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1. INTRODUCTION

This note proves the uniqucness of reaction diffusion processes constructed by Chen!".
Let Z, be the 5ot of nonuegative integers, S a countable set and E=2Z35. For each u € S,
suppose thal we are given on Z, a function C,>0 with C,(0) =0 and a conservative
Q-matrix Q, =(g,(i-j)). For convenience, we set g, (i, j) =0 for j<0. Moreover,let P=
»( p(u, v)) be a transition probability matrix on §. The formal generator of the processes
considered here is as follows: ’

Qfm=Y Y q.0w) @)+ k) fn+ke,)-f(n)]

ueS k#0
+ 3 C, () plu:v)l fn—e,+e,)~f(y)]
u.ve S
=Q,f(n)+Q,f(n), nekE (1)

where e, is the unit vector in E with value 1 at u. Q, and Q, are called the reaction part and
the diffusion part of Q respectively. We need the following hypotheses:

(H,) Growing condition
C=supl C,(k)- Clk+ 1) <oo,sup Y g, (ii+K)kl<CU+im), ieZ,,
u.k

¥ k%0
where m is the minimal natural number so that the above control holds and C, is a constant.

(H,) Lipschitz condition

C,=sup {g, Gi-jo)+h,Giojp):ue S>>0 f<oo,

~ where
G i) =Y 1 q,Gar o+ k)= @G it K1 kG =)

k%0 ,
hrsja)=2 Z [(qu(jZ’jl—k)—qu(jl’zjl_j2_k))+
k=1
+ (‘]u (jl’j2+k)—qu (jz’zjz—jx+k))+] k/(j2"jl)-
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(H;) Moment condition
sup Y g i, i+ K+ k)"—i"] <Cy(1+i™), ieZ, .

¥ kg0
(H,) Transition condition

sup Y p(u,v)< oo .
The state space of the processes is E,={ne E:lnll=Y n(u)a(u)<oo}, where (a(u):ueS)

is a positive summable sequence such that Z plus v) alv) < Malu)for some M>0 and all

u € S. As an example, we take a(u)= Y M"Y p(u,v)d(v), ue S, where M>1,

n=0 v

(p™(u,v))= P"and (d(u):u € S)is a positive summable sequence. Set
Ci=sup{[ C, ()= C.(Q / (h=j)ue S jp>420 },

E,={neE:Nnll= T nG)"clu)<col

ue s

and we denoic by & the set of Lipschitz continuous functions on E, with respect
tolln=¢ll,= 5 in(u)~{ W)l a). For fe %, let L,(f)be the Lipschitz constant of f.

dot

ue S
But we omit the index m when m= 1. Finally, let {A,}® be a fixed sequence of finite subsets

of § such that A, * S. Replacing S with A, in (1) we may define Q,,Q, ,and Q, ,. The
semigroup corresponding to Q ,is denoted by S, (¢).

I1. MAIN RESULTS

Theorem 1. If (H,)—(H,) hold, then there exists uniquely a semigroup of positive opera
tors S(t) on & such that S(0)=1I, S(t) is strong contraction on the uniform closure & of <~ ;
lim §,(2)f(n)=S0)f(n)for fe ¥,n€ E, and t>0. Moreover,

(1)S(t)fe Z and L(S(t) f)KL(f )exp[ t(C,+Co+ C(M+1))] for fe & andt>0;

() SO - ()< + iyl for n € E,, and =0, where C(t) is a constant de-
pending on t only,

(i) 2 S(1)f = QS =SWOQS for fe L2ne By and 130.
Finally. there exists a Markov process ({n,},50+ P") on E, such that
S(t)f(n)=f fE)YP (n, € df)=f fE)YP(tn, dE),
where P(t,n d&) s the transition function of the process.
To state another uniqueness result, we replace (H,)and (H, ) respectively with
H) Q,. (-1 @)<C;Q+lglim), nezr ,n>1,
where C/is a constant independent of 7,

(H) there is a positive summable sequence (o (1)) and a constant M (m)> 0 such that
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Y p(uwv)alo "< M(m)a(u)™, ue S.

Theorem 2. Let (H,),(H,), (H;) and (H,) be satisfied. Then the assertions of Theorem
1 hold provided (ii ) and (iii ) are replaced by

Q)" SOHU-Im <) (+ligh™)  forne E, and 1>0;
(iii )" the above (iii ) holds for fe &, and n € E,.
Moreover, the above (i) can be stressed as follows:

(i)' S(t)fey, forfe 7, andt=0.
Remark. Note that (H,) plus

M, =sup { plu,v)' "™:usvesand plu,v)>0}< 0
imply (H,”). Indeed, if we take (x(u)) as befcre, then

Y pluv)a ()" <MY {plu,0)"alo <M (Y plus v)alo <M M™) alu)" ue S.
Coreliary- 1. Tnoke C,(L) ==k ond let the reaction be the type of birth-death:

q.Goi+ 1)=b(i),i20;q,Gi-1)=a(i), i=zl,ues.
Suppose that for some ¢ € (0, 1), we have im [b (i)~ c¢™ a(i)) /i< . Then (H,)and (H])

are satisfied. Furthermore, if (H,) and (H,)(resp. (H[)) hold, then Theorem 1 (resp.
Theorem 2) is applicable.

Proof. Here, we check (H ;)only. Choose N'=N'(m) so thatlln—e,ll=c lin+e,ll
whenever 5 (u) > N'. Next, choose N2so that [ 5(i)—c™a(i)] /i< A for some 4 (0, c© )
and all i> N2 Put N=N'V N2 Then, for each n> [, we have

Q,,(-m =Y {bt@))in+ed"—linlm] + atn))in— el lnli] }

ueAnp
m—1 - m
= Y a@)Y Mgltiin+e [b(n(u))—a(n(u))( {: e ) ]
ueAn (=0 n+e,ll
ueAp,nw)zN uweAp n(u)<N-1\
sm(4+ max b)) Uhpli+la)™ nezZim, n>1,

0gig<N-1

where lal=}" a(u).

u

Corollary 2. For the autocatalytic model: C (k) =k, q,(i, i+1) =B, i, g, (i i=2)
=8,i(ti—1), k.i€ Z,,u€e S, the same conclusions of Corollary 1 hold.

When S=2Z and P is the simplest random walk, the uniqueness conclusion in the sense
of Theorem 2 for the last model was proved by Zheng 2.

111. Proors

We first prove Theorem | briefly.
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a) It follows from [3, Theorem 16] or [4, Theorem 2.3.7] that §,(¢)is uniquely deter-
mined by Q,. For m>2,by (H,), (H,)and the Holder inequality, we have

Q, A=Y C,Ow) plu ) lin-e,+eli-llinl]

uste Apg

<2"-2) Y Cn)l pluw v)a@] " pluv)a)] ™" g(v)"" + CMlinl

wveAn

<Q@"-2)CLY 7w plwv)a@] "I Y plu)a)n)™ " "+ CMInl

woeAn wvEAn
<@ =2)CMY " ighl ™ (sup ¥ plu, v)) 7 Yt =+ CM linh
<const. |l S
This inequality holds even for m= 1. From this 2nd (H;), we sac that there is a con-
stant C, so that Q, (Ill - Il ()< Cs (1+lligll). Thus, by {2, Lemma 6.7.15] , we have
SO Iy sexp[Cy ] A=Wl s20.neZM a2 1.
By using air approgimating arguivent, we obtain
S -1 () <expl Cy 4 U +Hligh), t20,9€E,,. 2)
This proves not only (ii ) but also that E, is a closed set of the process.

b)By[1],[4] and [5] we know that there exists a semigroup S(z ) having all properties
in Theorem 1 except the last equality of (iii). However, it follows from (H, ) that

1Qf ()] <C, LEYA+igll ), for fe & and ne E,,.
Hence |Q S(1)f(n)! < C, L(S(t)f Y(1+llinlll) and so

IS f)—fpl/e< —;—J. 1QS(s)fip)lds <C, 1+ gl Y L exp [ C+ Co+ C(M+ 1)]

for t<1, fe v and 5 € E,. Therefore, by (2) and. the dominated convergence theorem,
we get
ﬁfﬁ SOLSGI ) =) /s=S()Q f(n), t20,fe #,n€E,,.

This proves the last equality of (iii ).

c)Now, let S, (7), k=1,2 be two semigroups having the properties in Theorem 1. To
prove the uniqueness, we need only to show that S,(1)f = S,(¢)f, >0 for all bounded fe &.
Since E,, is dense in E, with respect to || - |l, by the Lipschitz property of the semigroups, it
suffices to show that S, (¢)f(1)=S8,(¢)f(n)for all y € E,, and t>0.On the other hand, E, i
a closed set of S;(¢), k=1, 2, the required fact is a straightforward consequence of (iii)
(see [4, Corollary 6.4.22] for details ).

Remark. In view of the above proof, we can restrict ourselves to E,, in the study of the
process.

Now, we turn to prove Theorem 2.
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a)By (H })and [1], {5], we can use (a(u)™)and M (m) instead of («(u)) and M
respectively to construct a semigroup S(r) having the Lipschitz property with respect to
It -1l.. So (i)’ holds.

b) Because of
Q..U -G <mCM Il (gl +1al)™' ne 24, n>1
and (H), there is a constant C; such that
Q, (- II" < C/A+lglim), nezin,n>1.
A similar argument as above gives us
Sy -Imy (py<expl C/al O+ligh™), t20.5¢€ £,
This is just (i )"
c)For fe v, . we havs
Qi) < L,0N0Y, C A+ nG)™) alu)™+ C(1+M(m)) Y, nG)alu)m]
< const. L,,,(f)(1+!lnull'"), nek. ’

Now, the remainder of the proof is similar to the previous one.
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