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Dirichlet Forms and Symmetrizable Jump Processes

Chen Mufa
(Dept, of Math., Beijing Normal University)

0 .Introducticn

The initial idea of this psner coiues from the study of large devia-
tions, Let F be & countable set, Q=(g,,) be a regular Q-matrix which is
symmetrizabie with respect to (7,>>0; i€ E), In our previous paper [6],
we have proved

0.1) I(w =—;—2[\/17§T,‘V #5951

$0d

for all probability measure u satisfying 2y,q,<oo, But we do not know
4

whether the above expression holds or not if >,ug, =, On the other
&

hand, from Donsker and Varadhan [9] and Stroock [15], it is known
that

(0.2) I(p)=D($,d)y $=p/7y i€EE

where D is the Dirichlet form determined by the process (P, (#)), This
leads us to study the Dirichlet forms for jump processes,

Next, from a recent paper; Carlen, Kusuoka and Stroock [3] (who
will refer you to Bakry and Emery [1], Davies [8] and Varopoulos [16,
171), it becomes clear that the Dirichlet forms are powerful tools in the
study of uniform decay estimates on the symmetric semigroups, In order
to use the general theory to our special case, we also need some concrete
understanding about the Dirichlet forms for jump processes, .

Because the theory of Dirichlet forms has been a good deal of resear—
ch (see Fukushima [10] and Silverstein [14]), one may think that our
special case is well understood, However, some new information has ap—
peared, For example,we prove in the sections 1 and 3 that our basic Di-
richlet form is the maximum in the case the Q-matrix being conservative
(Definition (1,6)).This is not the general case since the maximum exten-
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sion—Krein extension is so large that it is sometimes even not sub-Mar-
kovian (see [10]). It is more surprising that the Krein extension is so-
metimes not large enough since there are some Dirichlet forms with larger
domain than the Krein’s,

In practice, the most important case is that there exists only one
Dirichlet form for the given symmetric Q-matrix on L*(x), For this, we
present some uniqueness criteria in section 4. The proofs givza there are
quite technical and depending heavily on our previous works.

We study in this paper tks Divickiet forms for jump processes with
general state space which is uot necessarily countable. Once the picture
of Dirichiet forms {nr jump processes becomes clear, it is not difficult to
answer the question mentioned at the beginning. For example, we prove
in section 5 that

D(¢,¢) =—1—-2[\/m“\/m 12, ¢,=E
255 T
for all u. This seems the first completely explicit result on the rate fun-

ction of large deviations for a kind of Markov processes,
1.Basic Dirichlet Form for Symmetrizable
Jump Processes
Let (E,®) be a separable measurable space with the property that
all the singletons {x} (x €E)belong to &.Let P(t,x,dy) (=0, xEE) be

a sub-Markovian transition function on (E,&). It is called a jump process
if

(1.1 li‘mP(t,x,A) =P0,x,A) =1,(x)

{0
for all x€EE and A€#. Then it is known that the limits
1.2) 1i:nl“P“;"' 2D =g (x) <+ 0

140
exist for all x€F and the limits
1.3 li:11£(—t’%’—"4i—)sq(x,A)

$440

exist, for all x¢ AE P, where
(1.4) #={A€Z; l‘ifxz 51'1?[1 - P{,x,{x})]1=0}

Furthermore, if we define g(x,4) =q(x,A-{x}), then we have
(i) For every AE®, q(s) and g(+,A4) areZ-measurable,
(1.5)
(ii) For every x€E,q(x,+)is a finite measure on .ﬂangl q(x,A)ﬁq_(x),



®—M BiAK#:: DirichletRMeRHRNIRE 85

xCE, Ac®,

In the case that g(x) <+, g(x,+) can be extended to & as a finite
measure, This leads us to the following

Definition1.6 A family of functions q(x) —q(x,dy) is called a g-pair
if the properties in(1.4)replacing # by & hold and q(x,{x}) =0 for all x
€E. We call x stable if g(x) <o, and we call g(x) —g(x,dy) totally sta-
ble if each x is stable, Similarly we can define instantaneous point and
instantaneous g-pair, Finally, x€E is called a conszrvalize point if g(x,
E) =q(x), and q(x) -g(x,dy) is called covservative if eack x is conserva-
tive, '

Definitioi1,.7 (iiven a g-pair q(x) ~g(x,dy), a jump process P(t,x,
dy) (=0, x€E) is called a g-process if

1.1‘n:EP(f,x,A) I.(x)]/t=q(x,A) —qx) ] (%)

for all x€E and AE.Q’, where & is defined by (1.4). The process is ca-
lled symmetrizable if there exists a o-finite measure a« on (E,&) such

that § 2(dx) P(t,%,B) = Ln(dx)P(t,x,A)
A

for all 1<0, and 4,BEF. Then we have | o(x,Byn(dx) = | gtx, 4) n(d)
A

for all A,BE®, In this case, the g-pair q(x) ~q(x,dy) is called symme-
trizable, and the measure # is called a symmetrizing measure for the g¢-
process or the g-pair, A
In the case that E is countable, one uses traditionally Q-matrix Q=
(qiy) and Q-process instead of the terms g-pair and g-process respectively,
For a given g-pair, the symmetrizing measures may not be unique,
From now on we will fix the g-pair g¢(x)-g(x,dy) and a symmetrizing
measure n, Also, we will consider the totally stable case only in this pa-
per, DR
Lemmal,8 Let P(f,x,dy) be a symmetrizable g-process,define P, f(x)

=IP(t,x,dy)_f(y) for all bounded g-measurable functions, Then {P,} can

be extended to L*(x) as a strongly continuous, contractive, self-adjoint
and sub-Markovian semigroup, _ v V

Proof, What we néed to check is the ‘strongly continuous,By the ju-
mp condxtxon (1.1), we have ‘

W12~ fll3 = [mdx) ([P(f,x-dy)f(y)-f(x)) |

=fsants@a- pestan - [ Padn o




86 % * E 3 H L7

<2l (dx) f(x)2(1 - P(t,x, {x}))?

5
+z[n<dx> (L_(S)P(f,x,dy)f(y) )2
<z§u(dx>f(x>z(1 ~ Py, {21))

+2fatdn st Pl ft

=4Sn(dx)f(x)*(‘1 = Pliyn,{x}))—~0, astig,

In the last stey hul one we have used the symmetry of P(#,x,dy).
Q. E. D,

We will also denote the above extension by {P,} itself. By virtue of
the lemma, a g-process determines uniquely a Dirichlet form on L2*(m)
(cf. [2] and [10]). Since the symmetrizable g-processes are not unique in
general for a given symmetrizable g-pair, the corresponding Dirichlet
forms are not unique, In this sense,our previous work on the constructi-
ons of symmetrizable g-processes is just the constructions of Dirichlet
forms (cf. [51). We prove in this paper that among the Dirichlet forms
there is only one which is completely explicit, This is the reason why we
call it the basic Dirichlet form,

First of all, it should be no surprise to write' down the symmetric

form on L*(x),
D*(f,g) = %gn(dx)q(x,dy) (F(3) = F()) (gl = g(x))

1.9
+ gn(dx)d(x)f(x)g(x)

2(D*) ={f€L*(n): D*(f,f)<oo}
where d(x) =q(x) —q(x,E)=0 (x&E), For simplicity, we set
m,(dx,dy) =n(dx)q(x,dy), wy(dx) =an(dx)d(x).
Lemmal.10 The measures x, and @, are o-finite, Moreover, =, is

symmetric,

Sn’,(dx,dy)f(x,y) = Sa, (dx,dy) f(y,%)

for all fE(&x&)* and all & x #-measurable and x ~integrable functions,
Proof, Since & is o~finite and ¢(x,E) +d(x) =q(x) < + o0 for all xE€E,
the first assertion follows immediately, The second one follows from the

symmetry of the g~pair and the monotone class theorem, Q.E. D,
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Lemmal.11 D* defined by (1.9) is a Dirichlet form,

Proof, The proof of this lemma is standard (cf,[10;example 1,2.41),
For example, to show the denseness, let fEL%*(7). Without loss of ge-
nerality, we may and will assume that |f|<<oo everywhere. Choose {B,}]1
c#& such that

7(Ba) < and K, =sup{q(x) V|fx)|s xEB,}<o,
Then f,,=fI,,—~f in L*(x) and by Lemma (10), we have

D*(frrfa) = -;—Sn (dxydy) (Fu(y) = fuln))?+ Sn’,(a’x) IRCY
<.’£'rn',(dx vdy) Fa ()2 F 'u,,(dx) fu(2)?
IKE )

<

By

- zS 2(dx)q(x) f (x)*<2K3x(B,) <o,
B-

n(dx) (q(x,E) +d(x)) f(x)?

Therefore, F(D*) fu—f in L*(x). Q.E.D,

Since the one-to-one corresponding between the Dirichlet forms and
the semi-groups, the Dirichlet form D* determines uniquely a strongly
continuous, contractive, self~adjoint and sub~Markovian semi-group {P%}.
A remaining question is whether it is a g-process or not, The answer
is affirmative, To show this, we need more work,

A basic fact in the study of g-processes is that the P(f,x,dy) and its
Laplace transform

PQh,x,dy) = S:e‘“P(t,x,dy)dt, A>0

are determined by each other, Now, the condition
li‘rgx[P(t,x,A)—IA(x)]/t=q(x,A) ~q(x)I (%) ,xEE, ACE®

is equivalent to

liEA[AP(A,x,A) -I,)]1=q(x,4,) —qx)] (%), xEE, AER.

The set # appeared above is not very convenient, but it is not difficult
to prove that each of the above two conditions is equivalent to
(1.12) li'm?»[AP(l,x,A) =T,(x)]

Adw

. =q(x,A) - q(x)] (%), xEE, ACENE, n>1.
where E.={x€E; q(x)<n}, n=1, For details, see [5].
Definition 1,13 The following equations

B), P(O\,x, A =S"’-‘M31LP>\, A+—L
(B); P(A,x, A A+ (o) ( v, A AT g(n) ()
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(F): PO\,x,4) =§P(A,x,dy)f§‘f;f§; +§x+;(x) L0, \>0, x€E, A€®
“are called the backward and the forward Kolomogorov equations respe-
ctively,

Remark 1,14 It is known (cf, [5]) that if the g-pair is conserva—
tive,then the equation (B) holds., If the equation (B) (or (F)) holds, then
(1.12) holds for all A€g and x€E, Moreover, in the symiucirizable ca-
se, the two equations are m-equivalent, That is, for example, if (B) ho-
lds, then there exists a set NEg&, such that x{N) =9 and (F) holds for
all A>0, ACZ and x¢ IV, |

Now, we can return to our main context, Note that when we are
concerned with L®-theory, we only consider the equivalent classes, He-~
nce we should replace “x€E” in (1.1) and (1.12) with “x¢ N” for a =~
null set NV, As well known, in general,it is not easy to construct a ver-
sion of resolvent having kernel from a given resolvent, Usually we need
some topology on the state -space (E,#)., For example,locally compact-
ness, In which case we will have at least one such kernel,but may not
be unique, About this problem, some deep results are due to Fukushima
[20] and [21] (also see [14; sections 1-4 and 19-201). But we would not
go to this direction and leave it as an assumption, there exists a resolvent
having kernel P*(A,x,dy) such that

(1.14) SP*(X,x,dy)f(y)= $f(x), n-a.e., FEL™(m)

Also, we may assume that g¢(x,+)<n, x€E. For Markov chains, these
assumptions are fulfilled since we can restrict ourselves to the case that
7,>0, i€E. Thus, in the following we will use these assumptions and
use the version of P} given by the left hand side of (1,14) without fu-
rther restate,

Lemma 1.15 The Dirichlet form D* determines a g-process P*(A,x,
dy). '

Proof, By the construction of resolvent {P$} from the Dirichlet form
D*, we have
(1.16) D*(P3f,9) + MNP ,9) = (fs9), fFEL*(R), g€ED(D*),

We now need to prove that {P3} is indeed a g-process, From now
on, we will often use the following notation,
(1.17) #3E,} Ey n(E,) <%, sup{g(x): x€E.}<n.
Now we fix f=I, and let gEL*(q(x) #(dx)), Then g€P(D*) and it fo~
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llows that
D*(f,g) = §u.(dx,dy) (F(») = f(2)) (g(p) - gla)) + Sﬂ.(dx)f(x) g(x)

= gﬂ(dx)g(x) Lg(x) f(x) - Sq(x,dy)f(y)].

By (1.16), we have
sﬂ(dx)g(x) A+ gxX))P f(x) = ju(dx)g(x)[gq(x,dy) Pyix)y+ f()].

By the monotone class theorem, *his equality holds fer ail g€L(m)".
Combining this fact and {2; Theorsm (1,1i)], we arrive at; for each A€
ENE,, n==1,

P31 ,=0, AP1<]

(1.18) . =sg(‘9d.}’) PeI 1 7
. PiL, A+g(s) »4(y) A+qg(e) *

hold almost everywhere, The exceptinal set depends on A and A, Since
(E,®) is separable, we can choose the exceptional set depends on A only,
On the other hand, the stronglyvcontinuous means that {P}} determined
by a dense set of A>0, hence the exceptional set can be choosen so that
it is also independent of A>0, Now, denote the n—null set by N. Then
(1.18) holds for all x@¢& N. Letting A>o0 in the equation in (1,18) we see
that (1.1) holds for all x¢ N, Then using the equation again, it is easy
to check that (1.12) also holds for all x¢ N,
This completes our proof, Q. E.D.

Put ' ‘
(1.19) F={fEL"(x)y In such that {xEE; f(x)*0}CE,}.
Indeed, we have proved the following result;

Lemma 1,20 Let P(?»,x,(ly) be a symmetric g-process on L?(x),Then
P(A,x,dy) satisfies (B) if and only if
(1.21) Di(Pif,g) =D*(Psf,g) + M(Pif,9) = (f,9), fELX®), gE .

Now, we have in mind a symmetric g-process P*(\,x,dy) determined
by the Dirichlet form D*, On the other hand, it is well-known in the
study of g-processes that there exists the minimal g-process for a given
g-pair which can be obtained by the following procedure. Let

PO\ ,x,A4)=0, A\>0, xEE, AEC®

P('+‘) A, ,A =Sg—(x,dy) *) )\ ——1 >

x€E, AC®
then P™ (A,x,A4) } P*'*(A,x,A)y as n}
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and P*"*(A,x,dy) is a g-process which is the minimal one in the follo~
wing sense; for any g-process P(\,x,dy), we have

(1.22) P(h,x, A)=P™"(A,x,4A), A>0, xC€CE, A€¢,

It is also known that the given g-pair g(x)—q(x,dy) is symmetrizable
with respect to & if and only if so does the minimal g-process, Hence we
indeed have two existence results for the symmetric g-processes on L3(x),
Since this fact ene may guess that the Dirichlet form D™ corresponding
to the g-process P™*(A,x,dy) coincides with D*, On tke other hand,
because the domain of D¥* is so large, one may guess that D¥* is the ma—
ximum, However. there nsually does pot exist the maximal Dirichlet fo-
rm (cf. [100). Ta the following we will show that the answer to the fir-
st guess is negative, the answer to the second guess is affirmative in the

conservative case and is probably negative in the nom-conservative case,

Example 1.23 Take E={0,1,2,} and g, =0 for all i+j, El/q,<
o, Then PP™(A) =4,,/(A+gq,). It is easy to check that

A
P (}\) = min(}‘) + Q(
v A+g)(A+q)/ §ih+q

is also a Q-process, Moreover, the later is honest(i,e,,hz’;P.,()\) =1,i €E)
and symmetrizable with respect to the measure m,=1/q, only, Next
L) = {f: Smfi= Zf%/q,<oo}
D*(f, )= Zmd,f? = Z = f}

(D% = {f: Zf%<oo}.

Since Deir(f,H = lzi?}_h(f" APTRELD)
=1 2
ILEZA +Q4f‘

’we have D™* =D* and 2(D*'") =2(D%),
On the other hand,

D(f, f)—hme AP.f, f)—lzm-—En.P,,(?x)(f, fo)?

LX)

— e ————————————— 2
“lim -3 3 (7»+q.)(?\+q,) & /Eﬂq.

Ate 2 5T i

Let f€2(D*), then
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Z (f:"‘fz)/z—‘—_

A"'Qutu A+ g

= thz Z

e TA+ gim At gy /z}""‘h

<211mz-—— sz

At

D(f,f)<11m2

Thus, (D*)c2(D). But 1€2(D), 1¢2(D%) and so F(D*)x3(D),

This example shows that the Dirichlet form D* is not ithe maximum
in general,

Theorem 1,25 D* is the maximal Dirichlet form among the symmetric
g-processes which satisfy the Koimogorov equation (B), In other words,
~if P(A,x,dy) is a symmetric g-process satisfying (B), denote by D its
Dirichlet form, then we have
(1.26) D(f,/y=D*(f,
for all fca(D)co(D*). In particular, D™'*(f,/)=D*(f,f)
for all fEP(D™'*)c2(D*).

Proof, Since P™'*(A,x,dy) is the minimal solution to (B), it certainly
satisfies (B), Combining the above lemmas we now need only to prove
(1.26).

Let P(A,x,dy) be a symmetric g-process and satisfy (B), By [5;
Theorem (1,2.25)], it follows that

{ifnjh[AP(A,x,A)—IA(x)]=q(x,A) -q(x),(x), x€EE, ACZ,

Moreover, by [5; Theorem (7.4.14)], we have
{ifmk[l-—?»P(A,x,E)]=d(x), x€E,

On the other hand,
MNP\ ,x,A-{x}) <A1 =AP(A,x,{x}))
<A /(A +q(x))<q(x), xEE,
By the dominated convergence theorem, we get

)
W{, 20 POLx,A- (2)—, w0, H<nn(E,) <eo

for all n, Using the above facts and [5; Theorem (1.2.24)], we obtain
D(f, ) =£if§7~(f- APsf, )

79 2
=lim %jﬂ(dx) L_ (”P(A,x,dy)(f(y) - f(x))?

atw

# w1~ AP(A,x,E)Jf(xV]

e
>tin[f, a0 [, POzdy) (030 - fy®
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+Ajn<dx>t1 - AP(A,x,E)IIf(x)‘]

>L 2(dx) jqu,dy) () = FG,

The conclusion is now followed by letting n—»co, Q.E D,
Now, we have answered the questions mentioned above, In section 3,
we will give a more complete picture for the Dirichlet forms,

2. Constructions of tke Dirichlet Ferms

As we already weutioned in the previous section that the coanstructi-
on of symmetrizable g-processes is the same as the construction of Diri-
chlet forms.What has already been done is the case that the non—conser-
vative points are finite and the exist boundary consists of finite points,
The work is based on the Feller boundary and the Martin boundary theo-
ry, and it would be too much to rewrite the Dirichlet forms according
to our constructions, Here we only consider a simple case,

Definition 2,1 Let dim(#.) be the independent solutions to the fo-
llowing equation
2.2) {(A+q(x))u(x) = [q(x,dy)u(y) A>0

I=<u<l
It is known that dim (#,) is independent of A>0, The maximal solution
z(A,x) to (2.2) can be obtained in the following way; let x™(A,x) =1,
A>0, x€F

x"'“)(l.x)=s od) 2™ (A3 n=1, A>0, x€E
A+qg(x)

then 2™ (A,x) { E(A,x) as nt oo,

If the g-pair is conservative, then Z(A,x) is nothing but z(A,x) =1-
APR'®(A,x,E).

Theorem 2.3 Let g(x) - g(x,dy) be a symmetric g-pair on L*(x) and
dim(z:)<1. If dim(#,) =0 or dim(#Z.) =1 but [a(dx)z(A,x) =00 (which
is also independent of A>0), then there is precisely ome Dirichlet form,
De*=D* If dim(#.)=1 and [mx(dx)z(A,x)<<co, then there are infinite
Dirichlet forms which have the same representation,

o - pmin . (Afr(dx)z(A,x) f(x))*
(2,4) D(fsf)=D (f’f)+l,,l|n.1. ct Mtz )

with ¢=0. Moreover, if c,>c¢,>0, then
(2.5) D*'*(f,H=D"(f,H=D"(f,H=D*(f,))
for all fE2(D™'")c (D" H(D*)cP(D*),
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Proof, From our previous work (cf, [5]), it is known that in the
first case, there is only one symmetric g-process on L*(w), and that in

the second case, all of the g-processes have the representation;

P,(A,x,A) = Pnin(},x, A _,_z(A,x)jAn(dx)z(;”x)
oD D c+Afa(dx)z(A,x)

A>0, x€E, AC®.
From this, the theorem is a straightforward consequence, Q.E.D.
Remark 2.6 As we will see later ((3,1%)), for each fzz(D™'™),
the inequalities in (2.5) are indeced squsalities. That is

) RSP 2
@.7) liM.M_Af:z(_d.,wu.,.x)f(x)) =0

at=  [a(dx)z(A,x)
for all f&2(Dmin)  Thus,
2(Driny ={fc H(D*), (2.7) holds},
Example (2.8) Take E={0,1,.:.}, Qu«1=6>0, Gie-1=a,>0, ¢= = qu
= (g;+b,) with a,=0, Then Q=(g,,) is a birth-death Q-matrix and so
dim(#1:)<1. The Q-matriz is symmetrizable with respect to

w=1, = bobyineby G>1)
G;Gz'“Ch

and hence Theorem (2.3) is applicable to this case, However, for this

special case, if z(A,+)+#0, then Zn,z(k,i) =co if and only if Zn’.= oo,
[} $

3. Extension and Regularity

Having the previous results in mind,one can believe that the Dirichlet
form Dmin js- the minimum,

Theorem 3.1 Let P(A,x,dy) be any symmetric g-process on L*(x)
with Dirichlet form D, then we have
(3.2) FCI(Driryc g(D) and
(3.3 Dein(f,f)=D(f,f), fEF(Dminy*,

Proof, By the monotone class theorem and the minimal property (1,
22), it follows that

P, f=z2P f, t=0, f€L(x)*,

and (P,f,g)?(PT“‘f,g), =0, f’geLz(ﬂ)+.
Hence D(f,H= I‘ife(f— P.f,H/t

<lim(f- Ppiaf, f)/t=Dainc, f, fESDmn*,
Thus, we have proved (3.3) and @(D®i=)*c2(D)*,
Now (3.2) follows immediately because of the basic property for Dirichlet
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form,
feEaDy<=>fecaD), Q.E.D,

Remark 3.4 At the end of this section, we will show that we usually
can not use g(Dmin) instead of Z(Dmin)* in (3.2), In other words, omne
can not say that any Dirichlet form is an extension of the minimum in
the sense of [10; §2.31 (or see (3.7) below),

Now, we are going to prove that the Dirichlet form mir jis just the
Friedricks extension of ., which is defined by

2.1 () =Sq(x,dy)f(yff—q(x)f(x), xECE, fEX.

Since Q, is a well-defined, iinear, symmetric and non-positive definite
((82.f, <0, fE€E %) operator on L*(x), with the domain % being dense
in L%(%), the usual procedure will give us the smallest closed extension
D° of D*(f,g) = — (ofsq)s D(D°) = %. Denote by @, the generator cor-—
responding to D°, But we still need to show that D° is a Dirichlet form,
For this, it suffices to note that

D°(f,f)=D*(f,f)y, fED(D",

Definition 3.5 We say that a Dirichlet form D is regular if ¥ is
dense in 2(D) with D, norm,

Theorem 3.8 D°=Dmin and is regular,

Proof. We have just proved that D is a Dirichlet form and hence
the same proofs given in section 1 will give us a symmetric g-process on
L*(z). So by Theorem (3.1), we have @(D=in) co(b®), On the other
hand, D°=Dmi» on %, the minimum property of D° gives us Z(D)CI
(Dwin), Therefore, we have 2(D°) = (Dmin) and D°=Dmin, Q ,E D,

For Markov chains, this theorem was proved in [18],

Clearly, we obtain

Corollary 3.7 If a Dirichlet form D is an extension of Dwin,

Drin(f,fy=D(f, ), fE(Dm*)CD(D),
then it is regular if and only if D=D=i", In particular, D* is regular if
and only if D*=Dmin_ That is, there exists only one symmetric g—process
which satisfies the equation (B),

Corllary 3.8 If [z(dx)g(x)<<oo then there 's only one symmetric g-pro-
cess on L*(x) satisfying (B),

Proof, This result is proved in [5;5 Theorem (7.2.7)], but we would
like to give a new proof here, Since Z(D*)NL"(a) is dense in 2(D¥*)
with D? norm, we need only to prove that % is dense in I(D*) with D}
norm, Given fED(D*)NL™(x), set f,=fl,,, then by the dominated co-
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nvergence theorem, we have

5 sn',(dx,dy) Gy = Fal) = Fla) + fu())?
<}n,<dx;dy>[(f(y) ~ Fug 2+ (f(x) = fo(2))2]

Szin,(dx,dy) (f(x) ~ fu(x))—>0, as n—>o0,

and | ‘fzr,(dx)(f(m—f.(x))*—»o," 2s a0, Q.E.D.

Definition 3.8 Tae g-vrocesses satisiying the backward Kolmogorov
equation (B) are cailed B,-processés,

We are now at the position to complete our picture for the symmetric
B,~processes,

Theorem 3, 10 A symmetric g-process on L*(a) is an extension of
Pyin in the sense of (3.7) if and only if it is a B,~process, Furthermore,
for any symmetric B,~process on L*(x) with Dirichlet form D, wé have
(3.11) ycag(Dimycag(Dycs(D*)  and

@.a12) Duin(f,fy=D(f,H= D*(f,f) on @(Duin),

Proof, By Theorem (1,.25) and Theorem (3.1), it suffices to prove
the first assertion, But this is a straightforward consequence of Lemma
(1,20) and Theorem (3.6), Q.E.D,

" After finishing the discussions for Dmin, one may ask the relationship
between D* and the Krein ekxtension, It is known that the Krein exte-
nsion is so large that it is sometimes even not sub~Markovian (cf, [10s
Theorem 2.3.2]), But we would like to point out here that the Krein
extension is sometimes not large emough since there are some Dirichlet
forms with larger domain than the Krein’s, To show this, let us, return
to consider the example (1.23), In this case, it is easy to check that .,
={0} (see [105(2.3,5)] for the notation), hence Dmir=D*=D* (thé¢ Kre~
in extension), and so Q(D‘)SQ(D). The mean reason is that thé sy-

mmetric Q-process (P,,(A)) given in (1.23) does not satisfy the equation
(B). More precisely, the non-conservative part of the Martin boundary

‘is not considered by the Krein extension,

Can we find the maximum sub-Markovian extension'?
Recall the proof of Theorem (1.25), It is not difficult to show that for
any symmetric g-process P(A,x,dy) with Dirichlet form D, we have
Df, = liﬁl(f— AP D
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>—;—[n,,<dx,dy) (F(9) = F) =B f.

One might expect D as the maximum extension, However, if the given g~

pair is not conservative, D is not a Dirichlet form,

4. Uniqueness

It is usually the most interesting case that the giver symmetric g-pa~
ir q(x) — q(x,dy) on L*(x) determines a uznique Dirichlet form, Then D™'*
= [)* has the nice properfy—rngula:- and has an sxpiicit expression,

We have szea that if [n{dx)g(x)< oo, then the Dirichlet form is uni-
que ((3.8)). We have also seen a uniqueness criterion ((3,7)) for the
symmetric g—process satisfying the equation (B), It is a simple matter to
restate the criterion as follows, .

Corollary 4,1 Given a symmetric g-pair g(x)—-q(x,dy) on L*(x), The
Dirichlet form_ corresponding the symmetric B -processes is unique if and

only if .
(1) 1iﬁl?»2S1r (\dx)st‘"(ﬁ 2% AV (f(y) — f(x))*= Sn, (dx,dy)_‘(fs_)‘l) = f(x)?

i) tim ?\Sn(dx)tl —APmin(),x, E)]f(x)?= gm(dx)f(x)z

hold for all fFEZ(D*YNL”(x). .

Even though the above conditions are reasonable in the sense that
they depend only on the g~pair and the minimal g-process, But it is not
very easy to check in practice,

Oxn the other hand, as we have known from the last section, if we
consider only the extension of Dmizn, then a part of Dirichlet forms will
be lost, In the paper [11], Martingale approach is used to study the uni-
queness, Note that for this approach,the equation (F) is needed,and hence
we will have the same situation (see Remark (1.14)), From these points
-of view, it seems not easy to get a.uniqueness criterion in our context,
For these reasons and the later use we first restate here two results from

our previous work,

Of course, the uniqueness cr1ter1a [7] for general g-processes will gi-
ve us the sufﬁctent condmons for the symmetric case, Here, we prefer
to show some more practmal sufficient conditions,

Theorem 4.2 The following conditions are all sufficient for the uni=-
queness of g-processes,

(i) The g-pair g(x) - g(x,dy) is bounded, ie.,
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q(x) <C<oo for all x€E,
(ii) The g-pair q(x) qlx, dy) is conservatwe, there exists a function
¢=>q and a constant CER such that

4.3) [exsansn<craengm, xcE,

(iii) The g-pair q(x) — g(x,dy) is conservative, there exists a function
$=20, ‘a constant CER and a sequence {B,};C & such that

‘ B 1E sup q(x)<oo, Tim ind ¢(x) =00

IR e “‘“'
and (4.3) holds,,

For the precfs of (if) and (111), see [4]. The- followmg result is pr-
oved in [%; Theorem (7.6.2)].

Theorem 4.4 Let n be a probability measure, Then there exists pre-
cisely one symmetric g-process (equivaléntly, Dirichlet form) on L2(x) if
and only if the following conditions; (i) q(x) —g(x,dy) is symimetric on
L*(w); (ii) Z(A,#).=0, x—a.e.;. (iii) [w(dx)d(x) <o all hold,

In the case that & being a probability measure, we often call the pro~
cess (resp, g-pair) reversible, II n(E) =00, then the condition (i) is still
necessary, but not the conditions (ii). and (iii), We conclude this section
with an improvement of Theorem (4.4),

Theorem 4.5 There exists only one Dirichlet form on L2%(x) if the
following thr?e conditions all hold, ’

(i) g(x)-g(x,dy) is symmetric on L*(x),

(ii) #sNL'(x) ={0},

(i) inf{P™'*(\,x,E): xEH}>0 or In(dx)d(x)<°°,
where H={x€E; d(x)>0} which is the set of all non-conservative poi-
nts, : o -

Remark 4.5 It js~known-that the first condition in (iii) and dim (%)
are independent of 7\>0,’ We now prove that the comndition (ii) is also
independent of A>>0, To do this, let u(A) €%, and OQHu(M)H;:Ilu(lo)llt,:(.)
<Lco.for some A, >0, Define

ulu) =u(dy) + (A - ,u)P"‘“‘u(?» )s u>0 :
Then - wlu) €%~ {0} by {5 Lemma (2 5. 10)]. Moreover, by the symme-~
try, we obtain

1P3 ™t )lh jawx)fP“"(u,x, dy)j%‘#(”%um,z)
. +qly

=g,,<d’x>p ‘°1(x>j91"—"iﬂucx =3

PO

()
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= d u(?\o,x)s , |’nln
[ ¢ 0200 g0, P 1(5)

A

Hence HuCa) i <Nu Qo) Iy + [Ao = slllPR P u (W) ||/ u<co,

Proof of Theorem (4.5),

Let P(A,x,dy) be any symmetric g-process ca L*(m), By I5; Theorem
(7.4.16)], as a g-process, it must have the representation,

<u~1s n(dx)l(lﬂ_’x_)q(x,E)S”u(’w)”l/ﬂ-
+q(x)

P(Ayx,dy) = P2 " (A,x.d2v) + B(A,x,dy) + (EX(?.“,x,dy)F(k,y,dz), A>0, x€E

J

where X (A,.z,40) =3‘P"""(7L,x;dy)d(y) ‘and B, and F, having the propert-

ies, , ‘
(4.7) For every A>0 and x€E, AB(A,x,E)<1, AF(A,x,4)<1, F(A,x,E)
=0 if x¢ H; C
(4.8) . For every A>0 and A€&, AB(A,+,A) E¥ 3
4.9 The family {Fi: A>0} satisfies
F;,"'Fp+ (A—ﬂ)F;P}.‘“-ﬂ- (A-[l)F;X,.F,‘—"‘O, l,#>0, .
(4.10) timt X000 dF A9, 4

=limA X Fail, =0, A€cZNE,, n=>1.

A-ven

Finally, P, satisfies the equation (B) if and only if Fi=0,
Suppose that B;%0, Then there exist a 4,>>0 and an n=>1 such that

o<§ﬂ(dx)B(}¥o,x,E')ggﬂ(dx)P(AO’x,Eu)

- S' 2(dx) POy B S (E,) /Ao <0,

This is impossible since (4,8) and the condition (ii),

Now, we have P,=P2'*+ X, F;
In the case that [x(dx)d(x)<co, the same proof of Theorem (4.4) (c.f,
[5]) will give us the conclusion, Hence, we need oaly to consider the
case that {inf P™'*1(x). xEH}>0,
By (4.9), we have Fa+ (A=) FsPR'*=F,+ (u-ANF:X,F,>20, p=A,

Hence AF =1 =AW Falp(uP'* = D], p=A,
Let u—~>0, we get AFsl,=—~FQI, A\>0, A€¥
where 2f¢x) =g, d) f(9) - g0 f(),  EL (), Thus,
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- SF(l,x,dy)[(?» + g () ~ §(y, A)I>0.

By [5; Lemma (3.3.1)], it follows that F,=U,P?'*, A>0, Set -
(4.12) V5=F;_U;,P:lln>0, 7&>0.
Then we obtain, for each x,EE, that

SV(A,xo,dy).QL(y) =0, A>0, ACZNE,, n>1.

That is

(4.13) V(A ytoc ) = (ﬁ”(?\,xo,c,’y)g-(—&’-‘@, A>0, ACZ
. A+q(y)

by the monotone vlass theorem, On the other hand, by the symmetry,n(A4)
=0 implies that

0=-L:r(dx)P(A,x,E) = Sn(dx)P(A,x,A)

v

a(dx) {Pﬂ B ux,dy) (N F Ay, 4)

: >jn(dx)P“"“('A,x',{x})d(x)F(A,x,A)
=

x(dx) P™ (A% x})d(x)V (A,2,4), A>0,

This shows that for albe., out of a m-null subset of H, say H, we have
. V(A,xo")«ﬂ', 7\->0'

Define V(A y2xy%) =M'—l(:x).
dn
Then jn(de(A y%002) =V (A, 20, EVSF (A y 20, E) <1/M,

gnd so by (4,13), we have.

[ VA y20) 5 (d) = V(A 20, A) = Iu(dy)V(A,xo,y)g—(M
y | . Ara(y

q(y)

That is V(A:xoix)='£g£’—"d—y)V(7uxo,y), A>0, m—a,e(x).
A+g(x)

Combining the above facts with the conditions (ii), we see that
V(A’xo,E) _=09 xoéHo,. 7\>0,

= I‘ﬂ(dy)j%&@-V(A,xo,Z)Q ' A>o, -A ES’

Note that

[ wdn [P dnd N Inovdug, B
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<(P“"“dI,,,V‘1)<(P““dI,,,F 1)<(P"“'°dI,,, /A
—(I,,,dP‘“‘“l)/A 0, A€, A>0,

We arrive at -
(4.14) P, = Ppning poisg(y, pain
Now, we start to use the condition

C\) =inf{P*'*1(x); xEH}>0,

Since 1=AF,1=AU,P>'"12C(MAU,1
we have . AUA<T(M) Y, 7\‘>0
and so Py, L ouClpd ll>0.,

Also, by [5s Theorem('],4.l)], we have
[P0 zdndn<1,0>0, x€E.

We have got everything we need, the next step i’s\cdp,yg_iifg" the proof of
our uniqueness theorem for general g-process (cf [5; pages 130—132)),
QE.D. R . S

Remark (4.15) The condition (ii) is quite general, which also shows
that in the study of symmetrizable g~processes, the usual exit boundary
%, is too large, The natural one should be #,NL'(#), This boundary the-
ory needs further study in order to get a complete picture of the theory

The first condition in (iii) is the main condition to control the non<
conservative part of the boundary [5,7,12,19], It is still stromger since
our example (1.23) can no} be completely covered by this condition, A
more natural condition should use the measure # and is still unknown,

5. Application to Large Deviations-

As usual, we assume that (E,#) is a Polish space in Jthe study of la-
rge deviations, Also, we restrict ourselves to the processes which have
right continuous path having left limits at every #€(0,00), Hence, we
assume that the given g-pair is symmetric on L*(w) and regular, That is,
the g~pair is conservative and determines uniquely a g-process,

Now, we can answer completely a question mentioned in [6; Remark
91 ~ B ._ L

Theorem (5.1) Let g(x) —q(x,dy) be a regular symmetric g-pair on
L* (&), Suppose that there exist a o~finite measure A and an & X #-meas~
urable function g(x,y) such that o .

g(x,dy) = q(x,3)Mdy), x,y€EE
and a(e) = dn-/dl>0, a.s.(A), Then we have



3 BiAs: Dirichlet BMWEHRIE ‘ 101

ros, - if petm,
- du d :
(6.2) I(w= ’;‘s L[ gl;‘(x)q(x,y)—\/ﬁ(y)q(y,x)j A(dx)A(dy),
‘l 1]
if uknm, .

where E°={x€E; q(x)>0}. o _ ‘
Proof, By Theorem (3.16), [6] and [15; Theorem (7.44)1, we may
assume that y<w and compute; '

+

du  [du] 1 da r

D*[ dn’ \/.d:z] J( ‘d"""’)l\,"‘ () - \dr )J
_1 dp [‘/ E7R ‘/ ( )]
=3 A(dx)s Ady) gy (D) glxs ) y x

. 1 d
=~2— [‘/dx(“)q(”"y) gﬁi(y)q(y,x)] Mdx)Ady) ,

Q. E D,
Corollary (5.3) Let Q=(g,,) be a regular Q-matrix, symmetrizable with

respect to {#,>0; i EE}, then for every probability measure u, we have

(5.4) ' Iw= %‘E E\/ﬂc Qus— N 8,907
44

6.’ 'Abplicé,tion to Decay Estimates

Let us begin this section with comparing two kinds of decay estima-—
tes for Markov chains, The first one was studied by Kingmann [13] a lo~
ng time ago, He proved that for an <irreducible Markov chain (P, (#)),
the limit . |

(6.1) t“logP,,(t)—»‘— v, as {—»oo
always exists and
(6.2) . K 0<v<1nfq,

If v>0, we call the cham (P,,(t)) exponential decay, Now, let (P, (¢))
be symmetric on L*(x), if there exist constant C<co and v>0 such that
(6.3) s‘uPP.,(‘At)/vr,<C =% >0

we call the chain (P,,(#)) uniform decay, This concept was introduced by
Varopoulos [16,17] recently
* Since

s‘uPP;,(i' +5) /zi, =sup EP..(t)/n,,P,. (s
1] \ - ) ’ . M

<5'“.PP0 )/ SI;PZP;.(S) <$.u.PPu“(f)/’rn
R N e o
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su})P,,(t)/n, is decreasing as t increases, Hence, the estimate in (6.3) is
asking for the polynomial decay parameter, ‘

It is believable that the exponential decay is stronger than the poly-
nomial decay, But it is not always true since the measure (7;) appeared
in (6.3), For example take q;=1 for all i€E in (1.23), then the Q-pro-
cess is unique since the Q-matrix is bounded'(

Also P,(1) =8,e™ =0, i, jEE
and so (6.1) holds with v=1, However, i we take (x,) having the pro-
perty; infz, =0, then (8,3 ic false,

Rem;trk €.4) lu the case that (P, (#)) being irreducible and positive
recurrent, weo have hm P,#) =n,>0 independent of iCFE, Then the es-
timates in (6.1) and (6 3) have no meaning, This is just the main case
which large deviations deal with,

‘ Let us consider the uniform decay, In order to get (6.3), or equiva-
lently,
s‘u,pt'P(‘}'“(f)/zr,<C, >0,

we usually proceed as follows, First prove that for each fix j€E, {t'Pj3'"
(#);: i€E} is the minimal solution to
x, (1) = Zq.,s e~ B¢y (s)ds+6,,e” "t [m, tEE
L 5 X1
then use the comparison theorem, But this time the above ~approach is not
useful, Hence we need a different method, In the symmetrizable case, the
Dirichlet forms are very useful tools,
St |Ifll, =|[/lluscer and denote |Kll,, =sup{[K Al FEX

with [|f]|, =1} for an operator K defined on %,

Theorem (6.5) Let P(#, x, dy) be a symmetric g-process on L*(x)
with Dirichlet form D, and UE(O o), §€[0,00) be given, If
(6.6) A12+*<ALD(f, P +BlIAINAIL" FEL )
for some AE (0,00); then there is a BE(0,00) which depends only on v
and A4 such that
(6.7) |1P,|l e <<Be®* /%2, >0,

Conversely, if (6.7) holds for some B, then (6.6) holds for an A depe-
nding only on B and v, .

This theorem is restated from [3] except we allow the (P,) to be sub~
Markovian, In which case, the (P, is usually transient and often has
uniform decay, The most results in [8] are still correct and the proofs
given there need only a slight modification,

A lot of interesting results are presented in [2], [3] and [17], They



%—m BiARE: Dirichlet ZVRTRIEFRBEIR 103

can apply to our case directly,
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