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APPLICATIONS OF MALLIAVIN CALCULUS
TO STOCHASTIS DIFFERENTIAL EQUATIONS
WITH TIME-DEPENDENT COEFFICIENTS"t

CHEN MUFA (K& ) ZHOU XIANYIN (B 4k )

(Bei}‘t'ng Normal University, Beijing)

Abstract
In thig paper, we apply Malliavin calculus to discuss when the solutions of stochastic differen-
tial equations (SDE's) with time-dependent coefficients have smooth density. Under Hérmander's

condition,we conclude that the solutions of the SDE’s have smooth density. As a consequence,

we get the hypoellipticity for inhomogeneous differential operators.
1. Introduction

Given a probability space (Q2, 7, F, P), where F = {#}:>0 is a family of o-algebras
satisfying the usual conditions. Consider SDE:

d
dX(t) = ) Vie(t, X(t))dbx(t) + Vo(t, X (t))dt,

= (1.1)
X(0) = z,
where {6,(t), - ,04(t)} is the d-dimensional Brownian motion corresponding to F, and

N
; a
Velt,2) = > Viltz)z— k=01 .d
=] *

d N
Vo(t,z)=vo(t,z)+%ZZVg(t,z)?L;g_le =) ;(t,z);z_

i=1j5=1 =1

In this paper, we always assume that Vo and Vi (k=1,---,d) belong to S~([0, T]x RV)
for some T > 0, where §([0, T] x R") consists of the functions f € C([(0, T] x RY — R for
which there exist positive constants C,, (T) and r,(T) (n > 0) with ro(T) = 0 such that

max
{a}=no0<t<T

FIEY| < ()1 +|ylrn)~T), Vye RV
ay" RN
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where a = (a1, -+ ,a,) € (0,1,--- ,n)Y and {@} = a1 + - + an.
Under this hypothesis, it is well known that there exists uniquely a strong solution
X(t,z) (also denoted by X(t), X;(z) or X;) satisfying SDE(1.1). Set

H={heC(0,T] = RY): h(0) =0, h is absolute continuous with
t

respect to Lebesgue measure on R* and / |A(1)(¢)[? dt < oo}.
0

For any h € H, the Malliavin derivative DX(t)(h) of X(t) satisfies (see [3] or [6]):
d t
DX(#)(k) =3 / V. (s, X(s)) DX (s) () dbi (s)
k=170
+ / v\ (s, X(s)) DX (s)(h) ds
0

d st
+3 [ Vals, XDAD () s, 12)
k=170

where Vi
aVi(s, X(s
WO xe) = (T
3 1<4,5EN

Similarly, we can define ‘-,0(1) (s, X(s)). The Malliavin covariance matrix of X (¢, z) is denoted
by

k=0,1,--- ,d. (1.3)

A(t,z) = ((DXi(t,z),DXj(t, z))H)lsi.jSN- (1.4)

To prove that X(t) has smooth density by using Malliavin calcullus, it needs to check
two conditions. One is that X(t) has Malliavin derivatives with any order, and the other is
that

det~1 A(t, z) € Np>1 LP(Q). (1.5)

For homogeneous case (i.e., in SDE (1.1), Vi(t,z) = Vi(z) forallt € [0, T], z € RN and
k=0,1,---,d), however, (1.5) has been proved by many authors if the cofficients Vp,--- ,Vy4
satisfy the so-called general Hormander’s condition at each point z € RV . (see [1] or [7])

For inhomogeneous case (i.e., in SDE (1.1), Vi (¢, y) depends on the variable t), Kusuoka
and Stroock (see [6]) proved that (1.5) holds under a special condition. Thus, they concluded
that the solution X(t) of SDE(1.1) has smooth density. However, the condition given by
them is actually the uniform non-degenerate one. It is natural to concern when (1.5) holds
if the coefficients in SDE(1.1) are degenerate. To consider this problem, we need to assume
that V(¢ z),- -, Va(t, z) have nice continuity with respect to variable ¢ because of some
techniques.

For simplicity, let 8 > 0, [ > 1 and set Sg([0,T] x BRY) = {f € §([0,T] x RY): there
exists § > O for each @ = (ai,- - ,ay) with {a} < [, such that the function Q%M at
the point z is f-Hélder continuous with respect to ¢ € [0, §]}

One of our main results in this paper is as follows:

Theorem 1.1. Assume that there exists an integer L > 1 such that:

The vector space spanned by the vector fields V;(0,z), 1<:<d; 1<14,---,iL < d
at each point z is RN where

N
R I L R R P
k=1 "'
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If Vo, -+ ,Va € Spi ([0,T] x RY) for some B € (3,1] and sufficient large constant I = (L)
(for example I(L) = 6L*1), then the solution X(t,z) of SDE(1.1) has smooth density.

The condition (1.6) given in Theorem 1.1 is actually the restricted Hormander’s con-
dition. To show that the solution X(tyz) of SDE(1.1) still has smooth density under the
general Hormander’s condition, it needs more hypotheses on the coefficients.

Theorem 1.2. Assume V,,Vy,---,Vy € §([0, T| x RN). If there exists a constant
L > 1, such that the vector space spanned by the vector fields

Vt(o’ I), 1 S ) S d; [‘/:(0) I)a Vj(oyz)]) 0 S 7:).7. S d; Tty

[fo (0, z)' T [Vi:.-x(oi z), Vil. (Or z)] o ']! 0< ilt e tiL <d (1'7)

at each point z is RY. Moreover, for any k = 0,1,---,d, and @ = (a1, -+ ,ay) with

{a} <2L
)

as t — 0. Then the solution X(t, z) of SDE(1.1) has smooth density.

The proof of Theorem 1.2 is given in Section 3, and the proof of Theorem 1.1 is given
in Section 4, which can not be deduced directly from the homogeneous case. To complete
the proofs of the Theorems we make some preparations in the next section.

After proving Theorem 1.1 and Theorem 1.2, in Section 5, we discuss the uniqueness of
the solutions for some kind of heat equations. Furthermore, we estimate their fundamental
solutions. As in the homogeneous case (see |7, §7]), in Section 6, we give a condition which is
weaker than Hormander’s one under which the solution X (¢, z) of SDE (1.1) still has smooth
density. Having done these, we discuss the hypoellipticity properties for inhomogeneous
second order differential operators in Section 7. This problem was also studied by Chaleyat-
Maurel and Michel (see [2]) using pure analytical method. Moreover, they also got the
Hormander’s theorem for inhomogeneous case. Although their restriction on the coefficients
is weaker than ours, there is still difference between the other conditions (see Corollary 7.1).

< a{a}Vk(try) _ a{a}Vk(O,y)
dy* dy*

= o(t?F),

y=z

2. Preliminary

Set
'4 = Ulo-i-l{os 11" : )d}l

. For a= (a1, -+ ,) €{0,1,--- ,d}}, we let |o| = 1 and

"a“= |a|+#{j: aj=0s j—‘: 1:"' :l}

For
N
V(s,z) = -ZV"(s, z)a—(?c:; W(tz)= ZW‘ t a:)
we let
N
VWOl =3 (Vo0 250 - w9 20 )
i=1 ] 7

Throughout this paper we set 6y(t) =t for é{l te(o,T].
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It is well known that the SDE(1.1) has uniquely a strong solution X(¢, z) and X (¢, z) is
a flow of diffeomorphisms on RV (see [5] or [4]). This is saying that X(¢, z) is smooth with
respect to z € RN and det(J(t, z)) # O for any (t,z) € [0, T] x RV, where

AX(t,z)

J(t,z)":x(l)(t’z):( dz; )< <N
1€i,5<

In addition, J(t, z) solves the SDE
d  ,t
Ja) =1+ / Vi (s, X (s))J (s, ) o dBn(s), (2.1)
k=070

where I is N x N unit matrix, Vk(l)(s,X(s)) is determined by (1.3) for each k =1,--- ,d.

Remark 2.1. Vk(l)(s, X(s))J (s, z) may not be a semimartingale, hence, the last term
in the right hand side of (2.1) has no meaning in terms of the usual Stratonovich integral.
Here and what follows we consider Vk(l) (s,y) as a differentiable function with respect to the
variable s. Thus, Vk(l)(s, X(s))J(s,z) is a F-semimartingale, the right hand side of (2.1) is
well defined.

By Itd’s formula and (1.2), it is easy to check that

d  ,t
J~1(t,z)DX(t,z)(h) = Z/ J (s, z)Vi(s, X(s)) R} (s) ds.
k=170
The inner product of DX*(t,z) and DX?(t,z) in H has expression:
(DX*(t,z), DX’ (t,z))x
d t
=3 [ 19,2075, 2)Valo, XD (6,20 (5, 20Vel, X (o)) ds.
k=170
Set
~ d t 3
it,)=Y / (7= (s, 2)Vi (s, X(s))]®" ds. (2:2)
k=170
Then the Malliavin covariance matrix A(t, z) defined by (1.4) can be expressed by

A(t,z) = J(t, 2)A(t, z) I (¢, z)*. (2.3)

By 1t&’s formula, we easily get

L)
J7(s, 2)Vi(s, X,) = Vi(s, z) + Z / J 7 (u, z)[Va(u), Vi (s)|(Xu) © dbn (). (2.4)
h=0"0

In order to explain the meaning of the last term in the right hand side of (2.4) and get
the general exptession of J~1(s, z)Vi(s, X,), we need the following lemma.
Lemma 2.1. For any fixed h and k, let

£(s) = / Vi), Ve ()] (=) o (),
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0(6) = [ 970, 2V ), (N (K)o

Then, both {£(s)},>0 and {n(s)},>0 can be considered as a progressive process.

The proof is very easy, hence is omitted.

Expanding further the term J~!(u, z)[Vi (), Vi(s)](Xu) in the right hand side of (2.4)
as we did in Lemma 2.1,

¢(u) = /0" J™H v, 2)[Vi(0) [V (u), Vi (s)]](Xo) © déi(v)

is a progressive process. Hence, the definition of f; ¢(u) o db;(u) is reasonable for + =
0,1,---,d. Thus, J~!(s,z)Vk(s, X,) can be expresses by

I o) Ve(t, Xe) = D §9(tz)+ D, R(32), (2.5)
|a|<L laj|=L+1
ay=k ay=k
where 5(®) and R(%) are defined as follows. Let & = (a1, - ,am) € A. If m = 1, then

5@ (t,z) = Va,(t, z); R (t,z)=0.

If m > 2, then

8@ (t1,2) = / / " Vo (s [+ Vs (82), Vi (02)] - 1(3)
0dly, (tm) o - 0dly,(t2), (2.6)

and

t1 tm-1
R (ty,2) =/o /0 T (tm, 2)[Vam (tm)s [+ [Vas (2), Vau (82)] -+ | (X))
odly, (tm) o 0dla,(t2). (2.7)

As in Remark 2.1, we can explain the meaning of the right hand side of (2.6) and (2.7).
Actually, we can express them in terms of It&’s integral. In other words, 5(a) (t,z) and
R(%)(t, z) can be expressed completely in terms of It3’s integral . For m = 1, let S (t,z) =
5(a)(t,z). For m > 2, let

5@ (t,,2) = / e / " W)y [+ Ve (82), Ve (82)] ]2
0o (tm) -~ dba, (t2). (2.8)

If
r@ (¢, z) = §)(¢t,2) — S(@)(t,z), Vae 4,

then we see that r(“)(t, z) can be expressed as a finite sum of the following type

[ [ ) b om ssisndbnn om) - (i), (29)
0 0 0
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where h (t,z) is f-Holder continuous with respect to ¢t and slowly increasing with respect
to z € RY for each 1 and ri, and there must be at least one ¢ (2 < 7 < m), such that §; = 0.

Set
ZPen= Y $@ea+ Y RI(a)
|a|<L |aj=L+1
ay=k a;=k
llall2L+1
then (2.5) can be written as
It Vil X() = > 3@(t,z) + 2L (¢, 2). (2.10)
lal<L
al:-_'k

Since we will use [7, Lemma A.7] time after time, we restate it as follows:
Lemma 2.2. Let A(t) = (Bx(t))1<k<d be a d-dimensional continuous progressive
measurable process. Set

d .
f(t)=§1 /0 Bu(t) don(t); V() = /0 B de, Ve > o.

Then, for any r € [0, %—), there is a ¢, < 00 and a A, > 0, such that

-t (R
P (os«?g V) V)R > V‘T’S"’) ser "<Tc2)

for all positive k; and k;.
3. Proof of Theorem 1.2

The proof is splitted into two steps. The first step is to show that D*X(t,z) (in
Malliavin’s sense) is well defined for all k£ > 1. It is not difficult to complete the step since
Vo, Vi, -, Va4 belong to §([0, T] x RY) (cf. [6]) The second step is to show that (1.7) and
(1.8) imply (1.5). This is what we are working in this section.

Actually, because of (2.3) and [4, Lemma 5.2.1], it suffices to show

(det A(t,z)) ™! € Np>1 L” (w), (3.1)

where A(t, z) is defined by (2.2). Since N

esN-1

detA(t, z) > { inf / Z(J (s, z)Vi(s, X,), n)? ds] )

(3.1) follows provided

(nesu 1/ Z(J—l(s z)Vi (s, X,), n)? d") Sepn™?, Vpn2>1. (3:2)

For this, it suffices to show that

t/n d
('lesu 1/ Z(J (s, 2)Vi(s, X,),n)? ds < n= (17 ‘)) Scpn”? (3.3)
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holds for a large integer | = (L) > 1 and all p,n > 1, where £ € (0,1) is a fixed constant,
¢p i3 independent of n. Without loss of generality, we assume ¢ = 1. By (2.10), we have

i d
. g _1 2
L[, T A Ko i

1 * &
>— inf
—2"61;1'”-1'/(; Z

k=1

Z 5(2)(s,z),n

flali<t
a3 =k

2 14

ds — / > 128 (s, z)[? ds. (3.4)
Y k=1

Next, we prove that

il d
P( / > 129 (s,2) P ds > n-('+1~‘)) <cpn”P, (3.5)
0 k=1

for all I > 2 and n > 1. To do this, we need a lemma:
Lemma 38.1. For a = (o, - ,a;), set

falts, - st1,2) = [Vay (1), [+ [Vaa (82), Ve, (1)) - - ](2),

Then
(1) There exist positive constants ¢ and u such that

1 ty ti-1
p(/ / / fa(t_l,...’t_l,z)p
0 0 0 n n

2
odfg, (t1) o -+ - 0 dbq, (t2)

dt; > n) < ce—"“;

(i) There exists a positive constant cp such that

P(/: /:‘--'/Oh-l J‘l(%,z)f(g,"' ,t_l,x(%))

n n
odla, (t1) 0« -+ 0 dfa,(t2)

2

dtl 2 n)

<cpn™P, Vn2>1,Vp2>1.

Proof. To prove (i), it needs only to show that

131 ti-1 t t
/ / fa("i's"";i"z)°d00u(t1)°"'°d903(t2)
0 0

2
Zn>

In fact, we can prove (3.6) by using Lemma 2.2 repeatedly. The details are omitted here.
To prove (ii), we also assume N = 1. Since

Pl max
0<t; <1
-

Scc‘ﬂ (36)

JZax E|J ¢, z)||P < oo; B E|X(t,z)lP <o, Vp2>1,
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and Vy(t, z), - -+ , Va(t, z) are slowly increasing with respect to z € RY, it is easy to see that

0_<_hryr'l'a'.§1$1 EIJ—I(tI)z)fa(tly T atlsX(tl; z))lp < o0, VP > 1

Ifl = 2 and az = 0, the proof is easy. If l = 2 and a3 > 0, @ = (a1,az), then the
Burkholder’s inequality implies that
2
dtl > n)

1

o\
0
1 2

SP(/ dt1>n)
0
2
dt12ﬂ)

1
+p( /
0

ty ta t, ta ot i

<cpn™P +n"P max E/ J'l(_,z)fa(—, "‘:X(‘E)) dfa, (t2)
0
2 1 4
dtz)

0<¢,<1
For general [ > 3, (ii) can be also proved by induction. 1
Set @ = (@1, ** ,q|q|), |@| <1 and ||| 2 I+ 1. Then

1
P (/ |5 (¢, z)[> dt > n."“‘”"))
)

1 t1 tial-1 tl tlal
P([) /0 /0 f“(;;,_""rT’z)°d€°|a|(ta)°"'°d3a,(t2)

where | + 1 — ||a|| £ 0. By Lemma 3.1 (i), we know that

[ 2 x(2) o b o)

n nn

/ T2, 2) £(2, 2, X(2))dba (12)

n n

t)
J—l(tZ) x)f(a,,a;,a;)(tly t2) tg, th)) dt2

0<t;<1

<cpn™P +cpn”P max E(/ ’J—l(tz 5_1_ 2 X( ))

-p
<cpn~r.

2
dtl _>_ n‘)

P(/j

Now, (3.5) follows by using the expression of Z,(k) (¢, z). Thus, by. (3.4), it is easy to see that
(3.3) follows from

(nes~ x/ Z( > (5@)(,2), n)zdt) < nmU1- ") <en? (3.7)

llall<?
oq::k

13 (¢, z)|? dt > n-('“-‘)) <ece ™.

To prove this, we need the following lemma.
Lemma 8.2. Fora= (o, -',am)and m=2,---,L let

Qﬁ (J.’ t1,z, ’7)
t tm-1 t t
/ / f"(Jl Jm )"1)odaam(tm)o"'odoa:(tZ)r 71=0,1,
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where f4(t1," " ,tm,z) was defined in Lemma 3.1. If V), - - - , V; satisfy the hypothesis (1.8),
then there exist positive constants ¢ and u for each ¢ > 1, such that

P (oga’él |Qa (1, t1,2,1) — Qn(0,t1,z,7)| 2 n—q) <cexp(-n"), Vn21.

Proof. Without loss of generality, we assume N =1and n =1. If m =2 and a; =0,
then the conclusion follows from (1.8) immediately. If m = 2 and a3 > 0, then

Qg(l tl)z 1) Qa(o tliz 1)
=‘/(; [fa(t—l': 2'):B) fu(o ,.‘L’)] dgd:(tz)

+/0: [fa (0, t_:.’g:) — fa(0,0, z)] dbq,(t2)
=1I1(t1) + Iz(tl).

In fact, we can assume
fa (t1) t2, :l:) = Ga (tl) Z)Qa (t2: I)'
By(1.8), for ¢ < L, there exists an integer N(g) such that

t

ga(":—; < Mn~(@H) 5> N(g).

z) - 94(0,z)

Meanwhile, g,(%2,z) on t; € [0, 1] is uniformly bounded for large enough n. Thus, we get
that from Lemma 2.2

P (Olgtagcl [Ii(t)]| 2 n ‘1) < ¢ exp(—n"),

where the positive constants ¢ and u are independent of n. For t; € [0,1] and large n, we
have

1£a(0, 2, 2) = £a(0,0,2)| < Mn~'71.

Then, Lemma 2.2 leads immediately that

P (Ointa.x |I2(t1)| > n") < é exp(—n").

So far, we get the conclusion for m = 2. For general case, it can be obtained also by
induction.
Now, we apply [7,Appendix| and Lemma 3.2 to prove (3.7) (choose | = L). Note

QZ%(1,t,z,n) has the same distribution as nugq;l'(g("‘)(%, z),7). Then

(nes~ 1 E( Z (81 (¢,z),n) >dt5 n."(“'l—‘))

0 k=1 VjalI<L
a =k

SCC'”“FP(,,GSN 1/0 Z( > 220,01, 2,m) )dt1 <n‘“")) o8

k=1 Y|a||SL
ay=k
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For a = (aj, - ,am), we have

t) tm—1
Q:(o,tl.z)=/o /0 (a0, ,0,2),m) © dfa.. (tm) o --- o dBla, (£2)

= V(a)(o, z)o(")(tl),
where
Vi = { Va:(oi :1:), a= (0‘1)
@7 Van(0), Vi O)](2), @ = (01, 0m),  m22

(a)(tl)— { 1: t -l
o fo"  odlan (tm) 0 -0 dla, (t2), m2>2

and o' = (al, -@pm—1). Comparing V(a)(O z) and 8(®)(¢,) with V(,)(z) and 8(*)(¢) respec-
tively as in Appendix of [7], and noting the hypothesis (1.7) and [7,Theorem A.6], we get
immediately

( inf / > 5 Qz(o,t,z,n»*dtSn““")scc-»',
neE

k=1]lal|<L
ay=k

Therefore,the right hand side of (3.8) < ce~™".
Combining the above discussions, we conclude that Theorem 1.2 holds.

4. Proof of Theorem 1.1

By the previous discussions, we see that (1.5) implies Theorem 1.1. Indeed, we need
only to prove (3.7) for some [ = [(L). To do this, for m > 2 and & = (ay, - ,am), let

s'(lu) (t! z, '7) = fo')(l, t,z, ’7),
ty tm-1
Sﬁa)(thz,')) =/ / (fa t_l’ ,tlbig"),ﬂ) deam(tm)’“doaz(tZ)-
0 0 n n
For m=1, let
t
5{)(t,z,n) = S{V (¢, z,n) = (Vai(=,2),m)-

So, (3.7) is equivalent to that

P X[ (2

Noting Lemma 3.1 (i) and using a similar argument in [7, Appendix|, we easily see that, to
complete the proof of (4.1), it is sufficient to show that there exist positive constants ¢ = c(!)
and u = u(l), such that

(/; Z( Z 'M‘l-_lg,(,“)(t, z, r)))zdt < nz‘_l) <ce ™™, (4.2)

llall<t
a1=k

2
> w S nn)) de<n) S a)
llajl<1
ay=k
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where n € SV~ n>1and € € (0, 3)

To do so, we first give the next lemmas.

Lemma 4.1. Assume that f is a r-Holder continuous function on interval [0, 1] (r >
0), i.e. there exists a constant ¢ > 1 such’/ that

[f(t) — f(s)| <clt —s|", Vi seE]0,1]
If maxo<e<1|f(t)] 2 M (M < 1), then

/01 f(e)de > (%)%(%)u%

Proof. Easy!
Lemma 4.2. If r€(0,3), then 3,
Pl sup 8tz m) = 58 (2] 5 ) < pont.
0<s<t<1 |t —s|”

Proof. Set a = (aj, - ,am,). f m = 1, then 5(")(t z,1) = (Vu,(£,2),7). In this
case, the desired result is easy to get. If m = 2, then

3@ (¢, ,7) = (/ot ful£,2,2) dﬂa,(s),n).

Without loss of generality, we still assume N = 1 and n = 1. Thus

fa (t’ 3, I) = Ga (t:‘z)QG(ss ::),
where g, (t,z) and g, (¢, z) belong to Sg([0,T] x RN). If az = 0, then

stnn) = [ [ aalSm)as] xoa(2).

Clearly, the estimation holds for this situation. If a3 > 0, then

ls(a)(t z, ’7) _S‘r(sa)(")z)")l
'/ fa 't')fi)z) deaa(tl) / fa(i)f}' z) dga:(tl)

<Jon(E12) = 0a(29)| g | [ o(2) )

m
0<t<1

t
t
55059 | [ 0e(9) )
=:I;(t, s) + Ix(t, s).

By Lemma 2.2, we have

P( sup ££(—t’-f)—>n><P<ma.x

t
131
o<s<t<i t—s|m = ) =7 \o<t1 / q"(—”’) dfa, (t1)

L z)db,, (t .
P( sup 129 n) <p| sup |y 9a(%,3) dfa, (t2)] > nM?1(z) < ce=™".
o<a<t<t = s[" 0<s<t<1 [fa qg( L, z) dt, ]?

> n%’) <ce ™ (n>1),
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Thus, we get the conclusion for the case m = 2. By induction, we can get the conclusion for

general m > 3.

By the hypothesis of Theorem 1.1, we know that there exists a constant ¢ € (0, o0) such

that

> (Viwy(0,2),m)% 2 ¢,

esN -1
llall <L
a€d

- where

A=u,{1,---,d}.
For any fixed n € SV¥~1, there always exists a ¢ (1 < ¢ < L) such that

[
> Vw222 7.
llall=q
a€l

Choose large | = I(L) > L and set

ko) (¢t z,m) = Z n i 3 (¢, z,n).
i

Then, an immediate result of Lemma 4.1 and Lemma 4.2 is that

([ ennrase)

d
Sce_"‘ +P(n {01}132(1 Ig'(' )(t z,n)] <n :Fz})

k=1

Hence to prove (4.2), it needs only to prove

(°<:<1 > e zn)] < nﬁz) <o

For this, we need the following lemma.
Lemma 4.8. Suppose that f € $5([0,T] x RY) (8 > 1) and let

g.-(s,t,:;): Z PJ(-‘.)(S,:B)q‘S-i)(t,I)s i=1,---,d,

j:finite

where q ) € $a([0,T) x RY) (8 > 3) and pJ') satisfies

Q) -n*
P (org,aécl max ;" (s,2)| > n) <ece™™, Vn2>1,

for constants ¢, u € (0, co) independent of n. Then

1 d
-1, 2 -4 -n*
P(olgglk(t,zﬂﬁn , /0 k}_ljg,,(t,t,z)dtzr, ) < e,

(4.3)

(4.5)
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where 4 .
€)= 162+ Y [ onlort2) dbu(o). (4.6)
k=0 0

Proof. Without loss of generality, in the proof below, we always assume g = 1, and
|f(t, z) — f(s,2)| < |t — s|, V¢, s €[0,1]. By the hypothesis (4.5), we easily get

1 4
P(orsr_la.sx |€(t, z)| < n7 Y A;gZ(t,t,z)dth"f)
n d .":
<) P / g:"(t,t,z)dtZrt._a/2

3 /og,,(stz)do,,(s) /

n

—n* (%) .

<ce™™ + _s_ 1 (orga.écl n}axlp (s)] € nie;
=

max
i=lgecd =0

::) df(s)

< 3n'1>

d t . "_"_1
-1 _
s Bl o0 [ aeShmo] s
d i .
Ld 2 1—'1 .]_._3
é/:%gk(t, —, )dt>2 ) (4.7)

By Lemma 2.2, we easily get

[ e [L a0

where gi(s,t) = gi(s, t, z). Using the expressions of gk(t,t) ‘a.nd gk (t, 1=2), we easily get

< en~(2=3)

ax(t, 10| <

max. |ow(t,1)] v

and

t, t) — t— <cnrs'1
:-1<:< gk( ) gk( )I

Thus, the right hand side of (4.7)

<c exp(—n") + zn:P (,,Z/ gr(t

Nlt—‘
l
ol

’
=1

<n (1—1'))

So far, the proof of Lemma 4.3 is finished. |

<c exp(—n") + nP( X, |01(t)| <n ) < ¢ exp(—n").
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We now prove (4.4). In fact, if ¢ = 1, we get from (4.3)

S',(.k)(t’ z,n) = S'Sk)(t, z,n) + Z n S'(‘“)(t, z,n).

2<lallt
ay=k

If n is large enough, then

d d
18 (2 ml = 3 (Ve(o ).l 2 c(2) .
k=1 k=1

By the proof of Lemma 3.1 (¢), we know that

P(o’é‘féa > ISL’(t,x,nnZ"')su .

= =T 2g]lallf
Therefore
d -
i (0?3%‘1 kz-:l 68 (2,2, m)| < "_L&)
d
=fel 5(a) : (%) iz

SP (o??%& n Sn. (t)z)n) 205%112123"' (t’z,n) n 6)

2<|lalist k=1
<P (012,&2‘1 188 (¢, z,m)| 2 n%) See ™.

=" 2<|lall<t

For the case ¢ = 1, we have proved (4.4). If g = 2, then g,(.k) (t,z,n) can be expressed in the
form of (4.6), where

f(t) z) = S'(.k)(t, z,1),

g)(;k)(":tlz) = Z n ¥ (Sr(sa)(":ts z,n) + "Ssa) (s,t,7,1m)),

2<|lall<t
ay=k,asz=h

here S,(.a)(s, t,z,n) and rs‘a)(s,t, z,n) are defined as follows: If a = (a1, - ,am), m 23
and

ty tm-1 t
S(“)(tl,z,n) = (/ / fa(f.l_,... __'."_,z) doam(tm)"' doa,(tz),f]> ,
0 0 n n
then we set
(a) ( O AU RPN I YR df
a = .4 tm) - diy 0.
Sn (S,t,z,f’) /; /; A fa(n’ n’ ] n ,I) am( ) J(ts) ’9

If m = 2, then we let
t
sr‘;a)("’tr z,1) = (fa(;: i‘;z):'l)-
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In the same way, we can define rs,a)(s, t,z,n), but we should first define rs,a)(t, z,n) in
a similar way as defining r(")(t z) in Section 2. Of course, each term in the expression of

r\®)(t, z,n) also possesses the form as in (2.9).

By the hypothesis of Theorem 1.1, noting the expressions of S\* (t, z,n) and ria) (t,z,n)
and the expansions of (2.8) and (2.9), we easily know that g\"'(s,t,z) also satisfies the
hypothesis of Lemma 4.3. Using Lemma 3.1 (i) we know that the hypothesis (4.5) is satisfied
too. Thus, to prove (4.4), it is sufficient to show the following estimation in terms of Lemma

4.3.
(ZZ/ o) (tt,2)|2dt < 'S ) <ce™, Vn>1 (4.8)

k=1h=

Just as the discussion before, we easily know

(k) £ -n*
(Mmzz; (t,t,zngnL)su wrl

k=1h=1

Therefore, if { > 8 x 12, then (4.8) tollows from Lemma 4.2. Consequently, (4.4) holds for
g = 2. For ¢ > 3, repeating the above steps for ¢ — 1 times, it is not difficult to see that (4.4)
is also true. But the statement is very tedious, and omitted here.

Remark 4.1 From the proof above, we see that r(®)(t, ) defined by (2.9) does not
interfere the estimation (4.4) if the hypothesis (1.6) is satisfied. In fact, in [7, Appendix],
Kusuoka and Stroock choose ! = |(L) = L. Here we need to choose [ = (L) > L, and from
the procedure of the proof above, we easily see that I may be'chosen 6X+! or larger.

5. On the Transition Probability Function

From now on, we consider the differential operator

1 N
5}; a; i(t, z)a 55, +Zb(u)
where
d 3
a(t, z) = (ai;(t, 2)rgigen = Z(vk(t, z))®’,
b(t, z) = Vo(t,z) + ZZV’(t av"(t 7).

lil

For convenience, in this section and Section 7, we always assume for some g > > Vo, ,
V4 € Sai([0, T) x RN) (Of course, there § = T and z appearing in the definition of Sp(([O T]
xRY¥) is not fixed and various for all points in R¥, or see the definition of Cy([0,T)] x
RY) in Section 6) and their derivatives for any order are bounded. Just as in [7,§3], we
discuss the uniqueness and the existence of solutions of heat equations with time-dependent
coefficients, and express the solutions by the transition probability functions (see Theorem
5.1). Furthermore, we give the estimation for the transition probability functions. Certainly,
this estimation is very useful to discuss the hypoellipticity for inhomogeneous differential
operators.
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Now, we suppose that X,(t, z) solves SDE:

d t t
X,(t,z) =z + Z/ Vie(u, X4 (u,z)) o di(u) + / Vo(u, X, (u, z)) du. (5.1)

k=1 8 ]

Set
P, =Po(X,(-,z))" .

From the discussion in [8, Chapter 5 and 6|, we know that

@wﬂn—dﬂ—[lmanaJuua)

is a martingale for any z € RN and ¢ € CP(R"), and P, , has Feller continuity, where
Mse = o{X(u) : s <u <t} Forany c € Cp([0,T] X RY) = {c: ¢(-,z) € C([0,T))

for z € RN, ¢(t,") € Cy(RV) for t € [0,T], and supo<e<: I%ll < M < oo, where
yeR"
«€(0,1,--, {a})N}) set

t
°p(s, z;t,T) = EF»= [exp (/ c(u, Xu) du) , Xt € I‘]
t
—EP [exp ( / o(u, X, (4, 7)) du) X, (t,2) € r] ,
where t € [s,T], z € RV, T € B(RY). For any p € C;(R"), let
“puse(s) = [ oly) *plo,7t,d).
Obviously
lim ‘puep() = p(z), Ve €Ci(RY); VzeRY
cpu.n+h . cP.+h,t$0(1') = cPo.ﬂo(z))
Pot: P ECH(RN) > °p,.p € C1(RY),
t
°posip(z) — ¢(z) = / “Do,u(L + ¢)¢(z) du. (5.2)

From SDE (5.1), we easily see that X,(t, z) coincides with the solution of
d t
X(t,z)=z+ Z/ Vie(u + s, X(u)) o dfx(u), (5.3)
k=070

where Ox(u) = Ox(u + s) — 6i(s), k = 0,1,---,d. Here, we regard Vi(s,z) as Vi(0,z)
appearing in SDE (1.1), then SDE (5.3) is changed into the type of SDE (1.1). To prove
the main result of this section, we need a lemma. Set

°Y,(t,z)=/; c(u, X, (u, z)) du,

zea-(547).



No.3 APPLICATION OF MALLIAVIN CALCULUS TO SDE’S 209

Lemma 5.1. If ¢ € CP° (RN), then °P,:p € C?"(RN). Moreover, there are poly-
nomials P, : [[, HS. (RV)®",R¥N*) — H.S. ((RV)®™,(RV)®"), 0 < m < n, such
that

(°Pued)™(2)

= 3 Bexp(Ya(t,2) Pam (20 (1, 2), 28 (1,2)) 0™ (X, 2, )]

m=0

(5.4)

The proof of Lemma 5.1 is quite similar to those of (7, Lemma 3.9], here is omitted.
We now state the main result of this section.

Theorem 5.1. For ¢ € Cy([0,T] x RV), { °pst,s < t < T} is a family of linear
bounded operators on C}° (RM). Moreover, for each p € ey (RY), °p,,t0,is the unique

solution of the following equation on C'([0, T] — C{°(RV)) :

{%%=—(L+c)u, 0<s<t, (5.5)

u(t, ) =o(+).
Proof. We need only to check that

lim ‘Pa+htP(Z) = °Psep(z)
h—0 h

= (L +¢) °pa,ep(z)-
Without loss of the generality, assume h < 0. Then

“PothtP(Z) = “Poth,e - “Paeio(z).

Hence
“Pat+h,tP(z) = °Pot®(2) = ( “Potn,e — I) - °Poeip(z)

= / °Pe+h,u(L + ¢) °pseip(z) du.
s+h

Since { °pstnu(L +¢) °paep(z),s + h < u < s} is bounded on C°(RY) and

m “Pathu “Parp(z) = (L +c) °pyep(z),
s+h<u<ls

we have the desired limit as A { 0 and the equality

d°psep(z) _
ds

The uniqueness of the solution of the differential equation (5.5) is easy to prove, here is
omitted.

From Theorem 5.1, we see that it is sufficient to concern €p,:p in the study of the
solution of (5.5). Now, we give an upper bound for the density function of X,(t, z) if the
transition probability function °p(s, z,t,dy) is regular.

Theorem 5.2. Set D; = {(s,t): 0 < s <t <1}, Dy = {(s,t) : ¢t > s > 1} and
U c RY be an open set. If there are p : D, U D2 — (0,00) and M, > O for every p > 1 such
that

—(L +¢) °ps,ep(z).

< Mpp—l(srt): V(S,t) € D, U D,.
L»(q)

sup
zeU

1
A,(t, )
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Then there exists a function °p € C**%([0,T| x U x [0, T x RY), such that

°p(s,z,t,dy) = °p(s, z,t,y)dy.

Moreover, there are positive constants ky, (t),un and A, for every n > 1, such that for any
(z,y) €U X RN, (s,t) with0< s <t < T, and a,8 € NV with |a + 8| < n,

(1+ |y —z[*)#|D2DE “p(s,z,t,y)|

o B0+ 0lele— )=l = <F /= (00, (0
L kn(t)(1+ |2[2)%~ exp(c(t — ) = Anly — 2|2/(t = 8))p™*~(sV1,¢t), 0<s<t>1,

where
A,(t, z) = det(A,(t, z))

and A,(t, z) is the Malliavin covariance matrix of X, (¢, z), i.e.
A,(t,z) =< DX,(t,z),DX,(t,z) >x .

Proof. Observing the proof of [7,Theorem 3.17|, we can prove this theorem without
any difficult. |

Regarding Vi (s,z) as Vi(0,z) in Section 3 for k = 0,1, - ,d, we get the definition of
V(a) (8, z) similarly for a € 4. For s < ¢, let

d
Vi(zn) =) Y (Mals2)n)? Vi(s,z)=| inf Vi(z,n))Al
k=1 ||aa|!|15:k.1 ) (neS )

ac€l

and
Up=:{z€ RV :Vy(s,2) >0, Vse|[0,T]}.

Corollary 5.1. Set U = UP_,UL. For every p > 1, there exist positive constants
M, (L) and kg such that

”A:l(t,z)"L,(m < Mp(L)(VL(s, z)(t — 8))*=?, Vze U,

where (s,t) € Dy UD;, and 0 < s < t < T. Moreover, there is a function °p €
cleo1eo([0, T| x U x [0, T] x R¥), such that

°p(s, z;t,dy) = °p(s, z;t, y)dy.

Meanwhile, there are positive constants An, un, kn(T,L) and ki(n) for each a,f with
a + B = n, such that

(1+ly - 2*)#|D; Df°p(s, z,t, )|
SR, (T,L)(1 + |z}~ exp (c(t I /\!!T/t—__-—zlli

)/ (Vi(s,z)(e= o)), (5.6)

Proof. We have
ANt 2) < (detd7H(E,2))2 /R0 (1 ),
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where

A(t,z) =4,(t,z,8N 1Y) = LB (n, A, (¢, z)n).

Moreover
d tJ 1 t 2 < M
o<f‘<llg)<7-zsup [l(de (t,2))*|lL>(n) < oo.

Hence, if | = I(L) is large enough (see Section 4), then

:\,(t,a:) -1 é(L,p) _
< <__S\P) 4 -p > 1 > 1.
P((t—s)'—k )‘(VL(s,z))vﬂ" o VPL vk

It is not difficult to get that for Vz € U
1AT 6 ) lzr(@) < Mp(L)/(Vilo, 2)) V7V (¢ — )P
By Theorem 5.2 we easilly get the desired conclusion. |
6. Regularity in the Presence of Degeneracy on Thin Sets

For homogeneous case, Kusuoka and Stroock (see [7, §7]) gave a condition which is
weaker than Hormander’s one, under which the solution of SDE has smooth density too. In
this section, we discuss a similar problem for inhomogeneous case.

Given ¢ € C5(0,T x RY) ={f:2—(—a—a)—g,3'—¥)- is f-Holder continuous with respect to ¢ and
bounded uniformly for (¢,y) € [0,T] x RN, Va € (0,1, - ,{a})¥} and

a=(ag, ,an) € {#}UA.
If @ = @,then |a| = ||a]| = 0. Set
bo)(t z) = ¥(¢, 7),
Yix) (b1, t2,2) = iVﬁ(tzy )y (t1,2),

=1
t»"(a:)(tl.)'” m+llz) Z m+1;x)"/j(a "z, (tlv e )tm:z);

1‘()(‘7')( ’ ) = Va.¢(a’)(t)1);
@)t = > (b a)?

[laljsL-1
acAu{d}

where the notations 4, 4, a.,a’,||a|| and |a| were given in Section 2 and [7].

From Section 2 and Section 4, we easily obtain the next lemma.

Lemma 6.1. There are constants ¢(L,p) € (0,00) and I = {(L) > L for L > 1 and
p 2 1, such that

P( sup  ¥(t, Xo(t,z))3/T' ! < k") < ¢(L,p)(ka(Ly(0,2))7".

0<t<Tk-!
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We now prove the main result of this section.

Theorem 6.1. Suppose h is a non-negative function on R*, and there exists a positive
constant ¢, and a sufficient large constant ro > 0, such that(kh(k™))~! < ¢, for any k > 1.
If

¥(t,z) >0, V¥(t,z)€[0,T]xR",
oi)(¥)(0,2) 21, Vze€ RY,

Vit (z, T(”) > hoy(t,z), V(tz)elo,T]x RY,
where § € (0,1),% € C5([0,T] x R¥) and
F ={nes""',|n-F| <6},

where F is a non-empty closed set in- S¥~!. Then, there exists a constant € > 0, such that
for all p € [0, ¢)

P(lo(tk™*,z,F)[¢ < 4k™') S ¢(L,p)k™, VP21 V21,
where ¢(L, p) € (0,00), and

Vie(z, F) = ("uel;_ Vie(z,n)) AL,

xﬂ(tisz_) = inf{(";‘a(a)(t) z)n):n € F};

d t
j(.)(t, z) = Z Jo(s, z)/ (J57* (u, z) Vi (u, Xo(u, z)))" duJp(u, z)*,
k=1 ’

where the definition of V. ¢(z,7) was given in Section 5.

Proof. Set

7(z) = inf{t 2 0: $(t, Xo(t,2))* 2 k™"}, r>0,
¢(z) =inf{t 2 0:|Xo(t,z) —z| > 1or ||J5i(t,z) - I|| >6/2+6}.

By Lemma 6.1 and the standard estimation, we easily get that
P(r(z) > k™) + P(¢(z) 2 k™) < ¢(L,p)k™®, Vp>1, Vk>1,

where ¢(L,p) € (0,00). Thus, we need only to show the following
P (xo(tk",z, F)/t¢ < 4k™7; 7(z) < k™" < g(z)) <eL,p)k7?, Vp2>21, Vk>1.

However, applying the strong Markov property to (X(-, z), A(o)(-, z)) and noting the follow-
ing facts

(8)

tk™" > 4k~ 3,(t,z,F ) < i—f\,,(t,z, F),

we easily get the desired result. ]
The following corollary is an immediate consequence of Theorem 6.1.
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Corollary 6.1. Suppose that h satisfies the hypotheses in Theorem 6.1 and there
exist L > 1and ¢ € Cp([0,T] x R¥), such that

Vi(s,z)>’hoy(s,z), VYze RN
If of;)(¥)(s,2) 2 1, then
IATHE 2)llerin) < Mp(p)(t=s)?, VP21 VYp21,

where M, (p) € (0,00), t > s.
Proof. Since

A, (t,2) 2 (det(J, (¢, 2)))* (A (2, 2)V,
197 (, 2) || < Ap exp(Bp(t = s)),n Vp 2 1.
By Theorem 6.1, we get

IA7HE 2)lria) £ D KPRt 5) € Mp(p)(t —s)~°

k=1

7. Hypoellipticity

Our aim in this section is to show the hypoellipticity for the operator L defined in
Section 5 by using probability method (For the definition of hypoellipticity for a differential
operator, one may refer 7,§8]. For the hypoellipticity of inhomogeneous differential operator,
Chaleyat - Maurel and Michel already studied before by pure analytic method.

For simplicity, in this section we assume the coefficients Vj, -+ ,Vy are the same as
those given in Section 5, and ¢ € C([0, T] x R"). Consider

1
=§E tz)+Votz)+c(t:c)
Then, its dual operator is
138
Lye=33 V2ta)+V(tz) + 2t 2),

where
d
V(t,2) = ~Vo(t, z) + % S div(Ve(t, 2))Valt, 2)
k=1

and

&(t, z) = c(t, z) — div(Vo(t, z)) + 5 ZVk(dw(Vk)) + = z:(«:hka)2

k_

Suppose that X, (¢, z) solves SDE:

X,(t,z) = z+Z/ Vie(u, X, (4,z)) 0 dfi(u) +/ V (4, X, (y, )) du.



214 ACTA MATHEMETICAE APPLICATAE SINICA Vol.7

Regarding ;(.(t, z) and V (u, X,(u,z)) as X,(t,z) and Vo(u, X,(u,z)) as in Section 5, we
can define A, (¢, z) in a similar way.
For the hypoellipticity of L, we have
Theorem 7.1. If there exists a function p: Dy U D2 — (0, 00), such that
A7t 2)llLe(a) S Mpp~'(s,t), Vz€RMN; V(s,t)€DiUDy; Vp21

where M, € (0,00), D; and D, are given in Section 5, then L + c is a hypoelliptic operator.
Proof. For T € B(RYN), set

t
¢p(s,z,t,T) = EP [exp (/ é(u, X, (u, z))du) , X,(t,z) € I‘] .
By Theorem 5.2, we know that there exists a function

¢ e et bo((0,T) x RN x [0,T] x RY),

such that . )
¢P(s,z,t,dy) = °p(s,z,t,y)dy.
Moreover b
3P, .
__av:L(’El = —(L+8) %R, .p(z), VeeCP(RY).
Let

W(u) = / e Pyrp(2) $Pytit-u)st(z)dz, s<u<u<t; yeCP(RY),

then
dW(u) =0
du )
Therefore
W(s) = W(t).

That means

Bubly) = [ $(6) *5(s,2,8,9) s
For any ¢ € C°(R¥), we have

lim *psp(z) = p(z), Vze€RY,

Aim %p,00(y) = o(y), yeRY,

meanwhile .
158321' l °ﬁa.u‘P"C;‘(RN) < Cn"P”C:(RN),

e I ¥8s,uellcpry) < callelicpan)-

Some results in Section 5 are used here. In order to apply [7,Theorem 8.6], we need to prove
that

d Cﬁ(sc,ltz, ty) _ (L +8), %B(s, =, t, ). (7.1)
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Actually, from (5.2), we get

d éﬁ'1t¢(z) =

" pot(L+c)p(z), Ve € CP(RY).

This means that

/ [i(szuz"'tj_y)‘ —(E+2) (s, 2,8, y)] o(y) dy = 0.

Hence, (7.1) is true. By the discussions in Section 5, we also know that

B ¢s
max sup sup DGD (s, z ¢ y < oo.
|a|+|ﬂ|5n ,SgST Iy—zlz‘l z "y ( )Ly by )l

Replacing g(t, z,y) in [7,Theorem 8.6] by °5(s, z,t,y), we see that L + c is a hypoelliptic

operator. 1
Corollary 7.1.  Suppose that there exist ¥ € Cs([0,T] x RY) (8 > 3) and non-

negative function h satisfying the hypotheses in Theorem 6.1 such that for some L > 1,

Vi(t,z) > ho(t,z), Yz € RN; Vtel[sT),

where Vi (t,z) is defined in Section 5. Moreover, there exists an open set W in RV, such
that
o) (¥)(tz) 2 1, Vz €W, Vt € [s, T).

Then, for any ¢ € Cy([0,T] x RN), °L = %E:m V2 + Vo + ¢ is a hypoelliptic operator on
W. In particular, if

Lie(Vi(s,z), - Va(s,z)) = RV, Vse[o,t], Vze RV, (7.2)

then °L is a hypoelliptic operator, where Vq, - - - , V; satisfy the hypotheses given in Section
5.
Proof. For any point z° € W, if there exist € > 0 and a hypoelliptic operator Lon RV,
such that °L is equal to L on C°(B(z%,¢)), then ©L possesses the hypoellipticity on W.
For any fixed point z° € W, there is a positive constant € with B(z°, 4¢) cC W. Choose
n1 € C§° (B(z°,2¢)) so that n; = 1 on B(20,¢) and n, € C$°(B(z°, 3¢)) so that n; = 1 on
B(z9, 2¢). Set

Vi(s,z) = n2(z)Vi(s,2), 0<k<d
Vurils,2) = (1= ma) 3y 1IN,
(s, z) = ni(z)c(s, z).

Similarly, we can define V (s, z), &(2“(3, z) and A, (t, z). Moreover, on B(z°,2¢) we have

VL(S!I) 2 VL(saz); &(ZL)('»I’)("’I) 2 U(ZL)(¢)(3: z))

on B(z°,2¢)°,

Vi(s,z) > Vl(s,z) > 1.
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Without loss of generality, we assume A < 1. Then
Vi(s,z) > ho(s,z), Vze€ RY;, selo,T)

Meanwhile, on B(z°,2¢)
5(L)(¢)(31 :) 21

In view of the discussion in Section 6, we know that there is an M,(p) € (0, o0) for every
p > 1 and p > 0 such that

1At 2) e (o) < Mp(p)(t—8)7°, t > s.

By Theorem 7.1, we know that

N
Z+Vo+é

0
(1]

il
ST
x -9
1 +

-

is hypoelliptic. Note that °L =¢ [ on C§°(B(z° ¢€)), °L is also hypoelliptic.

In particular, noting that Vy(s, z),- - - , Vu(s, z) are f-Holder continuous with respect to
s for B > -;-, we easily know that there is a constant L > 1 with Vi (s,z) > ¢ > 0 for any
(s,z) €[0,T] x RN if (7.2) is satisfied. Choosing h = ¢, by the above discussion, it is easily
to see that °L is hypoelliptic. ]
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