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COMPARISON THEOREMS FOR GREEN FUNCTIONS
OF MARKOV CHAINS

Chen Mufa (%A 50"

Abstraci

The avthor presents some straightforward procfs for two eomparison theorems for
Green functions of Markov chains, which slightly improve the previous results by
“Varopoulost® 7, Durrett’® and Yan and Chen "L A recent result by Rogers and Williamst™

-about instantaneous Markov ehains is also improved by using the same idea.

§1. Introduction

Let E be a countable set and P a transition probability on H. Denote by &,
‘the set of all nonnegative functions on K. A measure u on K is called excessive for
P if

Mi>2j wiPs, t€ B
and is called invariant for P if the above inequality becomes equality. The
measures @ and » on K are called equivalent if
o< <o
dy
for some constant 0<<0<co,

Since the transience of symmetrizable Markov Chains is well understood (see
Griffeath and Liggett [4], Lyons [6] and Varopoulos [8, 9]), it is interesting to
know the transience of non-symmetrizable Markov chains by using the criteria
for the transience of symmetrizable ones. The following is one of the results of
such kind.

Theorem 1. Let P and Q be two irreducible transition probability which have
sacessive measure  and invariant measure v respectively. Suppose that

(&) w and v are equivalent;
~ (b) Q is symmetrizable with respect to v; é. e.
viQii=vQn
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for all 4, jE E;
(o) P>sQ, 4. 6. P;;=>¢Q, for some >0 and all ¢, jE K.
Then for all A<1 and fE€ &,

oo x n . oo i .
3525 <Pt D<K 0@, P
where K =207 / (% A s) and the subscript indicates trat che tnmer vroduct is taken with

respect to v. In particulzr, of € 48 transient, then so is P.

Ta the case of ¢ beiug sn invariant measure for P and y=u, tho above result:
was oltained by Varopoulos™?, and then extended by Durreitt ™ to the case
where i and v are equivalent. The new point here is the use of the exocessive
measure u instead of the invariant one for P. This is more reasonable since a
non-trivial excessive measure for 2 transient Markov chain always exists but is
not necessarily an invariant one.

A straightforward proof of Theorem 1 is given in the next section. The same
proof shows that the theorem can bs generalized to bhe context of an arbitrary
Markov prooess with diserete time parameter and an arbitrary state space.

The next result shows that the converse direstion is also possible. That is %o
got the recurrence of a Markov chain by comparing it with a related simpler
Markov chain,

Theorem 2. Take E={0,1, 2, ---}. Let X={=z, y, z, ---} be another countable
set with a reference point 0. Let || be a surjective mapping from X to E such that
16| =0, |z| %0 if %60 and #{z: |z| =k} is finice for each k€ H.

Let P and Q be irreducible transition probabilities on X and E respectively.
Suppose that

(8) Qi>0if j=6+1, Qy=04f j>6+1;

(b) max{mz_j Pz, y). |o| =6} <Qu, j>1,

min{ 3V Pz, 9): [0 =0}>Qy j<i, 4, j€ B,
2 P, 9)>0, |o|=4 icE.

yiyl=i+

Then
min L=O Pn] (z, H=[ "EﬂQ"]e,o, icE.

In particular, if Q és 7*2;410”2"%15, then so 4s P.

The lasb conclusion was proved by Yan and Chen %, In the next section we
will present a slightly different proof.

Now we give another application of the above idea. Reeall that for a standard
Markov chain P (%) = (P;;(¢): ¢, j&€.E), we have

lim 1- Pii(t)

s r == - quSs oo,
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Lim .P%(t)gg"<oo’ @+j

tl0
and
jE# gu<gq, $EH,
In this note, we restrict ourselves on the conservative case, That is
Jz*;gu=gn i< H. '
Theorem 8. Lot P(3) be a steederd Markoe chain with matric Q= (qiy) and
GICessive measurs w,
i3 wPy(t), >0, jE . @D

Then P(t) is a strongly continuous and contractive semigroup on L?(w). Denote by L
the generator of P () on L*(u) and define
&S, f) =—;‘ ‘Zj pagii(fi— )%
Do={fEL*(w): &°(f, ) <o},
Then 2(L) < D°. In particular, D° is dense in L*(u).

This result is proved in [7] in the case of P(¢) being irreducible and
recurrent, Refer to [7] for the application of this resulb. Certainly, it is miore
interesting if we require w;>0, ¢C H.

Theorem 5. There exists a positive excessive measure for P(t) if and only ¢f
there 8 no transient state 4 such that

Py(#)>0 (6)
Jor some recurrent state j.

Corollary 7. If Q= (gi;) is irreducible, then for any P(t) (if ewists), the

condition of Theorem B holds.

§2. Proofs

For the reader’s convenience, we restate a result, which is easy to check, due
to Baldi, Lohoué and Peyriére™,
Lemma 8. Let A and B be two invertible operators on a real Hilbert space with
0< (A, 2)< (Baz, o)
for all © and A be symmetric. Then ‘
(B, )< (A, o)
for all o,
Proof of Theorem 1 Let p=dy/du and define
P'=(I+P)/2,
Q' =1-9¢/20)I+(p/20)Q,
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where I denotes the identity operator, Then it is easy to check that P’ and Q' are
transition probabilities having p as their excessive and invariant meagures

respectively. Since 07'<p<0, we have P'< [—%— A 6] Q'. Set 8=% A& .Hence (P’ -

0Q")/(1-38) is a transition probability and conbractive on L?(w), and so
0<{(P' -3Q)f/(1-8), /Pu<Lf, Fu.
Thus for every A<<1, we obtain
A LI AN, £5.25T M. £
Similarly frome the ejuality
| (@ - (p/20)Q)/ (1 -p/20) =T
it follows that. "'
I -AQ)S, Hu=leT-ADS, fu/20=(1/20)XT - 2D S, v.

Therefore

(B/201K(T-1Q)5, el T-1PY5, foum{(T-52 Py, #) <o{(1-5%5 P)s.

f> From this and Lemma (8), the conclusion followé immediately.
Proof of Theorem 2 Let : .
@@ =(3 P s, 0),

&=(3e )
Then {G(z): v€ X} and {G4:¢ € E} are the minimal nonnegative solutions to the

following equations
w(z) =3 Pz, y)u(y) +P(z, 6), o€ X

and

u,~=§,] Qisu;+Quo, ¢€EE

respeotively. Put .
v;,=min G(z).

zlz =4

As usual (ef. [2]) we need only to show that
’1’492] Qisv5+Qio, ¢ E H.
Choose #® € {», |v| =k} such that
=G (a®).
Without loss of generality, we may assume that 0<v,<<oco. Then
2=g(@®)=g®)= = P(6, y)@)+PG, 6)

> 3 P9, y)out(1+0) PO, 6).

ylyl=

This can be rewritten as
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y:ly2|=1 P8, y) (vo~v1) =0

and so vo=v,. In general
k

u=G@®) =3 3 P@® 9)G@+ 3 P 9GQ@y)+P@®,0).

1=0 ylyl=4
13

=2 2 P@® v+ 3 PO®, g)vea+Pe® 0).

=0 glyl=J4 lyl=k+1
Hence

S P@® 0 0> B PE®, ) (o-0)+P6®, 0).

yyi=kd3 Sulyl=

This g:ves s nob only vy bub also

Qurv1 Vi~ Viyr) > J__éo Q' i(v; — ve) + Quoy
which is just what we required.
Proof of Theorem 3 To prove the strong continuity, let f&L*(uw). By (4), we
have
gj P (8) < (1 — Py(t))
and so
1@ f~f1* =3 (3 Pu() f; — <X - Pu(t))2f?+2‘_m(j2#1°u(t)f1)2]

<2[2 mi(1 - Pu(?)) ff+$ Mo J_E*‘Pu(@f?]

<4 g wif 21 - Py ())—0, as ¢,0.
More easily, we may prove the contraction. Now, let f € 2(L). Again, by (4), we
212y have

A, PO =3 i ZmPu@) <,

Hence

1S uPu) (fi-1) =KL PGS, PO 2K f, PO)]

< -P@&f .
Thus

co> — (T, fo=lim (LLOL oL 51 1im LD (5, 12

(¥ ty0
=&S 1.

Proof of Theorem 8 The necessity can be deduced to the disorete time case
which was proved in [5, Theorem 8.3.1]. Now, assume that th> condition holds.
By the ordinary procedure we can decompose tha state space into some irreducible
recurrent classes and a transient class. On each recurrent elass we have uniquely
8 positive invariant measure. Once we construot a positive excessive measure on:

the transient class, combining these measures together in a natural way we will
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—

got the required measure for P(t). Hence, without loss of generality, we assume
that P(#) is transient (here we have used our assumpbion). In this case, we
simply choose an arbitrary positive probability measure « and seb

=3 a,-J:P,-, ($)dt, jE B.
Then

v

e - p
O<m_;£-01’j,-(t)<,u,,- < ,'J dt.) f,y(S/Qo, i \v S)

-Sa J‘ " ti(s)ds J °°P,-,(t)dt<rP,,(t)dt<oo,
i 0 0 L]
whero fi;(s)ds is the probability that the process (X;):.o starting at ¢ first hits j§

batween times s and s+ds.
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