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ON THREE CLASSICAL PROBLEMS FOR MARKOV CHAINS
WITH CONTINUOUS TIME PARAMETERS

MU-FA CHEN,* Beijing Normal University

Abstract

For a given transition rate, i.e., a @-matrix Q = (g;) on a countable state space, the
uniqueness of the Q-semigroup P(t) = (py(t)), the recurrence and the positive
recurrence of the corresponding Markov chain are three fundamental and classical
problems, treated in many textbooks. As an addition, this paper introduces some
practical results motivated from the study of a type of interacting particle systems,
reaction diffusion processes. The main results are theorems (1.11), (1.17) and (1.18).
Their proofs are quite straightforward.

UNIQUENESS; RECURRENCE; POSITIVE RECURRENCE

1. Statement of the results

Let E be a countable set. Suppose that ( p;(¢)) is a sub-Markov transition probability
matrix having the following properties:
(1.1) Normalized condition:

Py(t)g(), zpij(t)é I;
J

(1.2) Chapman-Kolmogorov equation:

py(t +5)= % pi(t) pi(s), t,s=0;

(1.3) Jump condition:

ling py(t) =9y, i,jEE.
11—

It is well known that for such a ( p;(?)), we have a Q-matrix Q = (gy) satisfying the
(1.4) Q-condition:

lli_{l(;l(Pij(t)_Jij)” = (1 —9dy)gy + 4.9, i,JEE
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where
0=¢y<o0, i#j, 02¢g=—¢; =0, X gq;=q.
j%i
Because of (1.4), we often call P(t) = (p;(t)) a Q-process.

Throughout this paper, we suppose that the Q-matrix Q = (g;) is totally stable and
conservative. That is

(1.5) <o, Xgj=gq, IEE.
jwi

The first problem of our study is when there is only one Q-process P(t) = ( p;(t)) for a
given Q-matrix Q = (q;) (then the matrix Q is often called regular). This problem was
solved by Feller (1957) and Reuter (1957).

(1.6) Uniqueness criterion. For a given Q-matrix Q = (q;), the Q-process (py(t)) is
unique if and only if the equation

(1.7) (A. +q,~)u,- = 2 q;iYU;, 0= U = l, i€EE
Jjwi

has only the trivial solution u; =0 for some (equivalently, for all) 4 > 0.

Certainly, this criterion has many applications. For instance, it gives us a complete
answer to the birth-death processes (cf. Corollary (1.16) below). However, it seems hard
to apply the above criterion directly to the following examples.

(1.8) Example: Schlogl model. Let S be a finite set and E =Z$. The model is
defined by the following Q-matrix Q = (q(x, y): x, yEE):

’).. (x(zu)) + A ify=x+e,

q(x,y)= 1% (x(;)) +Ayx(u), ify=x-—e,

x(u)p(u, v), ify=x—e¢, te,
L0, othery # x
g(x)=—q(x,x)= X q(x,),
yrx
where x = (x(u): u €S), (#) is the usual combination, 4,,- - -, 4, are positive constants,

(p(u, v): u, vES) is a transition probability matrix on S and e, is the element in E
having value 1 at  and 0 elsewhere.

The Schlogl model is a model of chemical reaction with diffusion in a container.
Suppose that the container consists of small vessels. In each vessel ¥ €S, there is a
reaction described by a birth-death process. The birth and death rates are given
respectively by the first two lines in the definition of (¢(x, y)) above. Moreover, suppose
that between any two vessels u and v, there is a diffusion, with rate given by the third line
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of the definition. This model was introduced by Schlogl (1972) as a typical model of non-
equilibrium systems. See Haken (1983) for related references. See also Chen (1990) for a
study of the infinite-dimensional case and for more mathematical references.

(1.9) Example: dual chain of spin system. Let S be a countable set, and X be the set
of all finite subsets of S. For A €E X, let |4| denote the number of elements in 4. For
various concrete models, their Q-matrices (g(4, B): A, B € X) usually satisfy the follow-
ing condition:

(1.10) Y q4,BX|B| —|4])=C+cld|, A€EX
Bex

for some constant C, c ER. A particular case is that

q4,B)= Y cw) ¥ pu,F),
u€Aq FFN\(A\u)=B

where
c(u)z0, supc(u)<ow, pu,A)z0, Y pu,A)=1
u A

and
sup c(u) Y, p(u, A)|A| < .
u A

Then (1.10) holds with C = 0 and ¢ = sup, c(#) = p(u, F)[| F| — 1] (cf. Liggett (1985),
Chapter 3, Section 4).

Intuitively, we can interpret the last Markov chain as follows. Let 4 be the set of sites
occupied by particles (finite!). At each site there is at most one particle. Then the process
evolves in the following way: each u € 4 is removed from 4 at rate ¢(«) and is replaced by
the set F with probability p(u, F); when an attempt is made to put a point at site ¥ which
is already occupied, the two points annihilate one another. The dual chain of the spin
system is often used as a dual process of an infinite particle system. This dual approach is
one of the main powerful tools in the study of infinite particle systems.

Now, we state our first result.

(1.11) Theorem. Let Q =(q;) be a Q-matrix on E. Suppose that there exists a
sequence {E,}{ and a non-negative function ¢ such that

E,'E, supg; <o, lim inf g, = .
i€En n—o i€E,

If in addition

(1.12) ;qU(%_%)éC%, I€EE

holds for some c ER. Then the Q-process is unique.
To compare this theorem with the criterion (1.6), we reformulate (1.6) as follows.

(1.13) Alternative uniqueness criterion. For a given Q-matrix Q =(g;), the Q-
process is unique if and only if the inequality
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a0, —9)Z4p;, IEE
J

has no bounded non-constant solution (g, : i € E) for some (equivalently, for all) A > 0.
Take E, = (i €EE: q; = n}. Then by Theorem (1.11) we have the following result.

(1.14) Corollary. If there exist a function ¢ : ¢; = q;, i EE and a constant ¢ €R such
that (1.12) holds, then the Q-process is unique.

To see these results are practical, for example (1.8), we can either take ¢(x)=
c[1 + (Z,es x())?] and apply Corollary (1.14) or take ¢(x) = c[1 + Z, x(u)] and apply
Theorem (1.11) with E, ={i:i =n}, where ¢ is a constant chosen by a simple
computation. For example (1.9), simply take ¢(4) =c[1 + |4|] for a suitable ¢ and
apply Theorem (1.11) with E, = {4:|4| = n}. For instance, for example (1.8), when
2, x(u) is large, then (1.12) should hold because the order of the death rate is higher than
that of the birth rate. On the other hand, if Z, x(u) is bounded, then we can choose c large
enough so that (1.12) still holds.

Next, we consider a typical case. Let

E={0,1,2,---}=1,.
Suppose that the solution (x;) to the equation
(1.15) A+ag)ui=3 qu;, u=1, i€E
jei

is non-decreasing:
! asit

then, from criterion (1.6), it is easy to see that the process is unique if and only if
lim; ., #; = c0. On the other hand, if we take E, = {(i€Z, :i =n},c=Aand ¢, = u;,
i EE, then the hypotheses of Theorem (1.11) are reduced to the condition: lim;_., ¢; =
lim;..,, %; = oo, which is the same as above. Thus, the conditions of Theorem (1.11) are
not only sufficient but also necessary for this particular case. This remark plus the next
result gives us another view of justifying the power of Theorem (1.11).

(1.16) Corollary. For the single birth processE =1,
%i+1>0, ¢,;+=0, k=2, I€E
(but there is no restriction to the death rates) the Q-process is unique if and only if
Z2o m = o, where
k

m; = .Zoili)/ql,i+l’ kEE;
-

k=1
=1, FP = % @PFlgy,, 0si<k,

j=i

q;:)=.ioqk,, 0<i<k, k€EE.
j=
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Proof. In this case, it was proved in Yan and Chen (1986), Theorem 3, that the
solution to (1.15) has the non-decreasing property mentioned above.

Now, we go to the next topic: recurrence. It is well known that for a regular Q, the
corresponding Markov chain is recurrent if and only if so is its embedding chain: see
Chung (1967). However, we have a more precise formula.

(1.17) Theorem.
NS S g, ieE

where pi» = 6;;, (P is the nth power of the matrix ( p;):

0y ifg;i=0
D= )
(1 —d;)q;/q;, ifg; #0,

and we use the usual convention: ¢/ =0,¢ #0;¢/0=00,c>0;¢c + 00 =00, ¢ X 00 =
©,¢c>0;and0X 0 =0,0/0=0.

The last topic is positive recurrence. We call a function 4 : E—R_ = [0, c0) compact,
if for each d ER,, the set (i EE: h; = d} is finite.

(1.18) Theorem. Given an irreducible Q-matrix Q = (q;). Suppose that there exist a
compact function h and constants K = 0, n > 0 such that

J

then the Markov chain is positive recurrent and hence has a unique stationary dis-
tribution.

To apply this theorem to example (1.8), take h(x) = Z,¢s x(u) and an arbitrary n > 0.
Then one can find a K < o such that the above inequality holds. Hence, the Schlogl
model is always ergodic in the finite-dimensional case. As for example (1.9), since & is
an absorbing state, the answer is obvious. Finally, consider the linear growth model:

q,'_1+|=ﬂ.i+6, qi,i—l=”i’ la”’5>0a
q,;=0 forotherj#it1,i,jEZ,.

It is well known that this model is positive recurrent if and only if A < . Recall that this
conclusion is usually obtained by studying three series respectively to show the regularity
of Q, the recurrence and finally the positive recurrence of the chain. On the other hand, it
is obvious that Theorem (1.18) is applicable for the natural choice of h; = i(i €Z,) if
and only if A <pu. Thus, we arrive at precisely the same place directly. Now, the
advantage of Theorem (1.18) should be clear.

Most of the above results were studied in Chen (1986b) in Chinese; Theorem (1.11)
and Theorem (1.18) were treated for general measurable state (E, &). See also Chen
(1986a), (1989). In the context of diffusion processes an analogue of Theorem (1.11)
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appeared in Stroock and Varadhan (1979). The equality in Theorem (1.17) I learnt from
S. W. He (oral communication). A referee pointed out that this formula is well known,
and introduced me a to probabilistic argument (due to D. Kendall many years ago).
Since it is a nice formula that I have not yet seen in print, and its proof (given later) is
quite simple and based on the same approach that is used several times in the paper, I
have included this result for completeness. In contrast to Chen (1986b) in this paper we
restrict ourselves to the discrete case with a slight extension so that the results are more
accessible to a wide range of readers. Indeed, we can prove the above results quite
directly. This enables us to teach them in a course on stochastic processes for under-
graduate students.

2. Preliminaries

We begin this section by introducing a useful tool, which I learnt from Z. T. Hou, the
minimal (non-negative) solution to a non-negative linear equation (Hou and Guo
(1978)).

Let E be a countable set, ¢, b; €[0, «], i, j EE. Consider the equation

(2.1) X = 2 CieXp + b,-, i€E,
k€E

here we use the conventions 0 X oo = 0, etc., mentioned in the last section.
(2.2) Existence theorem. Define

x0=0, xf*tV=3 c,xf" +b, Ii€E, n=0.
kEE

Then for every i EE,
x{™ t some x*€[0, 0] asn?too,

(x}*; i EE) is a solution to (2.1) and is indeed the minimal one in the following sense: for
each solution (x;: i €EE) to (2.1), we have

x;zxt, i€E.
(2.3) Corollary. Define
yi=b, I€E,
Y =3 ), I€E, nzl.
kEE

Then
x¥= Y ym  |€EE.

(2.4) Linear combination theorem. Let G be a countable set and c;, b", ¢, E[0, ],
i,JEE, |EG. For each |EG, let (x*" : i EE) be the minimal solution to the equation

X = 2 Cie Xk + b,"), iEE.
k€E
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Then (Z,eg o, x*": i EE) is the minimal solution to the equation:

X; = 2 Ci kX + 2 a,b,('), i€E.
kEE leG

(2.5) Comparison theorem. Let c’, b’ €[0, ], i,jEE, | =1, 2. Suppose that
ch=cp, b zbP, i,jEE.
Then for every (x{V : i EE) which satisfies
x,zgc,%’xk+b,(", i€EE,

we have
XV = x¥, IEE,

where (x¥? : i EE) is the minimal solution to (2.1) with coefficients (c) and (b®).

(2.6) Monotone convergence theorem. Forl=1,2,. -, let c{ and b’ be the same as
above and let (x*") denote the corresponding minimal solution. Suppose that

e, bPtb, asltoo,i,jEE.
Then
x*¥Dtx* asltow,i€E
where (x}*: i EE) is the minimal solution to (2.1).

The proofs of the above results are quite elementary. Actually, only the induction and
the ordinary monotone convergence theorem are needed, so it is not necessary to present
the details here.

Now, we return to our main context. Let

p,,(z)=fo°°e- p,(0dt, i, jEE, 1>0.

It follows from (1.1)—(1.4) that ( p;(1)) satisfies the following conditions.
(2.7) Normalized condition

pyA)=0, AXpi(A)=1, i,jEE, A>0.
j

(2.8) Resolvent condition

py(l)—pu(ﬂ)+(l—u)%lpfk(l)pw(u)=0, i,jEE, A,u>0.

(2.9) Jump condition

At
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(2.10) Q-condition

The converse implication is also correct. In other words, if (p;(4)) satisfies the
conditions (2.7)~(2.10), then there exists uniquely a Q-process ( p;(¢)) with the given
(py(A)) as its Laplace transform. For a proof of the above facts, see Feller (1957), Reuter
(1957), or Gihman and Skorohod (1983). We recall that the advantage of using the
Laplace transform is reducing integral equations to the corresponding algebraic equa-
tions. Certainly, one may avoid the Laplace transforms, but the proofs given below
would become a little more complicated. Based on the above-mentioned one-to-one
correspondence between ( p;(¢)) and its Laplace transform ( p;(1)), we also call the latter
a Q-process.

(2.11) Feller’s construction. Fix >0 and jEE, let (pf™(A)) be the minimal
solution to the equation

ik Jy .
2.12 X = X + , I€E.
( ) ‘ kgil +qi k )- +q,

In detail, if we set

xP =0,
ik 0y
x‘(n+l) = n) + ) ,
kgil + Qix" A+g

then
x{"t pPis(A) asntoo,iE€E.

This P™®(A) = ( p#™(4)) is a Q-process and is the minimal one. In other words, for any
Q-process ( py(A)), we have

piA) = pf*(A), i,jEE, A>0.

Moreover, for fixed A >0 and i EE, (pf™(1) : j EE) is also the minimal solution to the
equation
G

(2.13) V=2 y,,——qiL +—

R jEE.
kwj l+q, l+q, J

Proof. rFor the reader’s convenience, we sketch the proof here. By using the equation

) Gix . O .
min()) = mn(2y+ 4 EE
pit(d) k§i1+q‘pn (1) ita

the conditions (2.7), (2.9) and (2.10) are easy to check. Put
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0y

M) = —3I

o=

P = Aiik @A), nzl, i,jEE.
i

Then the condition (2.8) follows from Corollary (2.3):

Z PR = P @)

and the equality

D= APE = =1 3 3 A0 s

(2.14)
Au>0, i,jEE, n=1.

To prove (2.14), simply use induction on n.

Next, by using induction step by step, it is easy to show that (2.12) and (2.13) give us
the same minimal solution.

Finally, the fact that (pJ™®(4)) is minimal follows from Theorem (2.2) and the
following resuit.

(2.15) Lemma. Let (p;(A)) be a Q-process, then

pu(j')g 2 L 3 A >09 l,jEE'

(A
kwid +¢Iiplq(

A+gq
Proof. By (2.8), we have
— up; (1) + up(u)Ap;(A) + kE . upi(U)AD;(A)

a1 = @) py) = X #2pul) py(A).

Letting 4 — oo and using Fatou’s lemma, we obtain
—o0;+ j'P@;('q-) + qiplj(l)
; E ik plq(}')s
ki
since

lim sup 2 upu(ﬂ)lpk.(l)

4=

=<limsup ¥ upy(u)

p—~o kei

=lim sup (1 — up;(u)) = 0.

B~ o
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3. Proofs of the results

(3.1) Proof of Theorem (1.11).
(i) We first consider the trivial case that sup;q, = C <. By (2.13), for every
non-negative function f, we have

Si
A +—.
?P W= Ep (l)EM_l_ i+a

In particular, taking f; = 4 + ¢;, we get

AZ ppn(A)+ )13 Py (A)g; = § PR (Mg + 1.
J

Since
Y pf(A)g; = C/IA <,
j

we have

AT pEe()=1, A>0, i€EE.
i

By Feller’s construction (2.11), this certainly implies the uniqueness of Q- processes.
(ii) For the general case, let

a =1Ig()gy, ¢ =X 4qP, Ii,jEE.

jwi

Then for each 7, sup; g/ < co. Because of (i), we can let ( p{ (1)) denote the Q-process
determined by (g{"). By the condition (1.12), we have

(3.2 Eq&"’(cv, ¢p)scp;, IEE

for some ¢ > 0. By Feller’s construction (2.11) and linear combination theorem (2.4),
it follows that for fixed A > 0, (Z; p{"(A)g; : i € E) is the minimal solution to the equation

q® 2

X = X, + , jEE.
At T i 'EE
On the other hand, the condition (3.2) gives us
¢ - i o @i .
= + , €E, A>c.
A—c kpid+qPi—c A+gq ! ¢
Hence, by the comparison theorem (2.5),
(3.3) T AP (Ao, gzﬂc A>c, i€E, nzl.
7 _

(iii) For i EE,, by (2.11) we have
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i ik
min(]) =
jEEE,. A= %11 quz P

JEE, l +
3.9

ap Oy
k§11+ ()jezEp a)+1e21:~:.1+¢1§").

On the other hand, if i ¢ E,, then
Y pf*(A)Z 0=RHS of (3.4).

JEEs
Hence, for all i EE, we have
Y pF®(A) Z RHS of (3.4).

JEE
By Theorems (2.11) and (2.6), we obtain
T pfr(A)z ¥ pf’(d), I€E, A>0, nzl

JEEs JEEn
(iv) Combining the above facts, we arrive at

A Y pPr@A)zA T pP@)

JEEs JEEn

—1-1 3 2@
J€En

;l—lwi/[(l—c)lig%], A>c.

Finally, by (2.8), it is easy to see that the above equality indeed holds for all A >0.

(3.5) Proof of Theorem (1.17). For simplicity we omit the superscript ‘min’ from
now on. Note that for fixed j and 4 > 0, ( p;(1)) is the minimal solution to

Qix Jij .
X = X + , i€E.
' kgil + q,- k l + q,'

On the other hand,

% 1@ __Jii 15_"1'
Atq @ A+a 4@

py(A) 1 fo ® py(t)dt, asAl0,i,jEE.

By the monotone convergence theorem (2.6), (f¢ py(t)dt: i EE)is the minimal solution
to the equation
. 8
x=3 %y +% ek
kwi i f
Next,
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i’ p!(’!’)

x'(l) = =, i€E.
di qi
Suppose that
n—1
x'(n)= E ﬂ}lm)/qj’ i€E
m=0
for some i €EE. Then
x'(n+|)= E ﬂx}{" +@
kw»i g; q;
(3.6)
n—1
=l 209 T PIg + BPlg;.
k m=0
and so

RHS of 3.6)= 3 pf™/g,

m=0
when g; # 0. Otherwise, ¢; = 0,
w, ifj=i

R A (R )

n w, ifj=i
Y pMig=(n+1)d;/q; = {
m=0 0, ifj+#i.
Hence we still have
RHS of 3.6)= Y p{m/q;.

m=0

Thus, we have proved that x{ = Z2_}, pi™/q;for all i EE and n = 1. By Theorem (2.2),

@ n ]
f p;(t)dt = lim x" = lim Y} p{m/q;= Y pMiq, i€E.
0 n—® n 0 n=0

=0 -

(3.7) Proof of Theorem (1.18).
(i) Since h is compact, E, = {i: h; = n} is a finite set, we must have

supg; <o and lim inf ; = 0.
i€E, n—w i@E,

Thus, an application of Theorem (1.11) with 4 = ¢ tells us that the Q- process is unique.
(ii) By induction, it is easy to check the following fact: the Laplace transform of the
minimal solution to the integral equation

pu)=3 [ exp(~at —sNawpy(s)ds +6,exp(~a),  i€E
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is just the minimal solution to (2.12). Thus, by the linear combination theorem (2.4), for
fixed ¢t = 0, (Z; p;(t)h;: i EE) is the minimal solution to the equation

x(t)=3X o' exp( — g;(t — $))quxi(s)ds + exp(— q;t)h;, I€E.

ki
Now, by the comparison theorem (2.5), the condition (1.19) gives us

2 p,,(t)h, = em -1+ e""h,—, IEE, t=0.
j

(iii) Fix ¢t > 0 and put

By (ii), we have
Y p(t)hy <C +ch, i€EE,
j

and so

T p(ntSC(L+c+---+c" ) +ch
)

lIA
1A

C
— + ¢ < +ch;, I€E.
1—c¢ 1—c¢

Next, fix i EE and set

u" = py(nt).

It will be proved later that the family {u™:n = 1} is tight. Thus, we may assume
that
u =y, ask—>oo,jEE

and Z;u; = 1. On the other hand, the chain ( p;(¢)) is irreducible and hence aperiodic,
the limit

lim p;(t)
t—=o
always exists, which is positive if and only if the chain is positive recurrent.
(iv) To prove the tightness of {#™ : n = 1}, note that

YuPhi=D<w, nzl

J
For any ¢ > 0, take
K,={i€E:h; =Dle}.

Then K, is compact and
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sup ™(K¢) =sup ¥ uf™
n n je&k,

]
S—sup T uh Se.
D n J

The last argument I learnt from Dobrushin (1970).

(3.8) Corollary. Under the hypothesis of Theorem (1.18), the stationary distribution
(i;: i EE) has the property:

?ﬂjhj = K/".

Proof. As we have seen from the above,
Y py(nt)hy =C/(1 —c)+c"™h, IEE, nzl.
J

Letting n — oo and using Fatou’s lemma, we obtain

? wh; = C/(1 — c) = (exp[Kt] — 1)/(1 — exp[ — nt]).

Now, the conclusion follows by setting ¢ } 0.
To prove the equivalence of (1.6) and (1.13), we need two lemmas.
(3.9) Lemma. Let c, b;€(0, 1] satisfy
?c,,-+b,- =<1, I(€E.

Define
u® =1,

ufr*D =Y cuf® +b, Ii€EE, nz=0.
k

Then
um | somew,, Ii€EE

and (4;: i EE) is the maximal solution to the equation

w=Ycuth +b, O0=u =1, i€E.
k

Proof. By induction and the dominated convergence theorem.
(3.10) Comparison lemma. Let ci’, b’ be the same as above, | = 1, 2. Suppose that
P zcp, B zbP, i, jEE.
Then for every (uf? : i EE) satisfying
(3.11) u,é?c{f’u,+b}’), 0=y, =<1, i€E

we have
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aPzu®, I€E
where (4f" : i EE) is the maximal solution to the equation
(3.12) u=YcPuy+b", 0=y =1, iEE.
Furthermore, if ¢’ =cf?’ and b{® = b@® for all i,j€EE, then (3.11) has no non-trivial
solution if and only if so does (3.12).

Proof. The first assertion follows from Lemma (3.9) and induction. Then the second
assertion follows immediately.

(3.13) Proof of the equivalence of (1.6) and (1.13). Let (p;:iEE) be bounded
and satisfy

(3.14) La)e;—v)Zip, IEE

J
for some A > 0. If inf, ¢, <0, we may replace ¢; with ¢; — inf; ¢, and keep the inequality
(3.14). Thus, we can assume that (¢;) is non-negative solution, we may also assume that it

is bounded by 1 from the above. Therefore the above-mentioned equivalence follows
from Lemma (3.10) immediately.

(3.15) Remark. Let c;, b, €0, 1] satisfy
i

Denote by (x*: i € E) the minimal solution to the equation

X;i=Ycx+b, I€E.
i

Then (1 — x*: i EE) is the maximal solution to the equation
ui=zCqu+(l—bi), 0§u,-§l, i€E.
j

From this point of view, the maximal solution is a dual of the minimal solution. Keep-
ing this idea in mind, we can get an alternative proof of Theorem (1.11) by using
Lemma (3.10) plus Criterion (1.6). But such a proof is more indirect than the one
given above.
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