)

yEA
+H(2) +1) Y oz, y)u(C +e2)

yegA

+Z/r)(y)p(y,x)f(—e,(n)/‘(dn)}

ygA
=0.

But g(n) > 0 for all'n > 0,6(n) > 0 for all n > 1, it follows that u({ + e:) = 0. Using
induction gives u({ + ke;) = 0forall z € A and k > 1, provided that { & ke, € X(A). This
means that p(€) = 0 for all £ € X(A) which contradicts (X (A)) = 1.

Now, we are in a position to show that 4 = v for all g € ZNS. To do this, let A, = [-n, n].
For each ¢ € X(A,) since f¢(-) is a bounded cylinder function and p € Z, we have

[ ut@nasm =o.

Therefore
) / w(d)Qf (m)log u(C) — log 1(C)] = 0, (4.4)
¢

here the summation extends over X(A). Repeating almost the same computations done in
Section 3 of [6], we get

0= z;\:' ; g(_c'i—{)l[’\l‘(o — (¢(2) + Dp(¢ + eg)] log #(i('z.;x) C(-’L‘z\-}- 1

u(C+ ey) Cy)+1
/‘(C + e::) C(z) +1

(4.5)
+ 30 > 2 p(zu)(((=) + Dp(C + es)log ,‘(é‘(f)e,) C(:c;\-}-l

T€AL yEAn

+ 5 T S o kulC + kolog plt o) el

By iry i k(¢)

+ 3 3 3 bz, 1)) + Du(C + ) log

T€EAN yel\- (

Here Lemmas 3.3 and 3.4 guarentee that all series appearing in the computation are ab-

solutely convergent; hence order exchange is permitted. Rearranging, using symmetry of
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p(z,y) in the second sum of (4.5), exchanging z and y in the fourth sum, and writting, for
any z,y € An,

(C+e:)C(=)+1
(<) A

Da(e) = 32 2D paui) - (¢(a) + 1)u(¢ +eo)]log
' 4

Da(z,y) -=1/2)_ p(z,1)[(§(@) + (¢ +e2)

¢
~(0(0) + DA(C + ¢ )log B H e SEL S

=3 3 3 ez )¢ (=) + 1p(C + )

ZEA, yEAI (
[o°]

pl+e)((z) +1
—éky((xk,)]log PO

(4.6)

we get

Y Du(z)+ Y. Da(z,y) = Ra. (4.7)

Z€EA. z,y€An

Lemma 4.3. For any inlegers m,n with 0 < m < n and z,y € [-m,m], we have
0< Dm(z) < Dn(z); 0< Dm(zry) < Dn(z)y)' (48)

Proof. The idea of the proof is similar to that of Lemma 3.8 in [6].
If D,(z) # 0 for some z and n, Lemma 3.7 and the translation invariance imply that the
left hand side of (4.7) is greater than Cn for large n. On the other hand, using inequality

1/2 and Hélder’s inequality, we have

EZ’W(C % k.)log Kt ez) B¢ +ez)
=3 GHE

o) 1/2
<Ezk"(< < k )(I‘(C?&)z))

¢ k=0

1/2 1/2
< [ZZ"I‘(C X kr)] [Z Z#(C X kr)#« ?&)e, :I

¢ k=0

loga<a

1/2
= [E*(¢(v)?]/? [Z s+ ez)} E*[(¢(y)))M? < o0.

S5 k(¢ x B2 log SEEL <« 5 5 b x k) og(c(2) + 1)
{

¢ k=0 k=0

+|1ogA|ZZku(c x k)

¢ k=0
< E¥(¢o(2))? + |log A|E*(o(2) < oo.
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Next, using inequality —zlogz < e~! for z > 0, we have

C + e
- ch (¢(2) + Du(C + ez) log Efm)—)

- _B(C+ ez)] log HE +é€2)

< Y@+ ue [ ee)1og M

< e (14 E#(o(z)) < o0,
and {

- Z(((x) + Dp(¢ + ez) log 2——— ('(a:) + < Ae~l.
Combining the above mequalmes gives

Ra<C Y Y plz,y) = o(n). (4.9)
TE€AL yEA
The last equality holds since
2n+1 oo
Yo Y =)= Y [p(0,y) +p(0, ~v)]-
TEA, ygA, z=1l y=z

For an arbitray € > 0, pick N such that Z p(0,y) < ¢, and then

ly[>N
2n+1 oo
> > Ip(0,9) +p(0,—y)] < (20 + e + (2N + 1),
z=1 y=z

Thus, (4.9) contradicts the fact that the left hand side of (4.7} > Cn. This implies that
D, (z) =0 for all £ and n. Therefore, for all n,

(€),. forall ¢ € X(An),z € An.

p+e)= 2_(?)/\—4-—1“

It follows that u = ».

Proof of Theorem 8. The proof of Theorem 2 shows that all invariance measures possess
finite moments. Thus Theorem 1 gives the “only if” part and Theorem 2 gives the “if” part.
Note. This paper had been completed before the first author wrote his book “From Markov
Chains to Non-Equilibrium Particle Systems” (World Scientific, 1992). Part IV of that book
is mainly devoted to the subject of reaction-diffusion processes. Slightly different treatment
on the reversibility and the estimate of the moments are also included in that book.
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