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Abstract .This paper deals with the exponential L2-convergence for jump processes.We introduce some 
reduction methods and improve some previous results. Then we prove that for birth-death processes,expone 
ntial L 2- convergence coincides indeed with exponential ergodicity which is widely studied in the Markov 
chain theory. 

L2-Convergence and E-Spec- 
Markov Processes *) 

1. Introduction 

Let (E,g, ~ )be a probability space, {P (t)},30 be a positive, strongly continuous, 
contractive and Markovian semigroup (P (t)1 = 1 )on L 2 (n)with an invariant meas- 
ure re. Denote by t~ and D(f~ ) respectively the infinitesimal generator and its domain 
induced by {P(t)},~o. We say that {P (t)} converges exponentially in the L 2 (n)norm 
if there is a positive e such that for a l l f~  L 2 (~), 

(1.1) Ile(t)f-~(f) II ~<e-" I[ f-re(f)II , 

where II II denotes the L 2 (re) norm and n ( f )  = j'fak. 
Since the constant function 1 ~ D (f~)and f~l = 0. the vector I is an eigenvector of 

f~ with eigenvalue 0. One may seek for the next-to-largest eigenvalue (resp. real part) 
of the self adjoint (resp. non- self adjont) generator f~. That is, to seek for the infimum 
of the spectra of - f~ restricted to the orthogonal complement space {f~ L 2 ( n )  : rC ( f )  
= 0}riD (fl).  This leads us to define 

(1.2) gap(~)=inf{-(f~f,f):feD(f~),n(f)=O, Ilfll =1}. 

We know more or less that (1 .1)and (1.2) are closely linked (see the next section for 
more details). 

Exponential convergence in L 2 sense was proved for various classes of 
stochastic Ising models by HoUey and Stroock ( 1976 , 1987), by Holley ( 1984, 
1985a, 1985b) and by Aizenman and Holley ( 1987 ). Recently, Liggett ( 1989 )proved 
that the neatest particle system also exhibits an exponential convergence. He also 
proved that gap (f~) coincides indeed with the largest value ofe in (1.1).Thus,  as in 
the large deviation theory, we have a commom rate formula without ergodic assump- 
tion. This is especially useful for the study of interacting particle systems. 

Motivated by a quantum field's model, Sullivan (1984)studied the spectral gap 
for jump processes with state space Z + = {0, 1, 2 ... }or ~+. Under some hypotheses, 
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he proved the existence of the spectral gap for certain bounded operators. 
Estimation of the bound of a spectrum has attracted considerable attention in vari- 

ous branches of mathematics. Motivated by a well-known paper by Cheeger (1970)on 
the lower bound of the Laplacian on a compact manifold, recently, Lawler and 
Sokal (1988)obtained a general version of Cheeger's inequality for jump processes 
with general state space and bounded operator. In their paper, our readers can find 
much more references. 

The main purpose of this paper is to extend the previous results to unbounded 
generators. Some elementary facts from Dirichlet form theory enable us to obtain a 
complete formula for the convergence rate. This is done in the next section. Then for 
jump processes, we reduce the non-symmetric case to the symmetric one and reduce 
the unbounded case to the bounded one. In Section 5, we first improve two results due 
to Liggett ( 1989 ) and Sullivan (1984) respectively.Then, we prove that for birth- death 
processes, exponential convergence coincides indeed with exponential ergodicity which 
is widely studied in the Markov chain theory. Also we introduce a procedure to esti- 
mate the lower bound of spectral gap for birth-death processes. Finally, we apply Van 
Doom's  results (1985)to present some bounds of spearal gap for general positive re- 
current Markov chains. 

In the last section ( w 6 ) we briefly discuss the largest eigenvalue of f~ for 
non-positive recurrent Markov processes by using the techniques developed in the first 
five sections. 

2. S o m e  Gen era l  Resu l t s  

Let (E, ~ ,  rr )be  a probability space and L 2 ( n ) b e  the set of all real square 
integrable functions with respect to ~r on (E,  ~ ). Given a positive, strongly con- 
tinuous, contractive and M arkovian semigroup { P ( t ) },~ 0 on L 2 (lr) (P (t) 1 = 1 ) with 
an invariant mesure 7r, we denote by f~ its generator with domain .~  (f~). Define 
gap(f~ ) by ( 1. 2 ). Similarly, we can define gap (f~), where f~ is the generator in the 
weak sense. Denote b y ~ ( f~  ) the domain of f~ in L2(rc). Finally, if the limit 

(2.1) lim l ( f - P ( t ) f , f ) =  lim--~ -1 frc(dx)(P(t)(f-f(x))2)(x)>>.O 
t~ 0 t t~ 0 2t J 

exists, we denote it by D ( f ) .  Such functions f e  LE(rc )with D ( f ) <  ~ constitute the 
domain t~ (D) olD. In the case of {P(t ) }t~0 being symmetric on L2(rc ), as a direct con- 
sequence of elementary spectrum theory (cf. Fukushima (1980)), the limit defined by 
(2. 1 ) always exists for all f ~  L 2 ( n ). We also use D (fi f ) to denote the limit. The 

1 
bilinear form D(f, g)=  --4- [ D ( f +  g, f+g)-D(f-g,  f-g)] defined o n ~ ( D )  

= {f~ L 2 (n)"  D ( f ,  f )  < ~ } is called the Dirichlet form corresponding to the 
semigroup {P (t) }t~0. Clearly, in this case, D ( f )  = D (f, f ) with the same domain. This 
explains why we choose the notations D ( f ) a n d  ~ ( D ) .  

Now, we define 

gap(D)=inf{D(f):fegr(D), ~ r ( f ) = 0 ,  Ilfll =1}. 
For the symmetric case, we have 

gap(D)=inf{D(f,f)" 7r ( f )=0 ,  II f l l  -- 1}. 
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Next, following Liggett (1989), we set 

a ( t ) = - s u p { l o g  I I P ( t ) f l l  : 
By the contraction and semigroup properties, it 
superadditive and a ( 0 )  = 0. Hence, the limit 

a( t )  
(2.3) tr= lim ~ = inf 

t ~ 0  t t > 0  

is well defined. 

n ( f ) = O a n d  I l f l l  =1}.  
is easy to see that a ( . )  is 

a ( t )  

The following result is an extension of Liggett's (1989, Theorem (2 .3))  in which 
= gap (f~) was proved. 

(2.4) Theorem. We have 
a =  gap (D) = gap ( t 2 )  =gap (f2). 

Proof. The proof is essentially due to Liggett (1989 ). Cleary, 
gap (D) ~< gap (L2 )~<gap(f~) on-~(f~), 

since 
O ( f ) = ( - f 2  f ,  f ) = ( - f 2 f ,  f )  o n ~ ( f ~ ) .  

To prove tr >t gap (f~), we simply use the fact: 
d II e ( t )  f l l2=2(P(t)f  , f~e(t)  f )~< - 2  gap (f~)1[ P ( t ) f  l] 2 , 
dt 

f e .~ ( f~) ,  n ( f ) = 0  and Ilfll  =1,  

and the density of-~(f~ ) in L z (z~). Finally, le t fe_~(D);  then 

D ( f ) = l i m  1 ( f - P ( t ) f , f )  
t ~ O "  t 

>~lim 1 ( 1 - e - " ) = a .  
t ~ o  t 

Hence gap (D) >/a. I-1 
At the moment, except for the fact.~( f~ ) c . ~ ( D ) ,  our knowledge about t~ (D)  

is quite limited. However, it will be clear later, whenever we have a little more informa- 
tion about the generator, the domain .~  (D)is  actually manageable. 

The following obvious facts will be helpful for our further study. 
( 2 . 5 )  Lemm a.  

(i) O(f)>~O, f ~ . ~ ( D ) ;  
(ii) f e ~ ( D ) = ,  g= cf+ deC.~;(D) and D (g) = c:D ( f )  for all c, de ~ ; 
(iii) f ,  g e ~ ( D ) a n d  f + g ~ ( O ) = ~  D(f+ g)<~2 (D( f ) +  D(g)  ). 
As an immediate consequence of Theorem (2.4), we have 

(2.6) Corollary. 
(i) Iff~ is bounded, then 

t r = i n f { ( - f ~ f ,  f ) : z c ( f ) = 0 ,  ]lfll =1 }. 
(ii) Iff~ is self adjoint, then 

a = i n f { D ( f ,  f ) :  n ( f ) = 0 ,  Ilfll = 1 }, 
where D( f , f ) is the Dirichlet form corresponding to the semigroup {P (t ) },30 (resp. gen- 
erator ~ ). 

Finally, we want to show that the non-symmetric case can often be reduced to a 
symmetric case. 

Let E be a locally compact separable space with Borel field d', n be a probability 
measure on (E,  d') with supp (n )  =E.  Let D ( f ,  g ) ( f , g ~ t D ) c  L2(~r)) be a 
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generalized Dirichlet form (see Kim (1987)for details). Suppose that the semigroup 
{P(t)},.>0 corresponding to D(fi g)has an invariant probability n. Obviously, by The- 
orem (2.4),  we have 

(2.7) o = i n f { D ( f ,  f ) "  f ~ ( D ) ,  ~ ( f ) = 0 ,  Ilfll = 1 }. 
Next, define the dual of D as follows �9 

D(f ,g )  =D (g, f ), f ,g~.q~(i) )=-~tD); 
and set 

1 A _ _  

-D= -~ (D+ D ), ~ ( O ) = ~ . ~ ( O ) .  

Then D is a symmetric Dirichlet form for which we have 

(2.8) ~ - = i n f { D ' ( f , f ) "  r r ( f ) = 0 ,  [If[I =1 }. 
But 

- -  1 i ) ( f , f  ) ) = D ( f , f ) ,  D ( f , f ) =  -~- ( O ( f , f ) +  

f E ~ ( D  )=.q~(D). 
Thus, we have proved the following result. 
(2.9) Corollary. a = ~. 
(2.10) Example. For the Ornstein-Uhlenbeck proccess in ;~, 

1 ( ~ d )  
II = -~ dx 2 x --d-fx , 

we have 
a = g a p ( f ~ ) =  I / 2  , 

since the eigenvalues of fl are 
2n=n/ 2 , n>~O, 

and the associated eigenvectors belong to .~(f~ ). By the independence of components, 
this conclusion is also correct'in the multidimensional case. Moreover, for the 
infinite dimensional Ornstein-Uhlenbeck process in Wiener space, we still have 

a = g a p  (f~)= 1 / 2 .  
Cf. Stroock ( 1981 ) for details. 

More examples for diffusion processes can be found from Karlin and 
Taylor (1981), Chapter 15, Section 13. Also see Holley and Stroock ( 1 9 8 7 ) a n d  
Korzeniowski ( 1987 ). 

3. Spectral Gap for Jump Processes �9 General Case 

Let ( E, p ) be a separable locally compact space, P ( t, x, dy) be a jump process 
on (E, p ,8) .  That is, 
(3.1) lim P(t ,  x ,A)=P(O,  x, A )=IA(x ) ,  x s E ,  As,#.  

t ! ,  o 

Associated with each jump process P (t, x, dy), we have a q-pair q (x ) - q (x, dy): 

d p ( t , x , A )  I = q ( x , A ) - q ( x ) I A ( x ) .  (3.2) dt ,-o 

Unless otherwise stated, we assume that the q-pair is regular. That is, the q-pair is con- 
servative �9 

O<~q(x, A)<~q(x, E ) = q ( x ) <  o o , x s E ,  A sd', 
and there is precise one jump process P (t, x, dy) satisfying (3.2).  Moreover, assume 
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that n is an invariant measure of P (t, x, dy). 
Under the above conditions, it is known that the semigroup {P (t)},~0 induced by 

jump process P (t, x, dy)satisfies the hypotheses given at the begining of the previous 
section (cf. Chen ( 1987 ) ). 

Define 
%(dx, dy)=~(dx)q(x, dy) o n ~  x 8  , 

l i b  

1 J (dx, dy) ( f (y ) - f (x ) )  2 O ' ( f ) =  -~- r~q 

~(O')={feL2(n):  O ' ( f ) < c ~  }; 

.9r f e  L~176 ) : supp ( f )  is compact } 
and 

.9~L= { g=cf+d :fe.~, e, de~ }. 
Suppose that 
(3.3) q (x ) i s  locally bounded. 
Then we have 
(3.4) Lemma. Under (3.3), ..o~L =-~(D).  

Proof. By the regularity of the q-pair, it follows that (3.2)holds for all indicators 
IA, A e d', and hence for all bounded g-measurable fiinctions. Thus, we have 

(3.5) lim,,0 l f t  E \ l . ~ l P ( t ' x ' d y ) f ( Y ) = f q ( x ' d y ) f ( Y ) "  

On the other hand, since 
P(t,x,  dy) 

\~xl t f(Y) 

~(sup [ f (x)[  ) ( 1 - e ( t , x , { x } ) ) /  t 
x 

~ (sup I f (x ) l  )q(x) ,  
x 

it follows that 

f 1 rc (dx)f(x) t [ f (x)  - P (t)f(x)] 

= f  n(dx) f (x):(1-P(t ,x ,  {x})) /  t 
upp l f )  

(cf. Chen (1986)). 

- f  n(dx)f(x);e P(t, x, dy) 
~p~:') ",b,~ t f(Y) 

~ f~ ~(dx)q(x)f (x)~ 
upp ( f )  

Note that ~ is an invariant measure of{P (t)},~.o, 
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(3.6) f=(dx)q(x)f2(x)=f=(a )fq(x, ay)f(y) 2 
Combining the above facts, we arrive at 

( f -P( t ) f , f )__ , .D( f )=D. ( f )<~  as t ~  0 

for f~..9~. Now, the conclusion follows from Lemma (2.5). ['1 
This simple result already enables us to get an upper bound for gap (D).  

(3.7) Theorem. Under (3.3), 
1 {  ztq(KxKc+KcxK) } 

gap (D)~< -~- inf �9 0 < ~  ( K ) <  1, K is compact . ~(K)rc(K ~) 
Proof. For a compact K, O< n (K)< 1, set f =  elK+ d. Choose c and d e  R such 

that r c ( f ) = O  and IIf  I I - -1 .  Compute D'(f). The assertion follows from 
Lemma (3.4). [3 
(3.8) Definition. We say that ~ c  ~ (D*) is a core of D*, if for every f ~  v.~(D'), there 
exists a sequence { f~ }7 c qr such that 

D[(f~-f)=D'(f,-f)+ Ilf~-f[I  2 ~ 0 a s n - - - ~  . 

(3 .9 )  Lemma.  If 

(3.10) f n(dx)q(x)<m , 
then.gf'L is a core of D*. 

Proof. We needonly to show that ..of'is a core ofD.*Take a sequence of compacts 
E. t E and l e t f ~ ( D ' ) .  Se t f .= f l e  �9 Then 

t ~  

1 ~7[q (dx, dy)(f(y) - f(x)  -f~ (y) +f~ (x))2+ II f ~ - f  D? ( f " - f )  = T 
. /  

<~ [%(dx, dy)[ (f. (y) - ~  (x))=+ (f(x)-s (x) )=] + I I f . - f  li = 

f(y)>n] f ( x ) > n ]  

<.(suplf(x)l)z[fn(dx)q(x,[f>n])+s n(dx) q(x)]+ ]J f . - f  112 
x f ( x ) > n  I 

~ 0  a s n ~ m .  

(3.11)Theorem. If.Of'is a core olD', in particular, if (3. lO)holds, then 

1 (dx, dy) ( f (y)- f (x))  2 " r t ( f )=O,  ]lflJ = 1 gap (D) -~- inf nq 
tr 

Proof. 

I7 

2 . 

First,  D* (f .  - f )--,- 0 implies that 
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dy) (f. ( y ) -  f. (x)) 2 (dx, 

is bounded with respect to n. On the other hand, 

<~ --~ rcq(dx, d y ) ( f ~ ( y ) - f ~ ( x ) -  f ( y ) + f ( x ) )  2 

f ~q dy)(f ,  (y) - f ,  (x )+ f ( y ) - f ( x )  (dx, )2 

<~ CD'( f , - f )  --~ 0 as n - "  oo , 

and so 
D ( f , ) = D ' ( f , ) - - ~ D ' ( f )  as n -~ oo .  

Our  assertion follows from Theorem (2 .4) ,  Lemma ( 3 . 4 ) a n d  (3 .9) immedia te ly .  17 
The next result is roughly a special case of  Corollary ( 2.9 ). It shows that if zc 

and q ( x , . )  have a density with respect to a reference measure, we can avoid the con- 
dition (3.10).  
(3 .12)  Theorem. Let E be countalbe and Q= ( qij) be an irreducible regular Q-matrix. 
The Markov chain ( Pij ( t ) ), determined by the Q-matrix Q= ( qe)' has an invariant 
probability measure ( n ~ ). Then l {  } 

g a p ( D ) =  --~ inf }-'... rc , -q , j ( f j - f )  2 " ~ ( f ) = 0 ,  [ff[I = 1 
I ,J 

Proof. By Theorem (3.11 ), we need only to prove that.gfL is a core ofD' .  Define 
^ 

q ij=rcjqji / rci, i, j s E  , 

- 1 (q~j+ A i, j e E .  qij = --~ q ij)' 

It is easy to check that (q i j) is a conservative Q- matrix with stationary measure (hi) ,  
and so is (~ j ) .  Moreover, (~j) is  a reversible Q-matrix with respect to the same proba- 
bility measure (n/) ,  and so its Dirichlet form is regular( f t .  Chen (1989);  Theo- 
rem (3 .10) ) .  That  is, OCis a core of  D. However, 

- -  1 )2 
D ( T , T ) =  "-f ~..~,-q~j(fj-f 

l , J  

1 
= -4" X. n, (q,j+ q,j) (fs-f) ~ 

l,.l 

I 
= 

l,J 

= D ' ( f ) ;  
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hence claim that .ge'is also a core of D*. 
The above result is due to a simple observation: 

Re spec. (D) = spec. ( 1  (D + 

where D is the adjoint operator of D. 
(3.13) Example. Take 

Q= 
-1 1 0 ) 

0 - 1  1 . 

1 0 -1  
Then gap (D) = 3 /  2 and the eigenvalues of D are 0, - 3 /  2___x/' ~- i~  2.  
(3.14)Example. Take E={  0, 1, 2 ..- }, 

qo~=b~, i>>.l, q0=~. b i < ~  , 
i = 1 

q,.0 =q; ,  i~> 1, qq=O otherwise. 
'lhen 

where 
*ti= I~i/ p, i>~ 0 , 

oo 
I~o = 1 , I.ti=bi/ qi' i>~ 1 ; P = ~  b i /  qi + 1 �9 

i = 1 

For everyfE L2 (re), rc ( f ) = 0 ,  I l f  [J = 1, we have 

1 )2 
1= 7 ~. ~ i T [ j ( f j - f i  

t,J 

"%<~ rc,nj [ ( f j - fo )2+ (Z -A ) : ]  
i , j  

~- 2 2 7['i ( f t ' - - fo)2  
i # O  

<~2 Y~ rt~qio(f~- fo )2 / inf qj 
i#0 J ~> 1 

I 
= - 2  2 7[i qij ( f j  -- f i  )2 . 2 / inf qk" 

i,j k>~l 

Thus, 

N 

1 
gap(D)>~ -2- ,>.linf q,.. 

Now, we study two comparisontheorems to close this section. 
(3.15) Theorem. Let Q= (qq) and Q= (~ j )  be two Q-matrices as in (3.12). Denote by 
(re i) and (re ~) their invariant probability measures respectively. Suppose that 

and q" ~j>~ bq~j , i ~ j ,  b > 0 

c<<. "~ / n~<<.c -1, i c E ;  
for a constant c ~ ( Co , 1] , 

1[,+ (3 +1,)J3 (3 69 ll)J31 
- ~ 0.56984. c ~  2 2 
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Then 

Proof. 

Hence 

b 
gap(D )>/--c- (c3-(1-e)2)gap(D)"  

Letfe.gffL, ~" ( f ) = 0 ,  Ilfll z = 1. Then 
2 

J k 

=E / g)= 
J J 

~< (c -~-  1 )2. 

1 )2 bc )2 
"~ .~. ~',. ~ j ( f j - f i  >. --f- ~. n , q u ( ~ - f ,  

t , j  z , j  

>>.bcgap(D) IIf-~z (f)ll 

=bc gap(D) [  I l f l l 2 - n ( f )  z] 

/> b ( d _ ( l _ c ) 2 ) g a p ( D ) .  13 
c 

For Markov chains, a problem-exponential ergodicity has been well studied. It 
is known that for every irreducible Markov chain (Pu ( t ) ) ,  there is an ~/> 0 such that 

(3.16) I P u ( t ) - n j l  = O ( e x p ( - ~ t t ) )  as t ~  oo,  

where zj = lim Pij (t). Set 
f ~  O0 

(3.17) ~t= sup {ct �9 (3.16) holds for all i and j} .  
If ~t > 0, the process is called exponentially ergodic. 
(3.18 ) Theorem. Let ( P~j (t )) be an irreducible positive recurrence M arkov chain with sta- 
tionary distribution ( ~) and Q-matrix Q= ( qu). Then 
(3.19) gap (D) ~< &. 

Proof. Fix io ,joe E and take 

fJ = ~;Jo' j E E .  
Then 

e -2"' I I f - ~ ( f )  1121> [ IP( t ) f -n ( f ) l l2~>n;0  IP~0j0(t)-zjJ  2 

Since i0 and j0 are arbitrary, we obtain 
gap (D) = a~< &. I-I 

For birth-death processes, we will prove in Section 5 that ( 3. 19) is indeed an 
equality. 

4. Reversible Case, an Approximation Theorem 

In view of Theorem (3.12), in some cases, we can reduce the non-symmetric case 
to a symmetric one. Hence the symmetric case is more important and olten easier to 
handle. 
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Throughout this section, we assume (3.3). 
For a bounded q-pair, some nice results were obtained by Lawler and 

Sokal (1988). The purpose of this section is to reduce the unbounded case to a 
bounded one. To do this, take compact sets E, ~ E (n >/0 ). Assume that 

(4.1) n ( E ~ ) > 0 ,  n~>0. 
Regard A = E~ as a singular point and set 

A 

q .+t(x, A)=q(x, AnE.)+IA(A.)q(x. E.), xeE..Ae$,,+,, 

q.+~(A., A)--  rc(dx)q(x,E~)/ ~(E~), Asg~§ 
Ac~ En 

A A ~ ^ 
q.+,(x)=q.§ + , ) , x ~ E . + l , n ~ > 0 .  

It is easy to see that q.+, (x) - q~.+, (x, dy) is a bounded conservative q-pair, and hence 
is regular. Finally. let 

"k .+, (A)=~(AnE.)+ rc(E'.) I.~(A.), A e~.+t . 
From the reversibility of q (x)"q (x, dy)with respect to re, we obtain 

f ~(dx)q(x,B)=fnrc(dx)q(x,A),  A, Beg. 

For all A, B ~,~'. +, , we have 

~ ..~ (dx)q.+~ (x, B) 

=fA ~(dx)[q(x, Bc~E.)+Ia(,~.)q(x.E~)] 
~En 

A 

+ (A.)rc B) 

c~E. c~E. 

+ Ia (A.) [o~e n . o  (dx)q (x, E~ ). 
^ ^ 

This is symmetric with respect to A and B. Therefore q.+~ (x)-q.+t (x, dy) is rever- 
sible with respect to ~.§ l �9 

Next, for fe.gffL, we have 

f~rq dy) (f(y) - f ( x )  (dx, )= 

=fn(dx)~e,,dlr,,.I q(x, dy)(f(y)-f(x))Z 

J E. 
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(if f =  a constant c off E. ) 

= rc.+~ (dx) G§ (x, dy) ( f (y)  - f ( x )  )2 

+2  ~.+,(dx)q.+l ( x , A . ) ( c - f ( x ) )  z 

= ~ .+1 (dx )  q.+~ (x,  dy) (f(y)  - f ( x )  )2. 
n+l n+l 

By Theorem (3.11 ), we have 

gap ( D ) ~  inf{D* ( f ) "  ~ ( f ) =  0, II f I[ = 1, f=  constant off E. for some n t> 0 } 

=l im ~ inf{O*(f) :  ~ ( f ) = 0 ,  [ I f [ l = l ,  f=const ,  offE.} 
. ~  oo 

{ ? } = lira ~,inf D*(f )"  rc,§ l ( f  )= 0, d~ ,§  

-- lim ~ gap (D,§ 

where lim ~ h, = h meas that h, ~ h as n ~ oo. 
n ~  c c  

Thus, we have proved the following approximation result �9 
(4.2)Theorem. Let q (x ) - q (x, dy ) be a regular q-pair which is reversible with respect 
to r~. :rake compacts E, t E and assume that rc (E~, ) > 0 for all n >10. Define 0,+ 1 (x ) 
- q,§ l ( x, dy ) on E~+ I as above. I f  .~L is a core of  D', then 

^ 

g a p ( D ) = l i m  ~, gap(D,+ , ) .  

In particular, we have 
(4. 3 ) Corollary. Let E= { O, 1, 2, ... }, Q= { q~j} be an irreducible regular Q-matrix 
which is reversible with respect to ( rE~).Take 

A 

(4.4) Q.+,= 

where 

Then 

- qo qol 

q Lo - ql 

. o 

~ k  qll ~ q n l 

^ 

+1,0 qn+ l , l  

o . ~  

~ 1 4 9  

qo,. J>.~" qoj N~ 

qt,. ~., qlj 
j>n 

- G  ~ q.j 
j>n 

qn+l,n - -qn+l  

^ 

q.+,,/=rc/y" qj~/ ~. n k , j = 0 ,  1, ".-, n 
k>n k>n 

q.+ l = q.+ 1 , j  " 
j=O 

a 

g a p ( D ) =  lim ~ gap(D.+t).  
n ~ 00 
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5. Spectral Gap for Markov Chains 

Again, we need only to consider the reversible ease. 
Let (P;j ( t ) )  be an irreducible reversible Markov chain with stationary distribu- 

tion (n~) and regular Q-matrix Q= (q~j). Suppose that q,.~+~ > 0 (i c E).  For the lower 
bound of the spectral gap, we have 
(5.1) Theorem. I f  

nj  <-~ CTt iq i , i+  1 , i c E ,  
j > i  

~, rcjqj.j+l <~ b n i q i , i +  I , i c E ,  
j > i  

then 
gap(D)>" l / [ c ( ~ / b +  l + x / ' b  ) 2 ] > 1 /  [ 2 c ( 1 + 2 b ) ] .  

(5.2) Theorem. I f  

then 

rcj <~ c n~ , i c E , 
j>~l 

Xi+l~< b~ziqi , i+ 1 , i c E ,  

gap (D)/> 1 / [ 2bc ( 1 + 2c )] > 1 / (4bc 2). 

The first theorem was proved by Liggett ( 1989 ) under two more assumptions:,.~rL 
is a core of the generator ft and ~ n~ qi < ~ .  The second one was proved by Sullivan 

i 

(1984) under two more assumptions: inf q;.;+~ > 0 and sup q;< oo. By Theorem 
i~> 1 i 

(3.12), it is easy to check that Liggett 'sproof still works for the above theorems. We 
omit the details here. 

The above results are incomparable. For example, consider the birth-death pro- 
cess: qi. i+ 1 -~- (~' qi. i -  l = fl' Ct < f t .  If ~ >/1, then ( 5.1 ) is better than (5.2). If ~ < 1, (5.2) 
can be better than (5.1). 

Actua lly,Theorems (5.1)  and ( 5.2 ) are based on comparing the original process 
with the birth-death process : 

~ ~ ~ 

q i : = q i j ' J  = i + - I  ;q i  =~', qij ' 7[i=~i" 
jr  

The main part of the proofs for (5.1) and (5.2) is to show that the lower bounds hold 
for the birth-death process, and then to apply Theorem (3.5)to deduce our assertions. 
This induces us to study more carefully the spectral gap for birth-death processes. 

Let Q= (q~j) be a birth-death Q- matrix : 

Set 

qi , i+l=bi>O , 

q i , i _ l - ' - a i > O  , 

qi = - qii = ai+ b~ , 

bo"" bi-i 
#0 = 1, #i = 

at ... aj 
oo  

p = l + ~  I~i �9 
i=1 

i >~O, 

i>~ l , 

i > . O .  

i > . l ,  



Exponential L 2 -Convergence and L 2- Spectral Gap for Markov Processes 31 

Then 
Iri=#i/ p,  i>~O. 

The next result is an improvement over Theorem (3 .  18) in the existing 
circumstances. 
(5.3) Theorem. For every positive recurrent birth-death process, the exponential 
L 2- convergence is equivalent to the exponential ergodicity. In other words, 

gap (D)=  8 .  
A 

Proof. I f~= 0, then by (3.19), gap (D)--0. Thus, we may and will assume that 
~> 0. Set 

Ho(x)= 1 , 

-XHo(x) = -boHo(x)+ boHl (x), 

-xH.(x)=a.H.- l (x)-(a .+b, , )H, , (x)+b.H.+l(x) ,  n > ~ l , x e ~ .  

Then 1t. (0)= 1, n>>. O. Recall the Karlin and Mcgregor's representation theorem : 

f0 (5.4) eij(t)=#j e -x' n i ( x )  nj(x)d~ (x) ,  

where ff is a (unique)non-decreasing function which is left continuous and 

(x )=0  for x~<0,~O(x)-,- l a s  x ~  oo. 
Also, 

~ j I ~  Oi  ( x ) I-Ij ( x ) d~l ( x ) .-.~- (~ i j , 

Write 
i 

From (5.4), i t  follows that 

(5.5) 

In particular, 

(x)=~ ~, n,(x)f,, f ~ .  
i 

~ c1~ A 
( f l P ( t ) f ) = p  e-X'f (x)2dO(x),'fe.gC.. 

~0 O0 ̂  
(5.6) ( f , f ) = p  f (x)2dO(x) ,  fe..~. 

This gives us an isometric imbedding from L 2 (re) to L 2 ([ 0, oo ], pd0 ). Thus, ( 5.5 ) 
and (5.6)hold forfeL2 (n). Moreover, by (5.5), we see that 

D ( f , f ) = p  x f  (x)2 d0 (x). 

From the exponential ergodicity, by Van Doom (1985), Theorem 2.1, Theorem 3.1 
and I_emma 3.2,the first two points of the spectrum of 0 are 

x~=0, i --x2 >x~ 

(x is called a point of the spectrum of 0 if A0 (x)--- 0 ( x + )  - 0  ( x - ) > 0 ) .  Notice 
that 4 0 ( 0 ) > 0 ,  and so f ( 0 )  =Y. niHi(0)f , - :  rc ( f ) - -0 .  On the other hand, from 

i 

ChenMF
高亮

ChenMF
高亮
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x2-- & and 

f) Poo ( t ) -  1:o = e -x' d~b ' (x )  , 

where ~, '=  ~ , -  A~O(O ), it follows that 
~, (x2-)= ~ (0+). 

Hence 
gap ( D ) =  in f{a  ( f , f ) "  ~ ( f )  = O, I I f  [I = 1 } 

{;o ) = i n f  p x f ( x ) 2 d O ( x ) ' ~ ( f ) = O ,  I l f l l  =1 

= i n f  p x f  ( x ) 2 d O ( x )  �9 f (O)--O,  I l f l l - -1  

{fo  } >~(x2-e)inf p f (x)edO(x) :  f ( O ) = O ,  Ilfll =1 

= (x2- e) (by (5.6)) 

for all small ~> 0. Therefore gap (D)>/& . [-] 
Now, we can combine Theorem ( 5. 3) with the previous results ( cf. Van 

Doom (1981)) to give some examples. 
(5.7) Examples. 

(i) b i=b ,  i>>.O , 
a i = a i ,  i= O, 1, . . . ,  s - 1  , 

=sa ,  i = s , s + l , . . . ,  a / s b ~  p < l .  
There exists a ~ <  1 such that 

0 < g a p ( D ) < b ( 1 - 1 / x / - P - p  )2 i f p < p  , 

g a p ( D ) = b ( l _ l / x / - - ~ p  )2 i fp~>~.  

If s = 1 and b < a, then 
g a p ( D ) = ( ~ a - x / b  )2. 

(ii) b i = b / ( i + l ) ,  i>~0; 
a~=a , i>~ 1 . 

gap ( D )  = a - ( x / b  2 + 4ab - b ) / 2 .  

(iii) b ;=a+21 , i~>0 ,  a > 0 ;  

a i = 2 2 i ,  i>~ 1, 0~<21<22. 
gap(D)=3.  2 if 2 , = 0 ,  

= 2 2 " 2 ,  if 2 ~ > 0 .  

Because of Theorem (5.3), we can also rely on some suttident conditions for the 
exponential ergodicity to estimate the lower bound of gap (D).  Note that in many 
cases, it is not possible to compute the spectral function ~,. We would like to know 
some practical methods to estimate gap (D) .  Our next result is such a kind of 
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approach without using ~b. The idea is based on Corollary (4.3) .  
our approximation Q-matrix (4 .4)  becomes 

b0 0 

- (a t+b1)  bl 0 al 
A 

Qn+ l "~- 

a.  - ( a . +  b.) b. 

0 an+l n+l  

In the present case, 

), 
�9 where a.+ 1 = re. b. / ~r.+ 1, ft.+ 1 = ~ nj, n t> O. For  each fixed n ,  define 

j>n 

So(X)=bo+ x, x ~  , 

s l ( x ) = a l + b l + x - a t b o /  so(x) if So(X)# 0 , 

=1  if s 0 ( x ) = 0  , 

s~ (x ) = a~+ b~+ x -  atb~-i / si-t (x ) if s~-i # 0 ,  s~-2 (x)  # 0 , 

= a;+ b;+ x ifsg_: (x)  = 0 , 

= 1 ifs~-I (x)= 0 ,  

2<~i<~n, x ~  , 

and 

s . + l ( x ) = x +  n.b.  
n + l  

re. bn 
=X-b A 

~ n +  1 

=1 
A 

(5 .8)  Theorem. For the above Q~+ ~ , 

bn ( s x,I 
if s . ( x ) # 0 ,  s ~ _ ~ ( x ) # 0 ,  

if s . - l ( x ) = 0  , 

if s ~ ( x ) = 0 ,  x ~ .  

A 

(5 .9)  gap (D.+~) > 0~> 0 ,  

i f  and only i f  there is precisely one term of{so ( - ~  ), ..., s. ( - ~  ), s.+l ( - ~  ) }which is 
less or equal to zero. Moreover, i f  the condition holds for all n, then 

(5.10) gap (D)~> ~>  0 .  
^ 

Proof. Denote by L9 .+ 1 the symmetrized matrix of  Q.+ 1 : 

- bo ,/-Zo bo ,/' 0 

a,/x/ '~2 - ( a , + b , )  ~ b , /  ~ 0 

n + l  = 

0 ~f'~n.a./x/-n._ , - ( a . + b . )  "x/~.b. 

o ,/;~.+, ;'.§ ,~. - a . + ,  / 
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- bo ~/al  bo 0 

0 . 
"~a.b._l -(a.+ b.) x/'-n.b. / x /  ~r .+1 

0 ~/rc. b./ .v~.+, -rc.b./.,/~.+~ 
A 

Then Q.+~ and Q.+~ have the same eigenvalues which are denoted by 

0 = 2 . + 1 , 0 > 2 . + 1 , 1 > ' . . > 2 . + 1 , . +  1 . 

These eigenvalues must  be distinct since the matrices are tridiagonal. F r o m  the matrix 
theory, it is known that  - gap (D.+I) = 2.+1 1< - ~ if  and only if there is precisely one 
non-positive term among  { s o ( - ~ ) ,  ..-, s . ( - ~ ) ,  ~.+~ ( - ~ ) } .  This proves the first 
assertion. The second follows from the first one plus Corollary (4 .3) .  I] 

To  show that  Theorem (5 .8 ) i s  feasible, let us consider 
(5 .11)Example .  T a k e b i = b > 0 ,  i>~0; ai=i, a > 0 ,  i>~l. 

For a special case b = l  and a = 2 .  the bound  obtained by Theorem (5.1) is 0.3348. 
But we have seen in Example (5 .7 ) t ha t  gap ( D ) =  2. Now,  we use Theorem ( 5 . 8 ) t o  
show that  ^ 

gap(D)>~ ~ = a > 0 .  
To do this, assume that  

b / a #  1, 2, ... 
for simplicity. The  exceptional cases can be discussed in a similar way. Now,  

ni = - -  / p , 
a 

By induct ion,  it is easy to prove that  

So( -a )=b-a  , 

and so 

Since 

~ n + l  

/17 n 

p = exp [b / a] . 

s i ( -a)=b(b  - (i+ l)a) / (b-ia) , l<~i<~n , 

s.+1 ( - a )  = - a +  
abrc. 

~.+1 ((n+ 1 )a-b)  

( ( n + l ) a - b ) = ~  ( b  ) j-" n! J>. .] j !  [ (n+  1 ) a - b ]  

j![ (n+ l )a-bl  / j+n <b 
j f f i l  n 

for large n ,  we have 
-~.. 1 ( - a ) > 0 for large n .  

Clearly, among {So ( - a ) ,  -.., s, ( - a )  } there is precisely one negative term. Hence 
from Theorem (5 .8 )  we may  deduce our assertion. 
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As we have just seen above, for estimating the decay parameter k , the tridiagonal 
property of birth-death Q-matrices is very helpful. On the same idea, Van 
Doom (1985)obtaind the following bounds. 
(5. 12 )Theorem. For a birth-death process with rates ai and b~, the decay parameter& 
satisfies 

(i) ~ >~ inf {ai+ b i_ l -x /  a,_t b,_~ - ~a~b~ }, 
i>~1 

I> -21 inf~>~l { a~ + at§ t + bi + bi- 1 - x/ ( a~§ 1 + b~ - a~ - bi_ ~ ) 2 + 16a~ bi } 

(ii) ~ <  1+ 1 - 2  a~b~ 1/2 .+k 1 
/ = . + 1  (ai+bi-l)(ai+l+bi) .= a~+~ +b~ " 

n,k>>.O , 

i>>. 1. & <_~l {ai+ai+l+bi+bi_l_x/(ai+,+bi_ai_bi_l)2+4aib i } 

Moreover, i f  
lim i n f { a i + b ~ - ~ a , b , _  1 - ~  }>0 
i~oo 

A 
then ~ > O. 

Having worked so much on the birth-death processes, now let us return to the gen- 
eral Markov chains. By comparing a given Markov chain with a birth-death process 
as we explained before, we obtain 
(5.13)Theorem. Let (Pq ( t )  ) be a Markov chain given at the beginning o f  this section. 
Then 

gap(D)>~inf  {qi.i-l+ q i - l , , - x /  qi_l.i_2q~_l., --x/ qi.i_lqi,i+l }' 
i>~ 1 

1 
gap (D)~> -~- inf {qi.i_~+ q~+~ ,/+ q~-l.~+ qi, i+l-[(qi+l.i -t- qi.i+l--qi.i-1 

i~>l 

- -  q i -  t,  i)2.jl_ 16qi ,  i -  1 q i ,  i+ 1] 1/2 }. 
Moreover, i f  

lim inf{q, , ,_l+q~,+l-x/q, , , -~q~-t . ,  -x/q~+l. iq, , ,+t  } >  0, 

then gap (D) > 0. 

6 .  N o n - P o s i t i v e  Recurrent Case  

For the non-positive recurrent case, a Markov process has no finite measure as its 
invariant measure. Thus, the vector 1 does not belong to L~( n ) and so the largest 
eigenevalue of fl on L 2 ( n ) is meaningful. Inded, it determines the convergence xate. 
However, our previous results work well in this situation with a slight modification. 

For example, as an analogue of Theorem (2.4), we have 

I i n f { - l o g  [I e ( t ) f l l ' l l f l [ =  1} a0----- inf -T  
t>0 

= inf{( - f ~ f , f ) "  f ~ ( f ~  )and l[ f I1 = 1 } 

= i n f { ( - ~  f , f ) :  f e ~ ( ' ~ )  and I l f l [=  1 } 

= inf{O(f) :  f ~ . ~ ( D ) a n d  II f II = 1 }. 
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(see Chen(  1989 ), 
Then 

Also, we can often reduce the non- symmetric case to a symmetric one. 
For jump processes, we allow our q-pair q (x) - q (x, dy) to be non-conservative : 

d ( x ) =  q(x ) -q (x ,E)>~O,  x ~ E .  
Any jump process P (t, x, dy)with a q-pair q ( x ) - q  (x,dy)and an excessive measure 
lr (a-finite), 

rc>~rcP(t), t>~O 
will gives us a strongly continuous and contractive semigroup {P (t)}, ~0 on L 2 (n)(cf. 
Chen ( 1987 ), ( 11 ) ). Of  course, (D*, .~ (D ' )  ) given in Section 3 should be replaced 
by 

a*(f )= f ~(dx) f(x) [f(x) q(x)- f q(x, dy) f(y)] , 

~(D*)={f~L2(rc):  a ' ( f ) <  oo }. 

In the symmetric case, 

D* ( f )  = -~l f ~q (dx, d y ) ( f ( y ) _  f (x))2+ frra(dx)f(x)2 

where Z~ q ( dx, dy ) = zr ( dx ) q ( x , dy ) and ira(dx) = ~ ( dx ) d ( x ) . 
From now on, we consider the symmetric case only. 
It is interesting that a0= - 2 ,  (zr)which was introduced by Stroock (1981). Sever- 

al equivalent descriptions of2,(~r ) were discussed in Stroock ( 1981 ). For a related 
problem, see Chen and Stroock (1983) in  which a simple estimate (a0,.< infq; ) 
was obtained. 

Now, suppose that the jump process satisfying the backward Kolmogorov equa- 
tions is unique. Then the symmetric jump process corresponds to a regular Dirichlet 
form : 

O ( f , f  ) = O * ( f )  
Theorem (3.10)). Actually, this process is just the minimal one. 

ao=in f {D( f , f ) :  Ilfll  =1} 
= i n f { D ( f , f ) :  f e..gf'and [Ifll =1}.  

In particular, take a compact K such that 7r (K)  > 0 and set f =  IK / (~ (K))1/2 ;then 

D ( f i f  )=[ZCq(KXKC)+zra(K)] / 7r(K). 
Therefore, 

^ 

where 
Thus, 

a0..< inf rrq(KxKC)+zra(K) 
~tlr Ir (K)  

gives us an upper bound. 
We can easily given an approximation theorem for a 0 as an analogue of Theo- 

rem (4.2). Finally, for the birth-death process, we again have 
A 

GO----- O~ , 

is the exponentially ergodic rate (i. e., Po (t) = O (exp ( - ~ t) ) for all i, j ) .  

Exponential L2-convergence < ";, Exponential ergodicity. 
Finally, Theorem (5.12)remains valid in the present case. 
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