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Abstract

The continuum limit for reaction diffusion processes with several species is studied.
It is also proved that the propagation of chaos holds at any time.

1. Introduction

In recent years, the reaction diffusion processes have been studied by many authors
(see [2], [3] and the references within). More recently, Han Dong( has constructed the
Markov processes for a quite general class of reaction diffusion processes with several
species, meanwhile, C.Boldrighini et al (!l and some others studied the continuum limit
for the reaction diffusion processes with only one species. As C.Boldrighini et al pointed
out in [1] that the problem of the continuum limit for the reaction diffusion processes
with several species is still open to discussion. This motivated us to write this paper.
In this paper some related problems under appropriate space-time (continuum) scaling
are also considered.

Here, we need some notations to introduce our main result.

Let Z be the set of all integers and Z4 be the set of non-negative ones. Let E = (Z% =
and Q° = =72Qy + Q, (¢ > 0) be the formal generator of the processes considered in
the paper, its diffusion part {1; and reaction part {1, are given as follows:

Qaft) =Y D m(@) Y ple.p)lfln— e +e)) = fin)],

1=1.2 z€Z yEL

O f= Y Z{a,-(""gx’)+b.mmn2(x)}.

(1.1) i,j=1,2 2€L
[fin—¢,+e)— fln)]n €E.

where a;,b; > 0, p(x,y) is the transition probability of the simple random walk on Z.
el = (e,8), €2 = (8,ez), ez is the unit vector in Zf_ with value 1 at x and ¢ is the zero
vector in Zi.
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Let
={ne€B:|nll =) (m( + )2 < o}
z€L
Denote by Py the probability of the Markov process with generator (J° and state space
Ey starting from n € Ey (see [2] and [4]).
Following [1], we will introduce some polynomials on Z% x Z*(k € Z4). For 5 € I%
and ¢ = (2,--- ,2) € Z¥, set

p(n,z,k) =q(z)(n(z) - 1)--- (n(z) -k +1).
For x = (2;, -+ ,a;) € Z* which consists of different elements, set

m

(1.2) pln,z,k) = Hp(n1x1;>ki))

=1

where {&;,}/, are the set of distinct elements of {; : 1 <! < k} with multiplicity k;.
Throughout this paper, we restrict ourselves to the initial measure p®{e > 0) satisfying
the following two hypotheses:
(Hy). Initial asymptotic condition: For any L > 0,k,l € Z,

k L
(1.3) llmfgwlu (p(m, . k)p(n2,9,0) = [[ or(exe) [] o2 (ew)l =
i=1

=1

where max(y .; denotes the maximum over z € Z¥, y € Z' such that |jex|, |ley|| < L
and («,y) € Z**! are mutually distinct, {p;} are assumed to be uniformly bounded and
belong to C%(R).

(H2). Initial moment condition: There exists a Co > 0 such that for any ¢ > 0,k €
Z+;E = Zk,

(1.4) £ (p(m + n2,2,k)) < C¥

Theorem: Let EJ. be the expectation with respect to {P;,n € Eo} and initial mea-
sure (e > 0). Under the hypotheses (H,) and (Hz), for any r € R,t > 0,1 = 1,2, we
have

(1.5) lim E‘.n, V(e ) = filnt),i = 1,2.
where (f;(r,t), fa(r,t)) solves the following reaction diffusion equations:
Tyt 1
fa( ) =58h(nt) - —ﬂlfl (rnt)+ 5 a2f2 (r1)

+ (ba o bl)fl (r, f)fg(r, )
:-lz-Afg(r,t) o %a:f?(r,t) - %aaff(r,t)

+ (by — b)) f1(r ) f2(r, 1)
Flr0l=pb) i=12

i o2 t)
bt
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Furthermore, for any k,l € Z,,r e RF, g€ R,

lim 5. [p(n{", [~ ], K)p(n” [~ ), D]

(1.7) 5 -
= H fl(r,',t) H f2(Qiat)7
=1 1

t=

where [r] = ([r;]) € Z*, [r;] is the integer part of r;,. The conclusion (1.7) shows that the
propagation of chaos holds at any time ¢.

(1.1) Remark: As an example for the initial measure p® considered above, let uf(z)
be the Poisson measure with density p;(ez), = 1,2, then p* = [[ 7 (pi(z) - p3(z))
satisfies the hypotheses (Hy) and (H3).

(1.2) Remark: It should be pointed out that the quadric degree in the formulation
of the reaction part (), is not essential. The linear case is much easier. The reason for
choose the quadric case is to show the main idea for the non- linear cases. Certainly,
more general models can be handled in a similar way.

The paper is organized as follows:

We introduce a duality of the diffusion part (}; and independent random walks for
function p(n + n2,,k) and p(n1,x,k) - p(n2,y,!), and at the same time we present an

integration by parts formula. Then, we prove that E‘.[p(mm el k)p(n¥,[s71q], )]
are uniformly bounded and equicontinuous on any compact set of R*t!. This gives us

the tightness. Based ourselves on these facts, we prove in section 3 that the limits satisfy
equations (1.6) and (1.7).

2. Some Basic Lemmas:

Let us consider the diffusion part Qc_{. Set § = i1 + 52, then it is easy to check that
for fo.y(n) = p(n1,x,k)p(n2,9,!) and f:(n) = p(7, x, k), we have

k
Qufsn) =I5 3 Biplm,=,K)lplrz, 0,1

t=1

(2.1) -
+p(m @, k)5 Y Bip(2, ,1)]
=1
and
: e
(22) Qafa(n) = 5 ) Aip(2,k)
=1

where A; is the discrete Laplacian acting on the variable z;. The formula (2.1) has
appeared in [1] for single species. By (2.1) and (2.2), we obtain the following formulas:

Blop(nV, 2, k)p(ni® ,9,1)
= Y nt (=), (z,0)ef (p(n, 2, k)p(n2, w, 1)),

€Lk, welt

(2.3)
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(2.4) Elp(fe, 2, k) = Y a(t, z,9)u (p(7, 9, F)),
yeLE

where E,‘f. is the expectation with respect to P « which is the probability measure
of the Markov process with generator {y and mmal measure pg*, and for any & and
z= (21, - ,7x) €IL¥, 7(t,2,") = f=1 n(t,xi,-), w(t,xi,-) is the transition probability
of the Markov chain with @Q-matrix @ = P — I.

Let A be a finite subset of Z, denoted by A cC Z. Consider the finite dimensional
reaction diffusion process P,f" with generator e 20y + (2, on (Zi)A. Of course, (2.3)
and (2.4) hold for the Q- process P,‘,"d with generator 4 on (Z%)". So we get the
integration by parts formulas (see [2]) as follows:

Byitp(n”,x, kp(n”,9,0)
= Y e, o), s B, v,b)

(2.5) 2EAF,wEN!
i

+ [ dof Y w0, (2,9), (2, 0) BN Qe fr (i),

ZzEAE, wEA!
E;}',‘p(iiiax’k)
=Y 2t (e, 2,9)p (p(7,9,K))
(2.6) yEAE
/ do Y 7t(e7 %8, 2,9) Epi 0, fy(ni—s)]
yEAE

where Eﬁ:‘ is the expectation with respect to P,‘}" with initial measure g, and for

x € AF, 7 (t,2,”) = Hf=1 xA(t,x;,-), 74 (t,x:,-) is the transition probability of the
Markov chain with Q-matrix @4, the restriction of @ = P — I, f, , and f, have been
given at the beginning of this section.

(2.1). Remark: It is known that 7 (t, z,-) converges to 7 (¢, z,-) and the finite dimen-
sional distributions of P,'?"" converge to these of Py weakly as A tends to Z (see [2] and
[4]). Letting A 1 Z in (2.5) and (2.6), by the moment estimates of P}¢ and P¢ (see
[2]), we get (2.5) and (2.6) for the reaction diffusion process {P; : g € Eq} with initial
measure p°.

Lemma 1: Under the hypothesis (H), for any k,l € Z,,z € Z¥, y € Z' and ¢ > 0,
we have

Ef.p(n") 2, k)p(ni”9,1)
(2.7) <Eg.p(fit, (2,9),k+1)
<git
Proof: For the first inequality in (2.7), it needs only to check that for z; = y;(i =
< k,g=1,--- 1) and = (g1,92) € Ey,
P(ﬂl,x,k)l’(ﬂz,%l)
<p(m,=,k)(f(x1) = k) - (A(21) -k =1 +1)
<p(,(z,9),k +1)
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By the integration by parts formula,
Elp(@y,z,k+1)
= Y wle7% 2, 9)uf (07, v,k +1)
yenk-e-l
et

(2.2). Remark: If each species contains birth and death rates which are independent
of other species and are also polynomials, then the upper bound estimate in inequality
(2.7) be replaced by (Coe®)F + O(2) (see [1] and [2]).

Lemma 2: Under (H;) and (H;), we have forany L > 0,7 > 0.k, l€ Z,

lim Tm sup IES (™, =V, k)p(ni®, 22, 1))
0—"05—’0([/

(2.8)
—Eﬁ-[z’(m(f”-y“’«k)p(m' g0 =0

where sup(; r5) denotes the supremum over all 2Dy e 7k £ 4B e 7! and
t,t' < T such that ||z)|], ||y £ e7'L, ||l — y!*)|| < e~ 16 and |t — ¢'| < 6.

Proof: We prove (2.8) only in the case that k = 1 and [ = 0. It is similar for the
other k and I’s. We first prove (2.8) for t = ¢'.

Given ¢ > 0,6 > 0,|x|,|zs] < e 'L, ¢t < T and |¢; — x3| < ¢~ 14, by the integration
by parts formula we have

1Bz enM (1) = BSeni (22))]

<Y a2 21, y) — w2t @, y) |6 (me ()]
Y

t
+ /0 a5 Y [n(e20,21,9) — 7(5~%, 52, Y| BL 0S4V (micy)]
Yy
=Is(rl7x2vt) + IIS('”I:x‘Ia ‘6)

where fi' () = n (2). Since

Lz, 22,0) < | Y a(e7 2 22, y)or (s(y + 21 — 22)) — pasy)]|
y
+ 3 w(e72,0,9) Y Wt m(y+2:) = pr(s(y + 21)]
y t=5E2

by (H:) and (Hs), it follows that

lim im sup I. (®1,x2,t) =0.
6—‘05—'0(LT0]

On the other hand, for any £ > 0, 2;,x2 € Z, we have

3 |w (e, 21, y) — w(t, 22,9)| < Clay — 22|/ VA
Yy
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where C is a constant. By the moment estimate (2.7), we still have

lim Tim 1L =8
61;136133(:?) (21, 22,t) =0

Now, suppose that t < t', by considering ¢ as the initial time and using the integration
by parts formula and the above result, we can get (2.8} easily #
(2.3). Remark: The proof of (2.8) is similar to those given in [1] for the case of single

species. From (2.7) and (2.8), we see that for any k.l € Z, E‘.p(m” [e=17], k)p(n?,
[¢='g],1) is uniformly bounded and equicontinuous in any bounded set of Rt/ x [0, o0).

3. Proof of the Theorem

(I). First of all, we have the following integration by parts formula which is very
similar to the integral reaction diffusion equations (1.6):

Bip(nM e ), k)p(ni?, [l 1)
= Y a(e (e ) [ ), (2, 9))6° (plma, 7, K)p(n2, 9,1))

(3.1) s€LF,yeT!
/ de (8_2"% ([e—lr], [5—1 g}, (=, y))E;. Qr fz,y(n1-s)
zel" LWET

where foy(n) = p(n1,2,k)p(n2,3,1).
Denote by Y’ the sum over the set {z € Z* : z; = z; for some i # j}. It is not
difficult to see that for any k > 0 and x € ZF, there exists a Cx > 0 such that

Z ,“(tvxs?/) < G'k:/\/I

v
Therefore, by the estimate (2.7) we have

fim 3 'r(e e (7 b e 0D (,9)
(3.2) (2,9)

(B Qr fay(mi-s)] = 0

On the other hand, for any x € Z¥ and y € Z' having completely distinct elements, we
have

ely(n)

: i
=§:{[a (" i >+b1h zi)nz(@i)|[—p(m, 26y, k — L)p(nz,9,1)]
=1
+[02 (02(;')) + by (i) m2 (2 ][P '71,1‘(1) o= 1)P(7lz,3l7{)]}
!
+ Yotlon (M) + bum a2, Bhplra, £ = 1)

2
+ [a2 (1’2(2% )+b2'l1(.% n2(y:)l[—p(m, z, k)p(n2, ), 1 — 1]}
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where z(;) = (21, s Tim1, Zig1, - %) € L¥ 7Y, gy = (W1, S Yim1, Wit1s 1) €
Z'~!. Furthermore,

Qrfx,y('?)

k
1 i
= Z{—an(m,x‘ Lk + Up(n2, y,0)

=1

1 :
+ 5421’('11,1‘(;),’9 — 1)p(n2, y(=i, 2:), 1 + 2)

(3.3) + (b2 — bu)p(n, x, k)p(nz, y(2:), L + 1)}

i
1 ‘
§ Z{Ealp("hx(yisyi)ak +2)p(n2,96),0 = 1)
i=1

1 v :
= saap(n 2, K)p(m,y" 1+ 1)
+ (bl S b2)P(’ll»£(.’l¢)»k+ l)p(n2syal)}

where 2/ = (5, £} € THL. a(y:) = (g, ) € T, (9, ) = (34 0, 0) € 2212

By (2.3) Remark we can choose a subsequence of ¢ > 0 such that for any k,l € Z,
reRF, g R and ¢t > 0, the limit of Eﬁ.p(m(”, [e™1r], k) -p(nt(z), [¢~1q],1) exdsts along
this subsequence. Let us denote the limit by f(r k,q,l,t}). On the other hand, it is
well known that the simple random walk with time scaling ¢~2 and space scaling ¢!
converges weakly to the Brownian motion. Therefore, by (3.1), (3.2) and (3.3), we have

f(rOska ‘IOala t)
£ f B(t, (ro, o), (dr, dg)} £ r, &, 9,1,0)

t k
+j ds/B(t—s,(rg,qU),(:d-r,dq)){z:[—%alf(r(’.),k+l,q,l,s)
0 t=1

(3.4) 1 _
+ z02f(r), k- Lg(ri,ri), U+ 2,8) + (b — b1) f(r, K, q(r), 1 + 1, 8)]

i
1
+ Zliaxf(r(qnq.‘),k + 240 19)

=1

1 : ; :
= 502 f(rk g L4 L)+ (b1 = b2) f(r(g) K+ 1, )]}

where rm,r(g),r(q,‘) and r(gi,¢i) could be defined in a similar way as above, B(t,r,")
is the transition probability of the multidimensional independent Brownian motion and
f(r k,,1,0) = TI=; 1(rs) [Ti=y p2() by the hypothesis (Hy).

(I). Now, we prove the uniqueness of the solution to equation (3.4). Moreover, the
solution possesses the following property: For any T > 0, there exists an M(T) > 0
such that for any k,l € Z4,t > T,r € R* and ¢ e R,

(3.5) - £ (r, kg, L, 8)] < M(T)*H
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Suppose f and f are two solutions to equation {3.4) and satisfy (3.5). Set p = f — f,
then ¢ is also a solution to equation (3.4) with zero initial value. Set

5‘:“1 7") = sup IP(T!""3Qr 17 {H
kHl=m,rERF gER' '

From equation (3.4), it is easy to see that

t
¢(t,m) < Cm / ¢(8,m+ 1)ds
Jo
where C = (b; + b2) + (@1 + a2)/2. For fixed m, by (3.5) we see that for any n > 0 and
t <1
,,(t m) <20"m(m+ 1) (m+n - 1M(T)"T"" /n!

Therefore, for any m > 0 and t € [0,TA(CM(T))™"), we have
(3.6) elt,m) =0.

If (CM(T))™! < T, considering t’ € (0,(CM(T))™!) as the initial time of equation
(3.4), we can prove similarly that forany m > 0 and t € [t/,TA{CM(T))"* +t'), (3.6)
holds.

By induction, the uniqueness of the solution to equation (3.4) is proved.

(IIT). By Lemma 2 and (2.2) Remark, the limit f(r, k,¢,l,t) satisfies (3.5). However,
for the solution (fy(r, ), f2(r,t)) to equation (1.6), it is easy to verify that Hf=l Lhilnt)
H£=1 f2(gi,t) satisfies the differential equation (3.4) and (3.5). Therefore, we have

flr kg, ,t) Hf,(r,.r)l'[fz (gi.t

Consequently, (1.5), (1.6) and (1.7) follows from above.
Corollary: If the conditions of the Theorem are satisfied, then for any p € ®(R) (i.e.
the Schwartz space of rapidly decreasing functions on R), the density field satisfies

zh'f(l)Eﬁ.[sZ @ er)r)t (x / r)fi{r)drl: =0,0 =12

€l

where (f(r, ), f2(r,t)) is the solution to equation (1.6).
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