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Abstract

Donsker—Varadhan’s large deviation theory is applied to Markov chains with continuous
parameter and countable state space. Since the lower estimate given by Donsker and Varadhan ([5;
part 4] is generai enough in our context, we study orly the upper estimate, and make the conditions
for the estimate explicit.

§ 1. Introduction

Throughout this paper, we take E={0, 1, 2.---} as our state spane. Suppose that

we are given a totally stable conservsiive @-mairix Q:==(¢;: 4, j€EE) (i.e., 0

qu<00, bk j, > giy=¢;= — 24<<00, ¢< ), which deterinines uniquely a jump process
[Ex .

(more precissiy, its transision provabiiity funetion) P (¢) = (Py(): 4, jEE), t=0,
Srok Q-matrix is called regular.

Jarious necessary and sufficient conditions on the Q-matrix for the ahove
uniqueness assumption to hold have been obtained and can be found eleswhere (see
Hou™®, Chen and Zheng **, Yan and Chen %%),

The problem we are interested is when the upper and lower estimates of large
deviation hold for the P (¢) determined by the Q-matrix Q= (g;). The answer to
the lower egtimate given by Donsker and Varadhan [b; part 4] is very geheral. For
the upper estimate, their hypotheses are described in terms of the infinitesimal
generator of the Markov prooess. Unfortunately, the domain of an infinitesimal
generator is usually hard to figure out exactly even for Markov chains, so the
pioture for the upper estimate is gtill not very clear yet,

Our digcuggions are divided in the following two parts:

Case(I) There are some absorbing states, i.e. , ¢;=0 for some 4 € E;

Case(II) There are no absorbing states, )

For the first case, we use the theory of the minimal nonnegative solutions and
coupling technique; for the second, we use martingale approach, Either of the
method ig different to the traditional one, Our starting poinb is a result obtained
by Stroock [9; Theorem (8.12)]. The main results of this paper are organized by
Th orem 2.10, 2.11 and 3.1--3.6.

* Received Sep. 4, 1985. This work is supported in part by NSFC and the Foundation of Zhongshan.
University, Advanced Research Centre.
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§ 2. Case (D)
Definition 2.1. We call
@4>2 Oux, o
- ® iCE @
w>d;,

a constrained system of homogenous nonnegative linear inequalities (abbr. a
constrained system) if

0o +00, O<dix+0,° 4, kEH 2)
and

oud=>d, $€H. 3

Definition 2.2. We call {z}: € E} (may be valued +oo) the minimal (non-
negative) solution to the constrained system (1), if {z{: ¢€ E} is a solution to (1)
and for any golution {w;: 4C€ H} of (1), we have

a;: <a;¢, @ E E .
. By induotion, it i3 elementary to prove the following thres resulis (of. Hou
and Guo ™): »

Theorem 2.8. The minimal soluticn w the ccostrained systamn (1) exists uni-
quely. Indeed, it can be obtrined in the following way: set

) mgm e=dy 1S ¥ y
w,‘"+1>=§ oz, € E, 00,
then
o™ 1], ¢ECEH.
Theorem 2.4. Let {z;: ¢C.E} be a solution to

= Callsy
- $E B, @
yi=>d;,
where (d, ¢) satisfies the conditions (2); (8) and
L n<Cay, *h<d, 4 kEH. ‘ )

Then z,>x; for each ¢€ K.

Theorem 2.5. Let (¢, &) and (¢, d) satisfy (2), (3) and (5). Then each solu-
tion of (4) is & solution of (1): In particular, if (4) has a finite nonnegative (resp.
non-decreasing) solution, then so does (1). _

Now, we endow F with the disorete topology, then P(§) is a Feller semigroup,
Let {X (¢): t=0} be the sample process defined on the usual space (2=D([0, <o),
E), %o, P) associated with the semigroup P(¢). Denote the successive jump timesy
of {X (£)} by 7=0, 73, 79, *--.

Theorem 2.6. Let @ be a funoction on ¥ satisfying

D(E)<q, if ¢>0; =0, if ¢=0 (6)
and sob '
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o= E,(oxp| f:dS(X(s))ds]),‘ icq. <)

‘Then {@,: $€ E} is the minimal solution to (1) with d;=1, ey=1, 0y=0 (¢+j) if ¢;=
0; and

- ]
i TO¥
{ 0, =4,
Cy= 94 .,
-o@ T

j.f Q(>0-
Proof. Clearly, (d, ¢) satisfies (2) and (8). Put

""==E‘(epr ' 10:¢ (s))d,s]> $€ B, n>0.

By Theorem 2.3, it suffices to prove that
o0 =d,, q)§"+1>=2 caps”, n=>0, ¢ E. )]

If ¢;=0, then ¢{®=1 (n=>0) since D(¢) =0, so (8) holds. We now =ssime ¢,>0. Then
‘°)—E‘<epr @(X(s))d.«.]) go oxp[D(8) ¢ — g dt

_— ..
gt 16 Rl

from this, indvefion agganption and the strong Markov property, we have
gt = 2, B oxp[ [0 ()] | 7, ))
{oxp] [ @ (X (5))ds] Exce (oxp[ [ X (9))35]))

=E
(n)
ORI
=SV 9% ), g )
Ee e ™
. ‘2"{1&’(")-
Lemma 2.7. Let Q= (gy) be a birth-death matrix (i.e., q;=0 if [¢—F|>1
and q.=2‘ qy) satisfying
i*
=0, ¢u411=b>0, gqii1=ab, ¢€E, lim bh=c0

00
where a>>1. Then there exists a funotion @ on E such that
, D(0)=0, P(3)<qy 9=>1; P(4)—>c0 as§-—>o0,
and ¢;(64€ B), defined by (7) with thig ¢, is finite.
- Proof. The regularity of the @-matrix follows from a>>1. For each s€ (0, 1),
define '
0, if =0,

@ (0) = {e(1+a)b‘, if 4>1.
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Then @, satisfies (6) for each s€ (0, 1), By Theorem (2.6) and (2.5), it is enough
to show that there exists an s € (0, 1) such that the following consrained system:

-1
J o= m [awi-1+Zi41]
To= 1Edo, Q‘l>1, (9)

1
nEh=T_5

hags a finite nonnegative solution. To thig end, set
O =%[(1—3) (1+a) +~TA—8) A Fa)—4a].

Then, {A(e)*: ¢€ E} ig a solution to the difference equation:
(A-e)A+a)si=0i 1+ 241, =1,

Bince A(0) =a>1,
1
(0 -155)| g me-1>0

there exists an 8,€ (0, 1) such that

1
A(e) > =%

for all e € (0, 8¢). Thus, {z;=A(g0/2)%: € F} gives the required golubion
Lemma 2.8. Let Q= (¢,;) Ye adingie birth mairix (i.e., g;=0 if §>4¢+1,
¢=21¢y % JE ) srtisiying
¢c=0. Gy.1=06>0, 12 gy=ab, 4$E€H, a>1, l‘lm by=o0.

>1

Then the agsertions of Lemma 2.7 hold.

Proof. From Yan and Chen™® or Chen', it follows that the Q-matrix is
regular. ’

For the remainders, simply obgerve that the solution {A(s)*: $E€ K} constructed
in the lagt lemma algo satisfies

A(e)0=1=dy,

. 1 .
. g_t _ >
7\4(8) =0y - @5(%) 1-e y 71/1

and
1

7\(5)‘=m[“7\(8)i_1+7\(3) 1)

1
(d-e)(1+a)

A(e), >l

A(e)*t+ A(e)

- gin
E (1-8)(1+a)b;
Ik
e
Similarly, one may prove
Corollary 2.9. Let Q= (gi;) be a single birth Q-matrix with some but finite
number of absorbing states, Suppose that there exists an a>1 such that

1
x(e)"+——————-<1_8> T

96.4-1=ab‘5a94,¢+1, $>> 8o, limb;=00,
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where o= max {¢: ¢;=0}, then the conoclugions of Lemma 2.7 hold,
Theorem 2.10. Let Q= (gy) |be a single birth Q-matrix (of. Lemma 2.8).
Suppose that there exigts an «>>1 such that

!2« =0, 1, $EEH; max{é: ¢;=0}<co; ;2« gqy—>00, a8é—>0o,
Then there exists a funotion @ on # such that
D(i)too asétoo
and
p=E,(exp[ [T 0(X (9))ds])<o0, $€E.
Proof. Let @=(qy) be a birth-death matrix, defined by
§¢.¢-1=§ g =1

g(,;+1=% g g HEKH.

By Corollary 2.9, there exigts a funotion @ on E having the properties men-
tioned in the theorem (if necessary, using & () Eiﬂf @ (k) (1€ E) irstad of &, we
may agssume that @ ()1 oo ag 44 o). Now, %be coupling for jumgp processes (of. [3])
gives us : :

Pt [T X ()] =1, 6;,<dq

where {X (¢), t=0} and {X (¢), £>>0} are determined by Q= (gys) and Q=(g,;) regpec-
tively, und P®+ ig the probability measure on the common probability space.
Indead, we can iake the coupling generator as follows:

Qf (s, 49) = 231Gy 6k Guru-1) " [f (011, b) —f (61, 42)]
+ ,§,(9"""’° = Gii-w) F[f (1, 92— %) — (41, 4a)]
+ 7020 Gi- 141 A iy insa[f (B —1, 62— Kk) —f (41, ¢2)]
+ (Gurut1— Qwasr) Y [f (G141, 82) —F (4, 42)]
+ (G ir1— Guns1) ¥ [f (81, 6a+1) —f (43, 62)]

F@uar1 AQuaner [f(G1+1, 69+1) —f (44, 42)]
here we use the convention: ¢,;=0 if §<0. Thus, if we take ®=®&, then

¢,=E‘<epr:d§(X(s))dsD=E“"’(exp[fj@(X(s))ds])

<Ewo(exp Uo @(I<s)>ds])=E,(epr0 &(X (s))ds))
= a4< o, é 6 K .
Thig finighes our proof,
Let M, (&) be the space of all probability measures on E. We shall regard
N, () as a Polish space endowed with the weak topology.

The following resuit is now a straightforward consequence of Theorem 2,10 and
[9; Theorem (8.12)]:
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Theorem 2.11. Everrything i9 the same ag in Theorem 2.10, then, for evéry
cloged gset O in M, (H), we have

Tim log @,,((0) <~ inf I(u), (10)
where Qg,‘=.P¢°L;1,
L, )= [ (X @)

I(p)= — inf ﬁdu,

ueD*)J Y
and L is the strong infinitesimal operator‘ of ‘the proeess, its'domain is D(L). D*(LYy
denotes the set of all uniformly positive functions in D(L),
Example 2.12. Let us consider the birth-death matrix:
Tor=bi=Mb, quia=a=MAt, ¢=>0.
It is known that the @-matrix is always regular and ig ergodio iff 43 {Ay. Theorem
2.11 works for the oase 7\.1<},2

'§3. Case dD

In this section, we uge martingale approach to stnudy the upper estimaie of large
deviation for Markov chaing. It is well kuowa tha’

Fey-[ @nereds, fed@m (11)

snd
FE@)yex[- [ (EL) (x@)is], FeD @) (12

are all(Q, {F i} tmo, P,)—martingales for quite general Markov process {X (¢): :=>0}
with strong or weak infinjtegimal generator L (of.,, Stroock and Varadhan [207),
In our case, we are given @-matrix only, the generator is hard o handle. OQur goal
is fo introduce some martingales associated with the successive jump times 7,=0, 7y,
Ty, -+- of the jump prooess {X (¢): ¢=>0}.

Aga.m we agsume that the given Q—matrlx is regular. In the cage (II), ¢,>0
for each € K. Henoe

Tl <o LT =]im 7, (13)
and
Plv,<0]=1 n>0; Plr,=o0]=1 14)
¢of., Wang [12; p.245, Theorem 1]). :
Set

D(Q)=1{f: QF€0,(E)},
03 (B)={f: 3 m and M such that 0<m<f<M <oo}.
Theorem 3.1. For each f€ D(Q), define

Y =f(X@)-[@HEme. (15}
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Then, for each $€ B, {V,}¢ is 8 (@, {F z.}nso. P)~martingale. In particular,
E[Y,l=f, ¢€EE, n>0, (16)
Proof. Fix f€D(Q), n>1and A€ F,,. Since
o> B [|f(X (v,.)) —f(X (z.) |, 4]
=2,: E\Iixsp=na|f (X (Fara)) —F (X () ]

"’? EC[IEX(1,)=]]AEX(1.)( |f(X ('71)) “f(X(O)) I)]

=3 B Lo [T, 2 fi— 11| ]
| (@)

-=$ E¢[ch<v.)=m g{ ! I]

and so

E[[7 [@n &) jas, 4]

4

=S B[ L |1 Q) (X®) 1]

=3 B Tacw-naBron ([, 1@ CE @) 1))
= g E[Ixep.ru i (Qf) 1] E;(n)1

A
R 5"3 E&[I (Zry)= N4 : %—j—"
These faecis rot only show that each ¥, is-integrable, but also show that {Y,}5 is a
(@, {$7;,}nm0, )—martingale,
Theorem 8.2. For each i>>0 and f€ D(Q), define

J<e.

¥ =X @A)~ [ @ X ©)ds, n>0. )
Then, for each $€ B, [Y,($)}o is 8 (Q2,{F s, 11}n>0, £1)—martingale, In particular,
E[Y.®1=f, $€B, n>0, >0, (18)

Proof. Use induetion. First,
E[Y (&)]=f:, 4€E, t=0.
Suppose that
E[Y.®)]=f, t€EE, >0
for gome n, then :

Ei[Yn+1(t)]
"Ei[f(X (’Fn+1 /\t>) "J:

nii A

L(@F (X ®)ds
=B Tera] F(X Gua ) =" @) (X (6))a5]]

F B[ Tan| 7 (X Gaa )~ [ (@1 (X (5))a5]]
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=G @N D e~ go@f)sds

B[ neoBrcno| X e G = ]
= (fi— @Qf)#)e "+ (Qf)i[67%s[; — 672 ds]
+320 (" gomeem] f(X(r../\(t—s)))—f"““’(Qf) (X (0))do ds

FETI L

= [fi— (QF) #l6~% + (QF ) 6~ + (Qf )4 gmait _ @) oK gg‘; J g3 f,ds

aq; Iz
‘f;, ’be E, =0,

Hence (18) holds, It is now eagy to check the martingale property.
Similarly, one can prove the following two results:
Theorem 8.8. For each f€ 03‘ (E), get

Zo=1 (X (z,))oxp| J (Qf )(X(t))dt] n>0.

Then, for each ¢C H, {Z,}§ is a (2, {F 4, }n»0, P:)-martingale, In partioulay,
E[Z,)=f, ¢E€H, n=>0.
Theorem 3.4. For each ¢>>0 and f€ O+ (B), put

2,6 =f X Aexp[ - [ () (0 5], w0,

Then, for each ¢€ E, {Z,(#)}o.¢ i 8 (Q, £77 ri}ns0, Pi)—martingale. In particular,
E[Z.®)]=f, $EH, n=>0, t>0.

Up to now, we have presented four regults on martingale approach for Markov
chains. The results may have their own interesting, even though we need only the
last one which can be proved direotly.

To state our main regult in this section, we use the notations given in § 2.

Theorem 8.5. Let Q= (gy) be a regular Q-matrix with no absorbing states.
Suppose that there exists a sequence {f;}i'cOf (B) sabisfying

fi=e>0, k>=1; sgpf,,(d) <oo, $EFH 19

nA(E—71("))

@) (X (s))as] ]

guch that, for each ¢C K,
(8 > &), ask— oo 20
( fk )‘ (%), k ’ ( )

where @ ig a function on H, lim & () = + oo, Then, for each closed set @ in I,(H),

we have
Tm 3 10g @,.(0) < —inf I (),
Proof. By Theorem 3.4, we have
E[ 7 X nioxp[- [ S x @) as]] =113, i€, b1,

and so

»
-

F"“lu lL;a’;, hY
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E[oxp| - j:"“' Ef{—" (X (s)) ds]]s%- sup fi(6), $€ B, #>1.

Letting k — 00, then n —> oo, and using Fatou lemma twice, one gees that
Tu At 1 .
E[exp[ [ 0(x (9))as] [< L sup 12 6)
and that
t 1 .
E[exp| | 0(X (5))ds]| <L sup fu(8).
Next, we modify the function @ so that @ is non-deoreasing. To this end, let
— M =inf &)
{EE
qf.:}‘cn‘f & k), ¢€EER
Sy =W, +M, iCE

then

— MW oo, agitoo
and so

0<P(6)t o0, asiteo,
Moreover,

E.( exp U: & (X (s)) d:;} )
- e”‘E,-(exp U: T(X (s))ds D

<emE,(exp”:¢(x ®)ds ] )<oo.

Now the assertion follows from [9; Theorem (8.12)]
Corollary 8.8. Let Q= (g;) be a regular @-matrix having properties:
(i) ¢>0, ¢€ E;
(ii) there is a positive integer n such that

q‘vi+»+k=0) 66 Ey k>1;
(iii) there exist an a>n and an N € ¥ such that
’2« q¢:>a§ ¢, %=>N;

@iv) ’Zﬁgu—)w, as ¢ > oo,

Then the upper estimate of large deviation holds.
1
w
Proof. Take ana€ (1, (-%) ) and define

o', if4<N+p,
a¥* if4>N+k, 4CE, k>1,

£@-{

Fy(i)=- (%f_k)‘, i€ B, k>1.
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l‘hen o (E) Bfk>1 k>1 supfk(w) < o0, wEE and
q5(@) hm F,,(e,)
=2mm~w9+ “+%a—&ﬁ"”

>Z§Iu(1 (@) 1)+ E L 2u(1= a”)

>,2<‘9u[1‘— %‘"".‘a‘ (1"';:')] B

E"-1+~-+Z+1~] T |
24

=@%xbnﬁ»

[a na"]—>co0, as4—>o0,

=X Qu)

Therefore, Theorem 3.5 is now- ava.llablo
Example 8.7. Schligl model in one-dimension. Take

dhin1=Ma <'2 ) +Mb, 920

% .
Gii-1=Mg <3 ) +Agd, 6>1

¢iy="0, oiher ¢+,
where @, b, A4, +*+, A,>-C. Then lhe agsumyptions or Corollary 3.6 hold.

To skow tbat the eondition ( 1i) in Corollary 3.6 is not necessary, we now
present tive resulii:

Corollary 8.8. Let Q= (gi) be a regular Q-matrix with no absorbing states.
Suppose that there ig a positive sequence (¢;) and an nonnegative sequence (d;),
such that :

(i) guyscyd, for all large enough 4 and all §>¢;

(ii) 2 cdy<oo;

(iii) 2 (1—-;)@,—)00 ag §—> oo,

i
where ¢;= max{ok #<4}. Then the upper esmmate of large deviation holds,

Proof. Since ¢i>co>>0 and the condition (ii), we have
S <L Sod,<oo
7] Co °F
and

c«2d:<2 c;d:—>0

rEQ

a9 6 —> oo, Set f(§) =E,<1+id,,) and f,,(fi;) =f(6/\70), then for every k>4,

i j<4 YEX]

a9 & — oo, Because of f is inoreasing, the conclusion follows from Theorem 3.5 and:
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ﬂw>2m(b—)+zmd@>fu»»m a5 4> co.

Corollary 8.9. Let Q= (gy) be & regular Q—ma,trlx Wl‘bh no absor bmg states.
Suppose that there is ap a€ (0, oo) and an a€ (0, &) such that =~ = -

a
—> o0, ase.—)oo,
(1+a fzj‘q”

and > gy=a>) g, for all large enough ¢. Then the upper estimate holds,
<t > ’ R
Proof. Choose 0<d<D< oo and define ’
. a Y
5@ _D_< 1+a
Then f(0)=d; f(¢)1.D, as ¢ 1 oo, Finally,
N ( QS
2w =—(-),
=9y (1“ f(j) >+2 qis 1—-——f('?) )
i<t

f@) /) = F@/
=1 (%) fl (2 94(f (@) -f(j)) +2 9.(f (9) = D)]

>f(ri,)-1[ Qi1<f(’b) - f (- 1>1‘-'—‘D)

D d( 2 >"1<1 NE o i a
— X 1= = —>o00, asi—>oo,
D s i 1+a] '

$CH.

The next and final result enables us to return to Cage (I):

Theorem 8.10. Let Q= (¢;) be a regular Q-matrix with at mosi finite
absorbing states, and satisfy the order-preserving condition (see [2] and [8]).Define
§m+1=1; if ¢;=0;
9.;=0, j+#4, 6+1, ¢CE,

= qy 4€E,
i%i .
and put @=Q+@. Then @ is regular. If Q satisfies the agsumptions of Theorem 3.5,
then the upper eshmate for Q holds. In particular, Corollary 3.6 implies Theorem
2.10.

Proof. Once we have proved the firgt asgertion, the second assertion follows
eagily from the bagio couplings for Markov chains. Using the coupling in the proof
of Theorem 2.10 and the second assertion, one can easily gets the lagt assertion,
'We now prove the first assertion. To this end we have to check the equation:

sy
A.""q;
0<w;<1, ¢€E
has only zero solution. But tbis is a directly consequence of the following result:
Lemma 8.11. (Comparison Lemma). Let m(w, dy) (6=1, 2) be nonnegative
measurable kernels on a measurable space (#, &), and g,(6=1, 2) be nonnsegative
measurable funetions so that
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m(z, B) +g(2)<1, 2E€E, ¢=1 2;
W‘({D, B)>Wﬂ(w7 B)’ gl(m)>g’(m)y me E; Bego
Denote by f1 the maximal solution to

fr=[ me, @)+,

0<fi<l.
Then for every solution f:

fa=[maCe, d)+ g,

<Jc?<1v
we have

f2($> <?1(m), QDGE.
In particular, the above two equations have, or have no non-zero solutions simul-

taneously.
To prove this lemma, firgt note that if we set

D= g 0= [ ma (e, WO @)+ w3,

then f{ | f;. Next use induction on n to show tha
fa(o) <7 («)
for each ¢ € & and ni=1.
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