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Abstract 

In thi~ paper, we apply Malliavin calculus to discuss when the solutions of stochastic differen" 
tial equations (SDE's) with time-dependent coefficients have smooth density. Unde/" HSrmander's 

F 

condition,we conclude that the solutions of the SDE's have smooth density. As a consequence, 

we get the hypoellipticity for inhomogeneous differential operators. 

1. I n t r o d u c t i o n  

Given a probability space (fl, ~',F, P), where F = {~}t>0 is a family of a-algebras 
satisfying the usual conditions. Consider SDE: 

dX(t) = ~_, Vk(t, X(t))dOk(t) + fro(t, X(t))dt, 
k=i (I .I)  

x (o )  = =, 

where {0, (t),- .. , Ca(t) } is the d-dimensional Brownian motion corresponding to F, and 

n a 
Vk(t,z)- ZV/,( t ,z)~, tc=0,1,... ,d 

i - - - l .  

1 d N N 
~0(t, =)= Vo(t =) + ~ F, F v~(t,=) °v~(t'~) - o ' ~ o=---i--. - F ,  ~'o(t, =) ax, 

i=l 3"=1 i=l 

In this paper, we always assume that IP'0 and Vk (k = 1,-.., d) belong to S([0, T] × R N) 
for some T > O, where S ([0, TI × R N) consists of the functions f e C([O, T] x R N --* R N for 
which there exist positive constants Cn(T) and r,~(T) (n > O) with to(T) = O such that 

max sup 
{~}=-o<t<r  

O"/(t,y) 
Oy ,~ R n 

< ¢.(T)(1 + lylR.',')'~(r) VyE R N 
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where cz = ( c x l , - - - , e , ~ )  6 (0, 1 , - - . , n )  N and {cx} = e l  + - - - +  c~r,. 
Under this hypothesis, it is well known that there exists uniquely a strong solution 

X(t,z) (also denoted by X(t), Xt(z) or Xt) satisfying SDE(1.1). Set 

.['i f" = { ~  E C( [O,  T]----* RN) .  h(0) ----- O, ]1, is absolute c o n t i n u o u s  with L' 
respect to Lebesgue measure on R + and lh (1)(t)[ 2 dt < oo}. 

For any h E/'/, the Malliavin derivative DXCt)(h) of X(t) satisfies (see [3] or [6]): 

d t 
DX(t)(h) - Z ~o V(1)(s'X(s))DX(s)(h) dOk(s) 

k----i 

+ ~ v.(.,x(.)) (,) e., 
k----1 

Cl.2) 

" ( av;(o, =) [v,(o,z),v~(o,=)] = ~ v?(o,z) az~ - v~(o,z) 
k-----1 

aV,a=.(o, =) ) b~=~a (~.o) 

where 

, 

' axi  l<i,y<N 

Sirnflarly, we can define 17"0(I)(s, X( , ) ) .  The MaUiavin covariance matr ix  of X(t ,  x) is denoted 
by 

A(t,=) = ((DX'(t, =), Dx~(t, =)).)~<_,.~<_.. (1.4) 
To prove that X(t) has smooth density by using Malliavin calcullus, it needs to check 

two conditions. One is that X(t) has MaUiavin derivatives with any order, and the other is 
that 

det-IA(t, x) E Np>l L, P(fI). (1.5) 

For homogeneous case (i.e., in SDE (1.1), Vk(t,x) - Vk(x) for all t E [0, T], x E R N and 
k -- 0, 1,---, d), however, (1.5) has been proved by many authors if the comcients V0,- --, V~ 
satisfy the so-called general HSrmander's condition at each point x E R #. (see [1] or [7]) 

For inhomogeneous case (i.e., in SDE (1.1), Vk(t, y) depends on the variable t), Kusuoka 
and Stroock (see [6]) proved that (1.5) holds under a special condition. Thus, they concluded 
that the solution X(t) of SDE(1.1) has smooth density. However, the condition given by 
them is actually the uniform non-degenerate one. It is natural to concern when (1.5) holds 
if the coefficients in SDE(1.1) are degenerate. To consider this problem, we need to assume 
that VI (t, z),..., Vd(t, z) have nice continuity with respect to variable t because of some 
techniques. 

For simplicity, let/3 > 0, I ~_ 1 and set $#t([0, T] x R N) = {f E S([0, T] x RN): there 

exists 6 > 0 for each a = (al ... aN) witl~ {a} < l, such that the function 0(a)/it'Y) at 
J , - -  O y a  

the point x is fl-HSlder continuous with respect to t E [0, 6]} 
One of our main results in this paper is as follows: 
Theorem 1.1. Assume that there exists an integer L _) I such that: 
The vector space spanned by the vector fields Vi(0, x), 1 _~ i _( d; 1 __ i I,"" ,iL _~ d 

at each point x is R N where 
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If Vo,"" ,Ira e S/~, ([O,T] x R N) for'some fl E (½,1] and sui~cient large constant l - -  l(L) 
(for example, l(L) = 6L+1), then the solution X ( t , z )  of SDE(1.1) has smooth density. 

The condition (1.6) given in Theorem 1.1 is actually the restricted H5rmander's con- 
dition. To show th.at the solution X(trz )  of SDE(1.1) still has smooth density under the 
general H5rmander's condition, it needs more hypotheses o.n the coefficients. 

Theorem 1.2. Assume 12"0,Vx,..-,Va E S([O, T] x RN). If there exists a constant 
L _> 1, such that the vector space spanned by the vector fields 

V/(0, z), 1 <  i < d; [V/(0, z), Vj(0, z)], 0_< i , ]_~ d; - - . ;  

[v,, (o, =), ... IV,,_, (o, =), v , ,  (o, =)] . . .  1, o _< ~ , , . . . ,  ~, _< a (1.7) 

at each point x is R N. Moreover, for any k = 0, 1, . - .  ,d, and c~ = ( a l , ' - - , a N )  with 
{~} _< 2L 

( a(~)v'(t'y) - a{'~)v'(°'Y) )1 = °(t2L)' 
a y ~ a y ~, y= = 

as t --, 0. Then the solution X(t ,  x) of SDE(1.1) has smooth density. 
The proof of Theorem 1.2 is given in Section 3, and the proof of Theorem 1.1 is given 

in Section 4, which can not be deduced directly from the homogeneous case. To complete 
the proofs of the Theorems we make some preparations in the next section. 

After proving Theorem 1.1 and Theorem 1.2, in Section 5, we discuss the uniqueness of 
the solutions for some kind of heat equations. Furthermore, we estimate their fundamental 
solutions. As in the homogeneous case (see [7, §7]), in Section 6, we give a condition which is 
weaker than HSrmander's one under which the solution X(t ,  z) of SDE (1.1) still has smooth 
density. Having done these, we discuss the hypoellipticity properties for inhomogeneous 
second order differential operators in Section 7. This problem was also studied by Chaleyat- 
Maurel and Michel (see [2]) using pure analytical method. Moreover, they also got the 
HSrmander's theorem for inhomogeneous case. Although their restriction on the coefficients 
is weaker than ours, there is still difference between the other conditions (see Corollary 7.1). 

2. P r e l i m i n a r y  

Set 
= U~= 1{0, 1 , - - . , d } '  

For c~-(c~1, • c~,)E {0,1,- . .  d}' . .. , , , we let lal = 1 and 

II~il = I~l + # { J  ~ = o, y = ~ , . . . ,  l}.  

For 
N a N a 

v(~,=) = ~v ' (~ ,=) -~ , .  w(t,=) = F w ' ( t , = )  o=i' 
i=l i=l 

we let 

[v(~), w(t)](=)= E.= v'(~'=)°w(t'=--)°=~ - 

Throughout this paper we set 0o(t) = t for ~t~ t e i 0, T I. 

o-i )" 
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It is well known that the SDE(1.1) has uniquely a strong solution X(t, x) and X(t, x) is 
a flow of diffeomorphisms on R N {see [5] or [4]). This is saying that X(t, x) is smooth with 
respect to x e R N and det(J(t,x)) ~: 0 for any (t,x) e [0, T] × R ~r, where 

[ ax ' ( t ,= ) )  
#(t, =) = x(')(t,=) = \ 0xj ,_<,,i_<~ 

In addition, J(t, x) solves the SDE 

d t 

k = 0  

(2. ,)  

where I is N × N unit matrix, V(1)Cs, XCs)) is determined by (1.3) for each/c = 1 , . . - , d .  

R e m a r k  2.1. V{kl)(s,X(s))J(s,x) may not be a semimartingale, hence, the last term 
in the right hand side of (2.1) has no meaning in terms of the usual Stratonovich integral. 
Here and what follows we consider Vk {1} (s, y) as a differentiable function with respect to the 

variable s. Thus, V(~')(s,X(s))J(s,x) is a F-semimartingale, the right hand side of (2.1) is 
well defined. 

By ItS's formula and (1.2), it is easy to check that 

d t 

J-l(t'x)DX(t'x)Ch) = ~ fo J-lCs'x}Vk{s'X(s}}h~{s} ds. 
k = l  

The inner product of DX'Ct, x) and DXJ(t, x) in H has expression: 

<DX~(t, x), DXJ Ct, x) )x¢ 

= ~ fot[J(t,z)J-~(8, z)Vk(s,X(s))]'[J(t,z)J-~(s,x)Vk(s,X(s))] ~ d8 
k = l  

Set 
d t 

$(t,x) = ~ fo [J-~(~'x)Vk(~'X(~))l®' d~. 
k = l  

Then the Malliavin covariance matrix A(t, x) defined by (1.4) can be expressed by 

ACt, x } = J{t, z}.4{t, z}J{t, z)*. 

(2~.2) 

(2.3) 

By It6's formula, we easily get 

8 
J-X(~,~)vk(~,Xo) = vk(~,~) + ~ fo J-'{~,~)IVh(~),Vk(~)I(X.) o dOh(~). 

h=0 

(2.4) 

In order to explain the meaning of the last term in the right hand side of (2.4) and get 
the general exptession of J- z(8, x)Vk (s, Xo), we need the following lemma. 

Lemma 2.1. For any fixed h and k, let 

~0 ~ 
~(, . , )  - -  Iv~(~),v~(. . , ) l (~) o de,,.(~), 
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where h~ (t, x) is ~-HSlder continuous with respect to t and slowly increasing with respect 
to z e R/~ for each i and rk, and there must be at least one i (2 _< i < m), such that fli - 0. 
Set 

z(2 ~)(t, ~:) = ~ ~(°) (t, x) + ] ~  R(~') (t, :~), 

then (2.5) can be written as 

lal<-L i'll=n+* 
al=k al=k 

ilall>L+~ 

J - l ( t , x )VkCt ,  X ( t ) )  ..~ ~ ~(a)(t:, x) -~ Z(k)(~,z). 
I~i<L 
al=k 

(2.10) 

Since we will use [7, Lemma A.7] time after time, we restate it as follows: 
L e m m a  2.2. Let ~(t) = (flk(t))l<k<a be a d-dimensional continuous progressive 

measurable process. Set 

d t 

~(t) = ~ f0 Z,~(t)do~(t); 
k=l 

f0 t v(t)  = I~(t)l 2 dr, Vt >>_ o. 

1 Then, for any r E [0, ~), there is a Cr < oo and a Ar > 0, such that 

p (  .-p l~(t)-~(~)l 
~o<.<,<~ IV(t) - v(~)l" 

>_ kl; V(T) <_ ~ )  <_ exp .... k~_2 r ) 

for all positive kl and k2. 

3. Proof of Theore 1.2 

The proof is splitted into two steps. The first step is to show that DkX(t,x) (in 
Malliavin's sense) is well defined for all k >_ 1. It is not difficult to complete the step since 
lY0, VI,"" ,Va belong to .~([0,T] x R N) (cf. [6]). The second step is to show that (1.7) and 
(1.8) imply (1.5). This is what we are working in this section. 

Actually, because of (2.3) and [4, Lemma 5.2.1], it suffices to show 

i P (det ~( t ,z ) )  -1 e n~,>l (~), (3.1) 

where A(t, z) is defined by (2.2). Since 

[ j0 ] aet](t,~) _> ~ ~(J-'(~,~)v~(~,x.),~) ,d~ 
k=l 

N 

(3.1) follows provided 

( L ) P inf Z(J-l(s,x)Vk(s, Xo) rl) 2 ds < cpn -p, Vp, n > I. (3.2) 
r t E S ~ r _ l  ~ - -  _ 

k = l  

For this, it suffices to show that 

( ['/"~ ) 
P mf ~ (J - ' { , ,= )v~ (~ ,Zo) ,~ )  ~ d~ < ~-( '+'- ' )  < ~ , - ~  (8.3) 

I"1 E S N - 1  JO k = l  



No.3 A P P L I C A T I O N  OF MALLIAVIN CALCULUS TO SDE'S 199 

holds for a large integer I = l(L) >_ I and all p, n >_ I, where • e (0,1) is a fixed constant, 
cv is independent of n. Without loss of generality, we assume t = 1. By (2.10), we have 

~0 ~ a r lES~_l 
k= l  

>_1 inf  
- 2 nEs ~-~ 12 jo d ~ ~(-)(~, ~),, d~ - ~ Iz~ ~) (~, ~)1: d~. 

k=l II.ll<_t k=~ 
a l = k  

(3.4) 

Next,  we prove tha t  

P Z ]  ( s , z )  d a ~ n -  <_cvn , 
k---1 

(3.5) 

for all 1 ~ 2 and n _~ 1. To do this, we need a lemma:  
L e m m a  3.1 .  For a = ( a l , ' "  , a l ) ,  set 

/~( t~ , . . .  ,t~,~) = lv~ , ( t~) , l . . . [ v~ , ( t2 ) ,v ,~ , ( t~) ] . . . ] (=) ,  

Then  
(i) There  exist positive constants  c and u such tha t  

P "'" f ' ~ ( n  n J ~ J 

odS~,(t l )  o . . - o d 0 ~ , ( t 2 )  dt l  >_ n < ce- '* ' ;  

(ii) There  exists a positive constant  c v such tha t  

/o p . . .  J - l ( n  , 

<_cvn -p ,  Vn >_ l, Vp >_ l. 

t - ' ,x(~))  

Proof. To prove (i), it needs only to show tha t  

P(m  
o<t~<l  

~ C ~  - n ' ~  . 

/o /o', t_,, ~) o a0,~, (t~) o . . . o  ae , ,  (t~) 
n 

) > n  

(3.6) 

In fact, we can prove (3.6) by using L e m m a  2.2 repeatedly.  The details  are omi t t ed  here. 
To prove (ii), we also assume N = 1. Since 

max EIlJ-~( t ,  =)[]P < oo; max.  ElX( t ,  x)i p < oo, Vp > 1, 
0<t<l  o<t<l  
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and Vo(t, z),..., Va(t, x) are slowly increasing with respect to z e R N, it is easy to see that 

m a x  E l J - l ( t l ,  z ) f a ( t l ,  . . .  , t ~ ,X ( t~ , x ) ) ]  v < oo, Vp >_ 1. 
o<_t~,... ,t~ <_l 

If I = 2 and a2 = 0, the proof is easy. If I = 2 and a2 > 0, a = (al,a2), then the 
Burkholder's inequality implies that 

" j - ~  ,~)s(tz, , -)) oeO.,(t~) at~ > ,  
n n Ft 

' ) /o (~ L~,,,(L~))~o° (,,) ~,,__,, 

+ e ( f o  ~ 

<_cvn-v + n -p  max  E J -  
o<t~<_l 

- -<cvn-V+cvn-v  o_<t~_<lmax E(afo  t '  

<_cpn-V. 

~O tl 2 1 J-1(t2,=)/(a,,a,,a,)(tl, t2, t2, X,,)) dr2 dtl  >_ n 

,(a ,a 

J-~(t--2,=)I(t--~,,~ ,~ ta,x(~)),~ dr2 

For general I _ 3, (ii) can be also proved by induction. 
Set, = (,~,..-,,l~l), I"i < Z ~nd II"II > t+ I. Th~n 

(/0" ) P 1.9 (~) (t, x)12 dt >_ n -(I+I- ')  

(Zl/o Z ',, !" ) < e  ~ *' ... *'°'-' I~ (~- ..., tl~ l.,~ , =) o do,,., (t,,) o...o d0,, (t2) dt~ _> ,~" 

where I +  1 -  II~II -< 0. By Lemma 3.1 (i), we know that 

(/o ) . e I~(~')(t.=)! ~ dt >. n -( '+~-')  < ~ . 

Now, (3.5) fo l lows by using the expression of Z~ k) (t, z). Thus, by. (3.4), it is easy to see that 
(3.3) follows from 

( r" '~(z  ) ) p i . f  ( sC-) ( t .=) .  n) 2 dt <_ n-( '+~-')  <_ ¢,,,~-~. 
.es~'-~ Jo k = l  II~ll_<t 

a l=k  

(3.7) 

To prove this, we need the following lemma. 
L e m m a  8.2. For o~ ~--" (O~1,-' '  ,O~m) and m = 2 , - - . ,  L let 

Q g f f . t ~ . = .  , )  

=fo"--./o '~-~ ( / ~ ( y t  ! , . . .  , yr. ,  . . . . .  , =), ,,) o a 0 a .  ( t . , )  o o a e . ,  (t~), 
n n 

] -- 0, 1, 
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where fa (tl, '  "-, tin, z) was defined in Lemma 3.1. If V0,- - . ,  Va satisfy the hypothesis (1.8), 
then there exist positive constants e and u for each q >_ 1, such that 

P(maXo<tx<_llQn(1, tl, x, rl)-Q~,(O, t l ,x ,  r l) l>n-q)_ _<eexp(-n~),  Vn>l._ 

Proof. Without loss of generality, we assume N = 1 and r/= i. If rn = 2 and a2 = 0, 
then the conclusion follows from (1.8) immediately. If m = 2 and a~ > 0, then 

Qa (1, t l ,  x, 1) -- Qa(O, t l ,  z, 1) 

/o"[ ] + L,(O, t2, z) - f.(O,o,z) dO. (t2) 
n 2 

In fact, we can assume 
fa (tl, t2, x) = ga (tl, :r.)qa (t2, x). 

By(1.8), for q < L, there exists an integer N(q) such that 

9o (h, :) _ 9. (o, :) 
19 

<_ Mn -(e+l), n > N(q). 

Meanwhile, qa(~, z) on t2 E [0, 11 is uniformly bounded for large enough n. Thus, we get 
that from Lemma 2.2 

P (max IZ~(t)l > ~ -~)<*  ~xP(-~ ~) o<t<l - - ' 

where the positive constants c and u are independent of n. For t2 E [0, 1] and large n, we 
have 

Ifo (o,-~,=)- y~(o, o,=)! _< Mn-l -q .  

Then, Lemma 2.2 leads immediately that 

e(maXo<t~<_l lI2(tx)l>n~)_ _< d exp(--n'~). 

So far, we get the conclusion for rn - 2. For general case, it can be obtained also by 
induction. II 

Now, we apply [7,Appendix] and Lemma 3.2 to prove (3.7) {choose l= L). Note 

,,~-! t x) ~). Then Q~,(1, t,z,r/) has the same distribution as n (.¢(~)(~, , 

P inf (B(")(t,z) ~)2 dt < n -(L+i-') 
,IESS_X ' -- 

k=~ li~ll_<L 
ul=k 

- n "  ~,-IlaH 
_<ce + P inf n ~ q~(o, t~, z, ~)2 dt~ < n - ( ~ - ' )  . 

,IES~_X 
k=i II _C 

ax=k 

(~.a) 
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For a = ( a l , ' " , a m ) ,  we have 

~0 tl ~0 tin-1 Q,~(O, tl ,  z) = .-- ( f a ( o , " - , 0 ,  x), r/)o dS~.,(t,~)o . . .odS~2(t2) 

= v(.)(o, ~)0(°) (t,), 

where 
{v.l  (o, z), 

B") = [v . . (o) ,  v(.,)(o)l(z), ~ =  (~1 , - - - ,~ .~) ,  {1, 
a(") (tl) = fo' " " f o ' - '  o d e , .  ( t , , )  o . . . o  de , ,  (t2), 

m > 2  
m - 1  

m > 2  

and c t '=  ( a l , . .  "am- i ) .  Comparing V(a)(O,z) and O(a)(tl) with V(a)(z ) and O(a)(t) respec- 
tively as in Appendix of [7], and noting the hypothesis (1.7) and [7,Theorem A.6], we get 
immediately 

.ES N-i 

i d _ ) 
~ Q.(O, t, z, . ) )  2 at < . - ( 1 - . )  < ~ 

k=li l~,i l<L 
a l = k  

Therefore,the right hand side of (3.8) < ce - '~ ' .  
Combining the above discussions, we conclude that  Theorem 1.2 holds. 

4. Proof  of Theorem 1.1 

By the previous discussions, we see that (1.5) implies Theorem 1.1. Indeed, we need 
only to prove (3.7) for some l =  l(L). To do this, for m ___ 2 and a = ( a l , . . - ,  am), let 

,~(a) Ct, z, rl) = Q(~) (1, t, z, rl), 

fo '~ fo"-~ ( '~, s(.") Ct~, ~, , )  = . . .  I ,  (-~ . . . ,  --t~ ~/9,'), ,7 "1 de. ( t , , ) . . .  ao ~,, (t~). 
n / ta 

For m = 1, let 
t , z ) ,~7)  $(")(t, z, ¢ ) =  S("){t, z, r/)= (V=~(~ . 

So, (3.7) is equivalent  to that  

( fo (Z . es~-~ k=i Ilall_<l 
al-----k 

dt < n ' - ' )  < .. 'e-"'. (4.1) 

Noting Lemma 3.1 (i) and using a similar argument in [7, Appendix], we easily see that, to 
complete the proof of (4.1), it is sufficient to show that  there exist positive constants ~ = c(l) 
and u - u(1), such that 

"°"-'~(~)(t ,~,  n) at < .~ ' -~  < ~-"", 
k=~ II~ll<t 

al----k 

(4.2) 
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where r/E S N-I, n > 1 and e E (0, ½). 
To do so, we first give the next lemmas. 
L e m m a  4.1.  Assume that  f is a r-HSlder continuous function on interval [0, 1] (r > 

0), i.e. there exists a constant c > 1 such / tha t  

i f ( t ) -  f(~)i-<, t i t -  ~1 ~, vt, ~ e.[o, 1]. 

If maxo_<.t_<l l / ( t)!  > M (M < 1), then 

Proof. Easy! 
Lemma 4.2. If r E (0, I}, then 3tz, 

P sup -- -n ~ 

\o_<°<t<~ I t -  sl ~ - - 

. .  t x) r/). In this Proof. Set a = (al, • ,am). If rn = 1, then S(na} (t, x, w) = (V~,(~, , 

case, the desired result is easy to get. If m -- 2, then 

&co)(~, = , , )  _ iO(n,n 
Without loss of generality, we still assume N -- 1 and ~/= 1. Thus 

/~(t.,. ~)= 9a(t. ~)qa(,. ~). 

where ga(t,x) and qa(t,x) belong to S#,([O,T] x Rt¢) .  If a2  = O, then  

[fo' ] shal (t, =,,) = qa ( ~, =) d~ × 9a 

Clearly, the estimation holds for this situation. If a2 > 0, then 

I~ a) (t. =.,) - ~aJ (~. =.,)I 

' _t . )  d o a . ( t , ) -  S a ( n  n la  , , - ,  , 

[o' t z) g a ( '  z) max q( dOa,( t l )  _< ( 
g~'n n o<t<l 

+ max IZ' o<_.<_I qa(t!'n z) dOa, (tl) 

=:h (t. ~) + x~(t, ~). 

By Lemma 2.2, we have 

( ,.I,,., ) ( fo' ) max qa( t~ z) dOa, Ct,) > n½ < ce -n~ C n >> 1) e 0<,<.<l'~P [i-;[; > '~ < P o_<.,<_~ ~' - - ' 

o < : s < t < : l  LJ~ ~ a  t n ,  ] I!  
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Thus, we get the conclusion for the case m = 2. By induction, we can get the conclusion for 
general rn _> 3. I 

By the hypothesis of Theorem 1.1, we know that  there exists a constant  c E (0, oo) such 
that  

mr ~ (yea)(o, =), v) ~ _>_ ~, 
~ES.W-l l l~,l l<c 

aEA 

where 
~I = u ~  {i,..., d}'. 

For any fixed 17 E S Iv- l ,  there always exists a q (1 ~ q _ L) such that  

c 
(v(~) (o, :),,7) ~ >_ Z 

ll~ll=q 
aE ~I 

(4.3) 

Choose large l = l(L) ~_ L and set 

~L'~)Ct,:,,7) = ~] ,', 
ll~,ll_<t 
al----k 

'-"=", ~(~')(t, =, v). 

Then, an immediate result of Lemma 4.1 and Lemma 4.2 is tha t  

I/o' (+' (,, :, _ o-'}) 

<ce-n'-kP(k~_.{max If(') (t, z, r/)l < n - L ~  . 
- _ o < t < i  - 

Hence to prove (4.2), it needs only to prove 

m T b  la V max ~ l~-Ck)(t,=,v)l < , ~ - ~  < ~ 
o<t<i - - k=l 

For this, we need the following lemma. 
L e m m a  4.3.  Suppose that  f E $~z([0, T] x R N) (/3 > ½) and let 

9,(~, t, :) = ~ P,(.')(~, :)q~.~)(t, :), 
y:finite 

i=l,--.,d, 

where q~.d) E Sol([O, r l  x R '+) (~ > ½) ~ d  p~.~) satisfies 

P ( max max Ip~. 0 (s, z)l > n / < ce 
\ o < , < _ i  ~ , y  - - 

, V n  _. 1, (4.s) 

for constants c, u E (0, oo) independent of n. Then 

/ 
P /max I,qt, =)1 < n,-1 

o<t<i \ 
fO 1 ~g~(t,t,z)dt ~_ n-½ <_ ce - ~ ' ,  

k=1 
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where 
d t 

~(t, z) = f(t, z) + E fo 9k(s, t, z) dBk(s). 
k=O 

(4.6) 

Proof. Without loss of generality, in the proof below, we always assume/3 = i, and 
II(t, = ) -  S(,, ~)i _< I t -  si, vt, s E [o, l]. By the hypothesis (4.5), we easily get 

P (max l~(t, ~)1 < --~ o<t<l - ; 
) fo ~9~( t , t , z )  dt > n-½ 

k=l 

n W 

< ~ .  P d(t, t, :)at _> ,,-~/~; 
i = 1  k = l  

d 

i - ,  < t <  i "K ' - - -  - - ' ~  = 
o' / o ~  i -  i :) de,~(,) 

( <ce-n"  + Z P max maxlv )(-,)1 < ,',,~; 
- -  O < s < l  i,j - -  

i _ - - 1  - -  - -  

Ifo fo a t i - 1  i.--1 
max ~ 9k.(s, , - )dOk(s ) -  gk(a, ) dOk(a) 

~ <t<-~ ~= n 

k = l  I't ' - -  ~ l ' t - -  . 

<_ 3n -1) 

< n-(l-  It). 

(4.7) 

By Lemrna 2.2, we easily get 

9~(t,t) d t -  9~(t, i _ i) dt 
n, a n 

< cn-(2-~) 

where gk(s,t) = gk(s, t, z). Using the expressions of gk(t, t) and gk(t, i~nl ), we easily get 

max 19~(t, t) l v o<t<i 
9~(t, i - 1 ,~) <_n~ 

and 

m a x  

Thus, the right hand side of (4.7) 

9~( t , t )  - 9~(t,  i 1) 1 _  1 < cnr~ 

"' (~-.~ [~ i - I  1 _3 
<_o ~xp(-~") + ~ P ~ ~ j ~  9~(t, ,, ) dt _> ~,~ , ;  

max gt,:(s, n,- ) dek(s) 

max 1 _ _ _<~ ~xp(-,v')+ nP(o_<,_<~ le (t)l < ,~ i) < ~ ~xp(-n"). 

_< n-(i-})) ; 

So far, the proof of Lemma 4.3 is finished. 
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We now prove (4.4). In fact, if q = 1, we get from (4.3) 

~<_11-11<~ 
axmk 

~'-',"" sp~ (t, x, ,7). 

If n is large enough, then 

d d 

t ,  =),,71 > c(2L) - I  ls~ c~, ~, ~1 = ~ Icv~(= _ 

k = l  k = l  

By the proof of Lemma 3.1 (i), we know that 

P ( o  max E IS(~)(t'z'rl)l>nx') <-ee-~'" 
<t-<i 2<llall<x 

Therefore 

( d ) 
P max ~ Is-~k)(t =,,7)! < , ~ - ~  

o < t < _ l  ' - 
k m l  

(0 [ m a x  ~__ n t-~°ll ,.~(a) (t, Z, r/) < P  
- < t < _ x  2<llall< t 

< P  (0 ~ax 
- < t < l  

) > i~ ~~c~Ct ,= ,~ ) - ,~ -~  
-- O<t< I 

-- - k--1 

2<_llall<t 

For the case q = 1, we have proved (4.4). If q -  2, then fn (k) (t, z, 17) can be expressed in the 
form of (4.e), where 

2<11,~11_<~ 
al tmk,a2mh 

n ~'=lJ s~' (S~ (a) (s, t, z, '7) + r(,, ~) (s, t, z, '7)), 

here S(a)Cs, t, z, 17) and r(na) Cs, t, z, r/) are defined as follows: If a = ( a , , - - . ,  am), rn > 3 
and 

(/o" fo"-' $(~) (tx, z, n) = -.- • t~ ,  ~) do . .  (t.,) • •. do., (t~), n ) ,  foe'S,-- 
t h e n  w e  s e t  

(fo'fo'" fo"-' s ~ " ~ ( ~ , t , ~ , ~ )  = . . .  
118 

. . .  . . .  o . o  

f a  1'1, 11, ~ 
t_.,~ ~) de~. (t,,,) ... do~ (t~), ,7). 

If m -  2, then we let t, ~, ~),,7) 
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(~) (t, =, v) in In the same way, we can define r~ a} (s, t, x, rl), but we should first define rn 
similar way as defining rla)(t ,x)  in Section 2. Of course, each term in the expression of a 

r(n a) (t,X,r]) also possesses the form as in (2.9). 
(a) 

By the hypothesis of Ttteorem 1.1, noting the expressions of S~ ~1 (t, x, )7) and r ,  (t, x, )7) 
• na the ~p,n~ion~ of (2.S) , , d  (a.9), we ~ y  know th,t 9L')(,,t,~} , ~o  s , t ~ e ~  the 
liyi)othesis of Lemma 4.3. Using Lemma 3.1 (i) we know that the hypothesis (4.5) is satisfied 
too. Thus, to prove (4.4), it is sufficient to show the following estimation in terms of Lemma 
4.3. 

P [9(~ ~)(t, t, ~11' at <_ , , -  ~ <_ ~,--', v,, >__ ~. (4.s) 
k - - 1  - -  

Just as the discussion before, we easily know 

P max Ig (k) ( t , t , z ) l  < -~ < ce 
o<t<l - - 

k , = l  = 

oFlt ~ 

, Vn___ I. 

Therefore, if l >_ 8 × 12, then (4.8) follows from Lemma 4.2. Consequently, (4.4) holds for 
q -- 2. For q _> 3, repeating the above steps for q- 1 times, it is hot difficult to see that (4.4) 
is also true. But the statement is very tedious, and omitted here. 

Remark 4.1 From the proof above, we see that r (a) (t, x) defined by (2.9) does not 
interfere the estimation (4.4) if the hypothesis (1.6) is satisfied. In fact, in [7, Appendix], 
Kusuoka and Stroock choose l= l(L) = L. Here we need to choose l= l(L) > L, and from 
the procedure of the proof above, we easily see that I may be 'chosen 6 L+I or larger. 

5. On the Transition Probability Function 

From now on, we consider the differentiM operator 

1 N 82  .,v (:9 
L = ~ ~ ~.;(t, =)o=,o='----7 + ~ b,(t, =1~,  

i . j = l  i = I  

where 

d 

k--1 

N o,'kI J'"'t,x' 
b(t,x) = Vo(t,x)+ ~I ~ ~ W(t,x) o~; 

k- - -1  3"--'1 

I VO ) . . . For convenience, in this section and Section 7, we always assume for some ~ > ~, 
Va e $~t([0, T] x R ~) (Of course, there E = T and z appearing in the definition of SBI([0, T] 
×R N) is not fixed and various for all points in R N, or see the definition of CD([0, T] x 
R ~v} in Section 6) and their derivatives for any order are bounded. Just as in [7,§3], we 
discuss the uniqueness and the existence of solutions of heat equations with time-dependent 
coefficients, and expred the solutions by the transition probability functions (see Theorem 
5.1). Furthermore, we give the estimation for the transition probability functions. Certainly, 
this estimation is very useful to discuss the hypoellipticit'y for inhomogeneous differential 
operators. 
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L e m m a  5.1.  

nomials P.,.. I L  
tha t  

If ¢ e C F (RN), then c po,t~o e C~ (RN). Moreover, there are poly- 

H.S. ((RN)®",R N+I) --. H.S. ((RN)V"*,(RN)®"), 0 <_ m <_ n, such 

(~P,.,¢)(") (=) 
If, 

= E Ee[exp(~Y°(t'x))P",'(~Z(~')(t'x) , 
rn--O 

, c z } " ) ( , ,  ~))~,( ' ) (x ,  (t, ~))l. 
(s.4) 

The proof of Lemma 5.1 is quite similar to those of [7, Lemma 3.9], here is omitted.  
We now state the main result of this section. 

T h e o r e m  5.1. For ¢ e C'b([0, T] × RN), { Cpo,t,s < t < T} is a family of linear 
bounded operators on C~(RN). Moreover, for each ~ e C~(R"V), Cp0,tglis the unique 

solution of the following equation on C'([0, TI ~ C~(RN)) " 

o,, _ _ ( L  + c)u,  o < s < t 
~" - - - ' ( s . s )  
~,( t ,  ) = ~, (  ) .  

Proof. We need only to check that  

h-.0 h 
= (L + ~) cp,,,~(~). 

Without  loss of the generality, assume h < 0. Then 

c 

Hence 

°v .+~, ,~(~) -  °v . , ,~(~)= ( °v .+~ ,o -  O c v . , , ~ , ( ~ )  

i" = °po+~,.(L + ~) °p.,,~,(~)e,,. 
+h 

Since { CPo+h,,~(L + c) Cp,,t~o(z), s + h < u _< s} is bounded on C~°(R N) and 

lhn 
h?0 

°+h<u<° 
°po+~,. °p.,,~(~) = (L + ~) °po,,~(~), 

we have the desired limit as h T 0 and the equality 

d op.,,~(~) = -(L + ~) °p,,,~(~). 
ds 

The uniqueness of the solution of the differential equation (5.5) is easy to prove, here is 

omitted.  | 
From Theorem 5.1, we see that  it is sufficient to concern Cpo,t~o in the study of the 

solution of (S.S). Now, we give an upper bound for the density function of Xo(t, x) if the 
transit ion probability function cp(8, x, t, dy) is regular. 

T h e o r e m  5.2. Set O1 = { ( s , t ) "  0 < 8 < t < 1}, 02  = { ( s , t ) -  t _ s >_ 1} and 
U c R N be an open set. If there are p • D1 t3 D2 --* (0, oo) and Mp > 0 for every p > 1 such 
tha t  

1 !1 sup < Mpp-l(s, t), ¥(s, t) e D1 U D2. 
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Then there exists a function cp ~ CI,Oo,I,oo ([0, T] × U x [0, T] x R N ), such that 

opts, z, t, dr/) = ep(8, z, t, y)dy. 

Moreover, there are positive constants/~(t),u, and An for every n _> I, such that for any 
(z,~/)6UxR N, (s,t) with0<s<t<T, and a, /9 6 ~N with la+~/l~n, 

(1 + I~-=I2)~ID:D~ ¢p(8,=,t,~,)i 
j" k,.(t)(1 + i~l~) "- .xp( . ( t -  . ) -  ~, . ly-  . i ~ l ( t -  .))p-",. (., t), (.,t) ~ D~ < 

- / .  k,.(t)(1 + i-?)"" exp(,(t-  . ) -  ~',,ly- " l~l ( t -  ~))P-"'(" v ~,t), b < .  < t > 1, 

where 
A.( t ,z) -det(A.( t , z ) )  

"and As(t, z) is the Ma/liavin covariance matrix of Xo(t, z), i.e. 

Ao(t,z) =< DXo(t,z),DXo(t,z) >H . 

Proof. Observing the proof of [7,Theorem 3.17], we can prove this theorem without 
any dif~cult. | 

Regarding gk(8, z) as gk(0, z} in Section 3 for k - 0, 1 , . - - ,  d, we get the definition of 
V(a) (s, z) similarly for a E ~q. For s _ t, let 

d 

k = l  I I ( , I I<L- 1 
a l = k  
aE JT 

(v(.)(~, =), ~) ~ , VL(s,z) = (.es.-*inf VL,(Z, n)) ̂ 1 

and 
UL =: {~ ~ R N " VL(',  ~) > O, v~ ~ [0, TJ}. 

Corollary 5.1. Set U = u~°=iUz,. For every p >_ i, there exist positive constants 
Mp(L} and k/. such that 

I[.x;~(t,=)lln.~n~ <_ M~(L)(VL(~,=)(t- ~))"~P, w. e UL 

where (s,t) 6 DI UD2, and 0 S s < t _< T. 

c~,='~'=([0, Tl × u × 1~, rl × R~), ,uch that 
Moreover, there is a function Cp 6 

°p(~, =; t, a~,) = °p(~, =; t, y)dy. 

Meanwhile, there are positive constants An, un, k.n(T,L) and ]c,n(n) for each a, fl with 
a + fl = n, such that 

(~ + Iv -  zl2)~lD"=D~¢P(s,z,t,y)l 
<e..,, (T, L) (1 + I=i~) "- exp (~(t - -  ~ ) -  .X l y -  ~1~ '~/(VL (~, ~ ) ( t -  _ 8)) kL(n) 

I t -  'I \ / 
(5.6) 

Proof. We have 
~; '~( t ,  ~) _< (det.V;~(t,~)}~tL(~,~) N, 
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where 

Moreover 

i.(t.,) = io(t.,.s N-') = ~ - f  (,.L(t.,),). 

~up ~up II(detJ,-~(t,x))211z~,(o ) _< M,, < oo. 
O<s<t<T xER ~ 

Hence, i / l =  l(L) is large enough (see Section 4}, then 

p (Ao(t,z) ) ~(L,p) 
(t- ~) , < k-~ <- (v~(~.~))~/, 

k - p ,  Vp ~__ 1; V k >  1. 

It is not difficult to get that for Vx E UL 

llA:X(t,x)llL,(n) <_ M~(L)I(VL(~,~))~/,(t_ ~)m,. 

By Theorem 5.2 we easilly get the desired conclusion. 

6. R e g u l a r i t y  in the  P r e s e n c e  of  D e g e n e r a c y  on T h i n  Sets  

For homogeneous case, Kusuoka and Stroock (see [7, §7]) gave a condition which is 
weaker than HSrmander's one, under which the solution of SDE has smooth density too. In 
this section, we discuss a similar problem for inhomogeneous case. 

Given ¢ ~. C#(O,T × R N) ={f: O(°)l{t'y) is fl-HSlder continuous with respect to t and Oy a 

bounded uniformly for (t,y) E [0, T] × R Iv, Va E (0, 1,---, {a}) N} and 

= ( , ~ , . . .  , , ~ )  e { ~ }  u ,q. 

¢~ - -  ¢ , t h e n  I~I = II~II- 0 s~t  

¢(~1 (t, x) -- ¢(t ,  ~), 
N 

J l ~ I r ' ~  1 I 

N 

i--1 

¢(.) (t, x) = v~. ¢(. ,)( t ,  x), 

a~LI(¢)(t ,x)= ~ (¢(~l(t,z)) 2, 
II,~II_<L-~ 

where the notations ~{, ~, c~., c~', []czi[ and ]a] were given in Section 2 and [7]. 
From Section 2 and Section 4, we easily obtain the next lemma. 
L e m m a  6.1. There are constants c(L,p) e (0, oo) and l= l(L) >_ L for L _> 1 and 

p > 1, such that 

{ 
P / -< k-'/_< 

\o<,<fk-~  / 
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We now prove the main result of this section. 
T h e o r e m  6.1. Suppose h is a non-negative function on R +, and there exists a positive 

constant co and a sufficient large constant ro > 0, such that(kh(k'")) -I _ co for any k ~_ I. 
If 

¢(t, z) ~ O, V(t, z) 6 [0, T] X R N, 

where 6 e (0, 1), ~ e ~B([0, T] x R N) and 

F (6) = {7 E S u-*, I'7- F] < 6}, 

where F is a non-empty closed set in. S N-*. Then, there exists a constant • > 0, such that 
for MI p E [0, e) 

P(Ao( tk -P ,z ,F) / t  I <_ 4k-*) _< c(L,p)k -p, Vp >_ 1; V/c _> 1, 

where c(L,p) E (0, oo), and 

VL,t(z,F) = (mf VL,t(z,w)) ̂  1, 
,EF 

A,(t,z,F) = infl(v,i(o)(t, z),7) • ,7 e F}, 
d t 

k = l  

where the definition of VL,t(z, W) was given in Section 5. 
Proof. Set 

.(=) = i~f{t _> o - ¢ ( t ,  xo(t ,~))  ~ >_ k - ' } ,  ,- > o, 
f(z) = inf{t >_. 0. IXo(t, = ) -  =l--- 1 or llJo*(t,x) - III _> 612 + 6}. 

By Lemma 6.1 and the standard estimation, we easily get that 

P(r(z) > k -h} + P(f(z)_> k -ha ) <_ c(L,p)k -p, Vp>_ 1, Vk>_ 1, 

where a(L, p) E (0, oo). Thus, we need only to show the following 

P (Ao( tk -P,z ,F) / t '  ~ 4k- ' ;  r(x) < k -hp < f(x)) ~ ~(L,p)k -p, Vp ~ 1, Vie ~ 1. 

However, applying the strong Markov property to (X(., z), A(oj (-, z)) and noting the follow- 
ing facts 

1Ao(t, z, F), t k - .  _> 4k-'*o; ~,(t, x, ;c~j) _< i 

we easily get the desired result. 
The following corollary is an immediate consequence of Theorem 6.1. 
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Coro l l a ry  6.1. 
exist L >_ 1 and ¢ e C#([0, TI × R ~),  such that 

VL(s ,z ) '>_'ho¢(s ,z ) ,  

If a~L } (¢)(s, z) _> 1, then 

IlZX:'(t, z)llL,In) <_ Mp(p)(t - s)', 

where Mp(p) e (0, oo), t > s. 
Proof. Since 

By Theorem 6.1, we get 

Suppose that h satisfies the hypotheses in Theorem 6.1 and there 

Vz E R iv. 

Vp>l; vp>i,  

A°Ct, z ) > (det(J ,{ t , z ) ) )2(Ao(t ,x))  N, 

IIJ.-'(t, =)!1 < A p e x p ( B p ( t -  s)),\\ Vp > 1. 

oo 

Ii,,x.'(t, =)ll~,f.) __ ~ ~P(.~. (,, .,)) _< Mp(,,,)(t:- ,,)-". 
k---1 

7. Hypoellipticity 

Our aim in this section is to show the hypoellipticity for the operator L defined in 
Section 5 by usingprobability method (For the definition of hypoellipticity for a differential 
operator, one may refer [7,§8]. For the hypoellipticity of inhomogeneous differential operator, 
Chaleyat-  Maurel and Michel already studied before by pure analytic method. 

For simplicity, in this section we assume the coefficients V o , " ' , V a  axe the same as 
those given in Section 5, and c e C'b([0, T] × R # ). Consider 

d 
1 L +c = ~ ~ v2(t, z) + Vo(t, z) + c(t, z). 

k----1 

Then, its dual operator is 

d 
A 1 

k - - 1  

where 

and 

d 1 ~(t,z) = -Vo(t,z) + ~ ~_, div(Vk(t,z))Vk(t',z) 
k--1 

d 
1 

e(t, ~) = c(t, ~) - div(Vo(t, =)) + ~ ~ V,~(div(V,,,)) + 
k----1 

d 

~ (di,,v,) ~ . 
k = l  

Suppose that Xe(t, z) solves SDE: 

d t t 

k----1 
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Regarding X'0(t,x) and lT(u,X'0(u,x)) as Xo(t,x) and Vo(u, Xo(u,z)) as in Section 5, we 
can define As(t, z) in a similar way. 

For the hypoellipticity of L, we have 
T h e o r e m  7.1. If there exists a function p: Dt U D2 --. (0, oo), such that  

II,,Xf".Ct,~)ll~,c~) < M~p-~(~,,) ,  v~ e RN; V(~,t) e Dt U D:; Vp > I 

where Mp E (0, oo), Dz and D2 axe given in Section 5, then L + c is a hypoelliptic operator. 
Proof. For r 6 B (R N), set 

[ (/.' ) ] ~P(.,.,t,r) = E" exp e(u, 2 , (u ,x) ldu , X o ( t , z ) e  r . 

By Theorem 5.2, we know that there exists a function 

e@ e C l'°°'t '°° ([0, T] x R N x [0, T] x RN), 

such that 

Moreover 

Let 

then 

Therefore 

That means 

a ~Po.,~,(:) 
as 

= - (Z  + ~) ~f,,.,~,(=), v~ e C~°(R#). 

~(,~) = / ~P, ,,,,~(~) ~Po+I,-,,~,,¢(x)d~, 8<u_<u_<t;  ¢ e CS°(R~), 

d~{~)  = 0 .  
d~, 

~(~) = ~(t). 

~A,,¢(y) = f ¢(y) ~(,, x, t, y) d~. 

For any ~ e G~ ° (RN), we have 

lira %,,~(x) = ~(=), Vx e R #, 
tls 

• lira e l~ , , t@(y ) ---- ~o(y},  y 6 R N, 
t ie  

meanwhile 

,_<,,_<r 

,<u<T 

Some results in Section 5 axe used here. In order to apply [7,Theorem 8.6], we need to prove 
that 

d~(s,x,t,y) 
dt = (L + e),, ~ ( , ,  x, t, y). (7.1) 
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Actually, from (5.2), we get 

d ~f,,,~(:) 
dt = ~.,,(L + ~)~(=), v ~  e O~(R~). 

This means that  

f[ d ~(,,  ~,t, y) 
dt 

- (/, + e) ~ ( , ,  ~, t, y)] ~(y)  dy = 0. 

Hence, (7.1) is true. By the discussions in Section 5, we also know that 

max sup sup 
laI+I.BI<- s<_t<r ly-=l_>, 

ID~D~ e~(s,x,t ,u) l  < oo. 

Replacing q(t, x, y) in [7,Theorem 8.6] by e~(s, x, t, y), we see that L ~- c is a hypoeniptic 
operator.  I 

C o r o l l a r y  7.1.  Suppose that  there exist ¢ E O~([0, T] × R N) (/~ > ½) and non- 
negative function h satisfying the hypotheses in Theorem 6.1 such that  for some L >_ 1, 

gL(t,z) >_ ho¢( t , z ) ,  Vz E R~V; Vt E [s,T], 

where VL(t,x) is defined in Section 5. Moreover, there exists an open set W in R N, such 
that 

a~L } (¢)(tx) >__ 1, Vx  e W, Vt  e Is, T]. 

Zh~n for any ~ e 0~([0, TI × R")  ~L = ' , , ~ ~ k = l  V~ + Vo -+" c is a hypoelliptic operator on 
W. In particular,  if 

Lie(Vl(s ,z ) , - - .Va(s ,x})  = R N, Vs e [0,tl, v= e R Jr, (7.2) 

then ~L is a hypoelliptic operator, where V0," • , Vd satisfy the hypotheses given in Section 
5. 

Proof. For any point x ° E W, if there exist e > 0 and a hypoelliptic operator L on R N, 
such that eL is equal to I, on CS°(B(x°,e)), then CL possesses the hypoellipticity on W. 

For any fixed point x ° E W, there is a positive constant e with B(x °, 4e) cc W. Choose 
Tll e C~'(B(x°,2e)) so that W1 = 1 on B(x°,~) and W2 e C~'(B(x°,3e)) so that '72 = 1 on 
B(z  °, 2e). Set 

N 

v~(~, :) = w(:)v~(~, ~), 
- a 

V~+,(s, z) = ( I -  . . ( z ) ) ~ ,  

~(~, :) = v~(:)~(~, :). 

O < k < d ,  

I<_i<_N, 

Similarly, we can define Vc(s,x), a~C)(S, x) and Z~.(t, x). Moreover, on B(x°, 2e)we have 

Pn(~,:) _> VL(~,:); ~n~(¢)(~,:) --> ~L~(¢)(~,:), 

on B(x °, 2e) c, 
vL(~, :)_> v~(,, ~)_> i. 
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Without loss of generality, we assume h _< 1. Then 

Vol.7 

VL(S, z} > h o ~b(s, z),. Vz e RN; $ e [0, T]. 

Meanwhile, on B(.x °, 2e) 
1. 

In view of the discussion in Section 6, we know that there is an 2~p(p) E (0, co) for every 
p>_. landp>0suchthat 

IIAi*(t,=)ll , n  _< g p ( a ) ( t -  t > s. 

By Theorem 7.1, we know that 

d+N 
az=l 

k = l  

is hypoelliptic. Note that CL =~ L on C~°(B(z°,e)), CL is also hypoelliptic. 
In particular, noting that V0(s, x),..., Vd(s, z) are ~-HSlder continuous with respect to 

s for ~ > ~, we easily know that there is a constant L _> 1 with VL (8, z) >_ c > 0 for any 
(8, z) e [0, T] x R ~ if (7.2} is satisfied. Choosing h _~ c, by the above discussion, it is easily 
to see that C L is hypoelliptic. 1 
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