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COUPLING METHODS FOR MULTIDIMENSIONAL
DIFFUSION PROCESSES

By Mu-Fa CHEN AND SHAO-FuU L1

Beijing Normal University and Henan Teachers’ University

In this paper, coupling methods for diffusion processes are studied mainly
to obtain upper bound estimates in two different probability metrics. We use
the martingale approach and explore the construction of explicit coupling
operators which are sometimes optimal. The paper presents some criteria for
the success of coupling and for the finiteness of the moments of the coupling
times. Rates of convergence in various metrics are also studied.

1. Introduction. Coupling methods have been used widely in the study of
interacting particle systems and other fields. There are some rather comprehen-
sive treatments of coupling in the theory of Markov processes; see Griffeath
(1978) and Liggett (1985). These papers contain a large number of references. In
the diffusion context, we should mention Davies (1986), Lindvall (1983) and
Lindvall and Rogers (1986). In the last paper, the authors obtained a successful
coupling for a class of multidimensional diffusion processes by a reflection
method and the theory of stochastic differential equations. Their method is
effective for Brownian motion and for process in which the covariance matrix is
almost constant. In particular, Brownian motion has a successful coupling. A
geometric generalization of this Brownian coupling has been developed by
Kendall (1986a, b) for use in stochastic differential geometry.

Let A be a metric on R% For p > 1, we define a probability metric W, (often
called Wasserstein or Kantorovich—Robinshtein—Wasserstein metric),

1/p

Wy(P,, By) = igf[ [, M) eldsa)|
where the infimum is taken over all measures @ on R¢ X R? such that for any
measurable set B C R¢,

Q(B x RY) = P(B),
Q(R? x B) = Py(B).

Any such @Q is called a coupling of P, and P,. Clearly, any coupling will give us
an upper bound estimate for W,. In this paper, we consider only the Euclidean
metric on RY,

(1.1)

d 1/2
p(x,y) =lx -y = [§l(xi - 5’;’)2]
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152 M.-F. CHEN AND S.-F. LI

and the discrete metric

0, x=y,
d(x,y)={1 x #y.

In the latter case, we will use V(P,, P,) to distinguish W, from the metric p.
Note that W, is an analogue of the L”-metric. It was proved by Dobrushin
(1970) that

V(P,, P,) = sup|P,(B) — Py(B)|,

which is just half of the total variation norm.

It will become clear later that different couplings are suitable for different
metric. For this reason, we may use the terms “W,-coupling” and “V- coupling,
respectively, for the different purposes. The W, couphngs are often used in the
study of interacting particle systems. [See Chen (1986b, 1987b) and the refer-
ences there.] More recently, the W,-couplings have also been used in the study of
infinite dimensional diffusion processes by J. M. Xu and the first author.

Now, let us consider the V-coupling. Suppose that {X,},., and {Y,},., are
diffusion processes in R? with the same transition function P(¢, -, -) and distri-
butions P* and P7?, respectively. Let P*” be a coupling probability measure on
Q2,4 = C([0, ©); R2?). That is, the first and the second d-dimensional (marginal)
distributions of P* 7Y are the same as P* and P7?, respectively. Define the
coupling time as

=inf{t > 0: X(¢) = Y(¢)}.
If
T < o0, P*%as.
and
P=Y[X(t)=Y(t); t>=T] =1,
we call the coupling P* ? successful. Furthermore, if
P=Y[T>t]=o0(t"*) ast— oo,
for some o > 0, then we have
V(P(¢, x,-), P(¢, y,-)) =o(t™®).
Thus the key point is to construct a successful coupling P** of P* and P~.

As we did in the case of jump processes [Chen (1986a, 1987a)], we begin our
study with the analysis of coupling operators.

Let
1 4 0?2
== ¥ a;x)
2,50, 0x; 0x;

be an elliptic operator on R¢ (possibly degenerate). Assume that the solution to
the martingale problem for L is well-posed [see Stroock and Varadhan (1979)].
Our goal is to find an elliptic operator on R2? such that the solution to the
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martingale problem for this operator has the marginal property (1.1). From
the infinitesimal character of diffusion processes and (1.1), it is obvious that the
coefficients of the operator should be of the form

a(x c(x, y b(x
() )), b(m)=( ())’
c(x,y)* a(y) b(y)
where c* is the transpose of c. A trivial example is ¢ = 0. In this case, the two

coordinates are independent and the coupling is usually not useful. But this
means that a coupling operator always exists. Indeed, there are a lot of choices.

a(x’ y) =

ExAMPLE 1.2 (d-dimensional Brownian motion). Take
eyx, ) =T —2(x - y)(x = ¥)*/lx — %,
ey(x, ) = I - (x = y)(x = ¥)*/Ix — 5%,
cs(x, y) = ((1 —a(x; —"y) /(B +|x; - yil))sij)’

where a € (0,2] and B8 > 0. All these couplings are successful (see Section 4). The
first one was given in Lindvall and Rogers (1986), called coupling by reflection.
Actually, if we denote by L., (x # y) the hyperplane {z € R (z,x —y) =0}
which is _]ust the orthogonal complement of {x — y}, then for each z € RY,

ci(x, y)z is the reflection image of z with respect to the hyperplane L, ,. On the
other hand, c,(x, y)z is the projection of z onto the subspace L,,. Hence we call
the second one “coupling by projection.” The last one has an advantage in that
the couplings for different components are independent.

The paper is, organized as follows: In the next section, we discuss the
W,,-couplings (p = 1,2). The remainder of the paper is devoted to the V-coupling
which are much more complicated. In Section 3 we study the constructions of
the couplings. In Section 4 we present some criteria for the success of couplings
and a large number of examples to illustrate these criteria. Our criteria are exact
in some cases. In Section 5 we study the rates of convergence of P*?[T > t] as
t - oo for successful couplings. The moment of the coupling time 7T is also
studied there.

2. Coupling for W, metric (p =1,2). Let Q= Q,,= C([0, c0); R2?) be
the space of contmuous trajectories from [0, c0) into R2% Given ¢ > 0 and
w € Q, let Z(¢t, w) = Z(w) denote the position of w in R2% Define

M,=0{Z:s<t}), M= o( U/{,)

t>0"
Let

X(t,w) =moZ(t,w) = (w,(t),..., wy(2)),
Y(t’w) = WZOZ(t,w) = (wd+1(t)"“’w2d(t))’
That is, Z(¢, w) = (X(¢, w), Y(¢, ®)). Similarly, we can define #", #® and
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MP, MP. For example,
MO =0e{X,:s<t}.
We often denote the operator

d 92 d 9
L== » + (x)—

by L(a(x), b(x)). Now suppose that L,(a,(x), b,(x)) and Ly(ax(y), by(y)) are
given operators, then we can define an operator L(a(x, ¥), b(x, ¥)) on R%? as

_ a,(x) c(x, y) x _ by(x)
A= 9) =\ oz, ) az(y))’ bz 7) (b2<y))’

where c(x, y) is a real valued d X d matrix such that the matrix a(x, y) is
nonnegative definite. Such an operator L(a, b) is called a coupling of L, and L,.
Throughout this paper, the coeflicients of all operators are assumed to be
locally bounded. Moreover, we assume that the martingale problem for the
marginal diffusion processes are well posed. The solutions are denoted by

P~ L, x€R%
P2y -~ L2, y (S Rd.
LEMMA 2.1. Let {P*?: x, y € R?) be a family of solutions to the martingale

problem for the coupling operator L(a(x, y), b(x, y)), denoted by P*7? ~
L(a, b). Then

Pi=P=Yoq !, Py=P%Yoq;!, x,y€RC

In other words, P*? is a coupling of P¥ and Py for every x, y € R%.

Proor. Let fe€ C®([R?) and set F(x, y) = f(x), x, y € R% Note that
LF(x, y) = L, f(x) and the operators are locally bounded. We have, for every set
Be#] and s < t, that 7] 'B € #, and

fB( f(X,) - fOtLlf(Xu) du) d(P=7on1)
B f,,l-lB(F(z,) - [1F(2,) du) 4P
= fﬂ I_IB(F(ZS) ~ fo "LF(Z,) du) -

= /1;( f(X,) - /:Llf(Xu) du) d(p-x,yo,ﬂ.l—l)'

This shows that P*Yeq ' ~ L, By the uniqueness assumption, we certainly
get”
Pf=PpP*Yoq!, x,yc€R%

Similarly, we have the second equality. O
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We need the following elementary result.

LEMMA 2.2. Let V(t) be a differentiable function and B(t) be a locally
integrable function on [0, ). If

d
—d—tV(t) < —cV(t) + B(t), a.e.t,

for some ¢ > 0, then

V(t) < V(0)e ™ + ['e=t=9B(s)ds, t20.
0

THEOREM 2.3. Suppose that a(x, y) and b(x, y) are continuous on R2¢ and
P*Y ~ L(a, b). If there exist constants C = 0 and ¢ > 0 such that

Lp*(x, y) < C = cp’(x, ¥), x,y€ERY,
then '
E*%*X,,Y,) <C/c+e %*(x,y), x,y<€R%
In particular, if C = 0, then
Wy(Py(¢, x,-), P, y,-)) < p(x,y)e"? >0 ast— o,

where Py(t, x, ) and Py(t, y, -) are, respectively, the transition functions of the
marginal diffusions. The same conclusion is true if we replace p?>, W, and e~ °*/?
by p, W, and e~ “, respectively.

ProoOF. Set
Sy =inf{t>0: |X, - Y,| > N},
Ty = inf{t > 0: | X, + Y, > R},
S = Sy A Ty
Since P*? ~ L, we have
E* 0% ( X, p5: Yins) = P2(%, ¥) + fOtEx’yLPZ(XuAs’ Y, ns)du

and so

d
ZE" P (Xins Yins) = E*Lo"(X, 05, Vo 0)

< C—cE* P (X, 05 Yins)-
By I;emma 2.2 we obtain
E**( X, 05, Yirs) < C/c+ p*(x, y)e™ <.
Now the conclusion follows by passing the limit R 7 o0, N 1o0. O
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DEFINITION 2.4. Let a)(x) = a)(x)o,(x)*, ay(y) = ax(y)ox(y)*. We call

ax)  o(x)ey)* (by(x)
o(Ne(x)*  axy) ) ”("’y)‘(bz(y))

the basic coupling of L, and L,.

a(x’ y) =

ExampPLE 2.5 [Ornstein—Uhlenbeck (0.U.) process].
0)(x) = oy(x) = I, by(x) = by(x) = —px.
Using the basic coupling, we obtain from Theorem 2.3
2
Wy(P(t,x,-), Pt 3,-)) < (E=%%(X,, Y,)"” = e#p(x, 5),
Wi(P(t,x,-), P(t, y,-)) <E®(X,Y)=e*p(x,y), t=0,x,y€R™

ExAMPLE 2.6. Take 0,(x) = 0,(x) = 0 = constant, b,(x) = by(x) = 0. Using
the basic coupling, we obtain from Theorem 2.3

Wy(P(t,x,-), P(t, 3,-)) < (E= XX, Y,))""* = |x — 3,
VVI(P(t’x’ ')’ P(t, Y, )) < Ex’yp(Xt’ Yt) = Ix - yl'

On the other hand, it is known from Givens and Shortt (1984) that the first
inequality is an equality in any dimension. Thus, our basic coupling is exact in
this case. For W,, the coupling is not exact, but as you will see soon it is the best
that we can do.

We now introduce some notation which will be used often later.

2.7 NoTaTION. Denote by (, ) the ordinary inner product in R Set
A(x,y) = a)(x) + ay(y) — 2¢(x, ¥),
B(x, y) = bi(x) — by(y),
A(x, y) = (x — 5, Az, y)(x — ¥)),
Alx, y) = A(x, ) /lx —3°,  x#,
B(x, y) = (x - 3, B(x, y)).

It is easy to check that A(x, y) > 0 for all x, y € R? [since a(x, y) is nonnega-
tive definite] and that for each f € C?([0, %)), we have

2Lf(p(x, ¥)) = A(x, ¥){"(p(x, ¥)) + f'(p(x, ¥))

(2.8) _ )
x[trA(x, y) — A(x, ) + 2B(x, y)]/o(x, 7).

i

In particular, we have

(2.9) Lo*(x, y) = trA(x, y) + 2B(x, y)
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and

(210) Lp(x, y) = [trA(x, y) — A(x, y) + 2B(x, ¥)] /(20(x, ¥)).

Now, we turn to discuss how to choose the coupling operators for Wy(W,)-
coupling. For simplicity, we consider only the case that b,(x) = by(y) = 0.

REMARK 2.11. In view of Theorem 2.3, (2.9) and (2.10), we may say that a
coupling operator a(x, y) is W,- (respectively, W,-) optimal if a(x, y) is nonnega-
tive definite and tr A(x, y) [respectively, tr A(x, y) — A(x, y)] achieves the
minimum at each point (x, ¥) € R?? [note that these quantities contain ¢(x, y)
which varies]. Clearly, if o,(x) = 0,(y) = 0 = constant, then the basic coupling
gives us trA =A =0 and so is optimal. For the general case, let us
fix x and y, assume that a,(x) and a,(y) are positive definite and take
0(x) = Ja,(x), 0)(y) = Jay(y), the positive definite square roots. In this case,
we can rewrite c(x, y) as o(x)H*(x, y)o,(y). Now, a(x, y) is nonnegative
definite if and only if H is contractive. That is, |[Hx| < |x| for all x € R% Using
the Hilbert-Schmidt (H.S.) norm for metrics, we can easily prove that the
optimal choice of H(x, y) does exist since the domain of H is compact and tr A
(respectively, tr A — A) is continuous in H with respect to the H.S. norm. But
this optimalization problem is generally quite difficult. For simplicity, now we
restrict ourselves to the case that H is an orthogonal matrix. Then, for W,, the
solution is

(2.12) H(x, y) = [oo(2)a(x)0x(3)] "0y 3)0y(=).

Then, we have

trA(x, y) = trfay(x) + ag( ) — 2(0x( ) ax(x)0x( ).

(In this case, even without the orthogonal assumption on H, the optimal solution
is still the same. For details, see Givens and Shortt [(1984), pages 237-239].)
Furthermore, if 0, = 0, = o is diagonal, then we have H(x, y) = (0;;(x)0,(¥)3;,)-
For W,, the optimal solution H should satisfy

(2.13) Ho,(I — 7t*)o, = [oy(I — @a*)a,(I — @u*)oy] ">,

where u = (x — y)/|x — y|, H = H(x,.y), 6, = 6,(x), 0, = 6,(y) and so on. This
is quite complicated but still useful in some cases. We will return to this formula
later.

A typical application of the above coupling is as follows: Suppose that our
diffusion with L, has a stationary distribution =, the ¢onditions of Theorem 2.3
are satisfied with C = 0 for a coupling of L, and itself, and (x, y) > P*7 is
mgasurable, then we have

%(P(t’ X, ')’77) <e 2 f'”(dy)lx - yl'
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In fact,

W(P(t,%,),m) = Wi P(t, ), [a()P(t, 5,°)]
(214) <[ frtanm=x, - vp| "

1/2
< e‘“/z[fﬂ(dy)lx - yl2] ,

and similarly for W,. As for the existence of stationary distribution for diffu-
sions, see Bhattacharya and Ramasubramanian (1982) and their references.
Here, we state a simple sufficient condition. The proof is nontrivial but almost
the same as the ones in Basis (1980) and Chen (1986b) which go back to
Dobrushin (1970). Hence we omit the proof.

THEOREM 2.15. Let h € C*R?) be a compact function, i.e., h >0, {x:
h(x) < k} is a compact set for each k > 0. If there are constants C > 0 and
¢ > 0 such that

(2.16) Lh(x) < C—-ch(x), x€RY
then the diffusion process determined by L, has a stationary distribution = with
(2.17) fvr(dx)h(x) <Cc/(1-e¢).

Now, if (2.16) holds with A = p?, then combining (2.14) and (2.17), we obtain
(2.18) Wy(P(¢t, x,-),7) < const. (1 + |x])e 2 > 0 ast— oo.
3. Constructions of couplings for V-metric. Starting with this section,

we discuss the couplings for V-metric. The following result describes a fundamen-
tal property of our basic coupling.

THEOREM 3.1. Leta, = a, = o0* b, = b, = b, and ¢ and b be continuous
on R? Suppose that for the basic coupling L(a(x, y), b(x, y)):

_ [o(®)a(x)*  a(x)o(x)* . oy [200)
o2 2) = o(y)o(x)* o(y)o(y)*)’ bz 7) (b(y))’

the martingale problem is locally well-posed [and hence globally well-posed by
Stroock and Varadhan (1979), Corollary 10.1.2]. If- we denote the solution by
P*%Y ~ L(a(x, y), b(x, y)), then we have

32) X,=Y, t=T, P*%as.on[T<wm].

PROOF. A similar result was given in Stroock and Varadhan [(1979), Lemma
8.1.3]. Here we present a different proof. By a modification of Theorem 6.1.3 in
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Stroock and Varadhan (1979) (we allow T = oo), what we need is to show that
P>*[X,=Y, t=0]=1, x€R%

Next, by a truncation argument, we may assume that a(x, y) and b(x, y) are
bounded and continuous, so the martingale problem for L is well-posed.
Now take
Cexp[-1/(1 - |x?)],  IlxI<1,x€RY
0, x| > 1, x € RY,

7(x) =

where C is the normalizing constant. Put n(x) = ¢~ %n(x/e), set o (x) = (a(x)):
of(x) = (0, %0, )(x), b{x)=(b(x)): bi(x) = (b;*n)(x) and so on. Clearly
o;(x), bi(x) € C°(R?). Hence there exist constants A, and B, such that

lo(x) — o)l < Adx = ¥,

|b.(x) = b(¥)| < Bjx - .

On the other hand, corresponding to the function p(x, y) =|x — ¥, we can
construct a sequence of functions {¢,}7 such that

¢, € CAR), ¢, (x)Txl, lenl<1,  0<¢(x)<2/(nx?).
[See Ikeda and Watanabe (1981), pages 168-169.] Now, let L(o*, b,) be the
basic coupling. Then by (2.8), we have

2Lg,(1x — ¥)) = ¢/ (Ix — DA(*, ¥)

+ ?;fl(l—x_:y%g(t”\e(x, y) — A(x, y) + 2B(x, %)),
where
A(x, y) =|(o(x) — o(¥))* £y ) < A%jx — y)?,
lx — ¥l
trAfx, y) sllofx) — o) < A%x ~ 5%,
B(x, y)| =|(x — 5, b(x) - b(y))| < BJx — ¥
and so

2L g, (jx — y)) < A% (Ix — y)Ix — ¥1* + [¢1(Ix — YDI(2A2 + 2B,)Ix — yl.
Let P»* ~ L(og.*, b,) and
Sy = inf{t > 0: | X, - Y| > N}.
Then
E?%,(1X, r 5y = Yins,))

< B2~ [ {3a%0 + |41l A2 + B,)p}(X,, Y,) du
0

< A%/n + (A2 + B)ES ["NX, - Yl du.

0
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Let N 7 o0 and then n 1 . We obtain
Er*|X,- Y] < (A2 + B,) [E*|X, - Y, du
0

and so
EX*X,-Y|=0, t>0.
This shows that
P>*(X,=Y,t>0)=1.

Finally, by Stroock and Varadhan (1979), Theorem 1.4.6, it is easy to prove that
{P*7: ¢ > 0} is tight, and so we can choose a subsequence {¢,,}¥ such that

P>Y— P” weakly.

Then Pj»? ~ L(a(x, y), b(x, y)). By the locally well-posed assumptlon we in-
deed have Py ¥ = P% 7, Therefore

P**[X,=Y,] > limsupP>*[X,= Y] =1, ¢t=0.

m— oo

This proves our assertion. O

In order to give different types of couplings, we need more preparation.
Denote by P*? the solution to the martingale problem for the basic coupling
constructed by Theorem 3.1. Set

5 X(T(w)), Y(T
(83) Q =8, Q PXIYI ) +8.Dipympy @ €D

LEmMMA 3.4. Under the hypotheses of Theorem 3.1, if P*” is a solution to
the martingale problem for

(o(x)o(x)*  e(x ) (e
(% 9) = | oz, y)r o(y)o(y)*)’ bz 7) (b(y))

up to time T, then
R=P> @ @
is a solution to the martingale problem for
‘ Io,ry(t)e(x, )

( ) o)l +1p, o (t)o(x)o(y)*
a(t,x,y) = ’
Iyo, m(t)e(x, ¥)* *
(35) Doz )
S b(t,x,y)= ZE;; :

Proor. Cf. Stroock and Varadhan [(1979), Section 6.1] for details. O
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ExaMPLE 3.6 (Classical coupling). In (3.5), take c(x, y) = 0. This means
that the processes start from two different points, run independently until they
first meet each other, then move together.

ExampPLE 3.7 (Coupling by reflection). Take
e(x, y) = o(x)(I - 2uu*)o(y)*,
where & = (x — y)/|x — y|. If o is constant and det 0 # 0, we can also take

c(x, y) = oo* — 2uu*/|o " 'ul?.

ExaMpPLE 3.8 (Coupling by projection. Take
c(x, y) = o(x)(I — au*)o(y)*.

For the above examples, we can first construct the couplings up to time T,
then applying Lemma 3.4, link them with the basic coupling so that after time T,
they will move together. Sometimes, we have to do so (cf. Section 4). However, it
is not always the case. Very often, it is enough to construct a coupling up to the
time T. This also enables us to consider the more general case that L, # L,.
Such generalization is useful in some cases [see Chen (1986b), for example].

4. Criteria for success. In this and the next sections, we fix a coupling
operator L(a(x, y), b(x, y)):

a(x, y) = [ a,(x) c(x, y)}’ b(x, y) = [bl(x)]’

c(x, ¥)*  ayy) by(y)

and assume that P* 7Y (x # y) is a solution to the martingale problem for L up
“to time T
T=inf{t>0: X,=Y,}.
In other words, for each pair x # y and for every f € CZ(R2%): supp(f) C
{(x, y) € R?*%: 1/n < |x — y| < N} for some n, N > 1,

f(X,Y) - [ 'Lf(X,,Y,) du

is a P* Y-martingale with respect to {.#,},. (.
The idea of our criteria discussed below is to compare the process Z, = (X,, Y,)
with the radial process r, = | X, — Y,|. To do this, set
Sy = inf{t > 0: | X, - Y| > N}, N>1,
T,=inf{t>0:|X,-Y|<1/n}, n>1,T,1Tasntco,

T N=TnASN'

n,

Choose continuous functions y and y*: (0, o) = R such that
y(r) > sup (trA(x,’y) — A(x, y) + 2B(x, y))/A(x, y),

le=yl=r

va(r) = inf (trA(x,5) - A=, 7) +2B(x, 3))/Al=, )
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and define

c(r) —exp[f rv(u) J C*(r)=exp[£ry*iu) du],
f(r) =f10(s)‘lds, fa(r) =j1'0*(s)‘1ds, r> 0.

Then, we have
(41) f'(r)>0,  f"(r)+f(r)y(r)/r=0
F4(r) >0, F2(r) + Fi(r)va(r)/r =0
Next, choose continuous functions a and a*: (0, c0) — [0, o) such that

a(r) sl 1nf A(x y) < sup A(x,y) < a*(r).
lx—y|=r
Define

#) = ['oto) s [ T au,

g*(") fC*( )" dsflc:((u))

asr T o0, f(r)T f(OO), say. SImllarly, we can deﬁne f(0)7 f*(OO), f*(0)7 g(O) and
& x(0).

THEOREM 4.2. Let a > 0 on (0, o).

(1) If f(0) = o0 and g(0) < oo, then the coupling is successful.
(i) If f w(o0) < o0 or g*(O) = 0, then the coupling is not successful.
(iii) If vy =y, and a = a*, then the couplzng is successful if and only if
f(0) = 00 and g(0) < co.

CoroLLARY 4.3. (i) If a is bounded below by a positive number, f(c0) =
f(0) > — oo and liminf , f/(r) > 0, then the coupling is successful.

(i) If @ > 0 on (0,0), f4(0) < o0 or f(0) = — oo, then the coupling is not
successful.

PROOF. In case (i), it is easy to check that g(0) < . As for case (ii), it
suffices to note that f,(0) = —oc0 = g,(0) = . Thus, the corollary follows
from Theorem 4.2 directly. O

Case (i) of Corollary 4.3 was obtained by Lindvall and Rogers [(1986),
Lemma 1].

lgROOF OF THEOREM 4.2. For the sake of completeness and also for certain
subsequent uses, we sketch the proof here though the technique is essentially not
new [cf. Friedman (1975)].
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Set
o 1 nC(u) 1
. = - —<p<N,n, 1.
(4 Fone)=-[ o) [[orgde  spsN.nN>
Then
-0 <F, y(p) <0, F! v(p) <0,
(45) ~(p) '~n(p)

Fn(p) + E; n(p)v(0)/p = 1/a(p).

Combining this with (2.8), we have

(4.6) 2LF, y(p(x,y)) = 1.

Put r = |x — y|. Since P*? ~ L(a, b), by a truncation argument we have

Ex’yFn,N(lXt/\T,,,N - Yt/\T,,,Nl) - Fn,N(r)

= LE®Y fo NN LF(X, - Y,)) du

> JERA(EA T, ),
and so

E=Y(tA T, y) < —2F, y(r).
Letting ¢ 1 o0, we get
(4.7) E*=¥(T, y) < —2F, y(r) < oo.

(i) If g(0) < oo, then
Fy ny(r) = lim F, y(r) > —c0.
n— oo

From (4.7), it follows that
(4.8) E*»YT A Sy) < —2F, y(r) < .
On the other hand, since Lf(p(x, y)) < 0, we have

ws) (P < s ) + 1) Py < om0
SE(f(p(x, )t 1= Ty ) < (7).

Hence, by (4.7) we get
f(5 P2 < s + 10 P8, < T < (0.

Thus

. £(r) = #(1/m)
p (Tn>SN)S m
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Noting that g(0) < o0 = f(0) > — o0, we have
f(r) - f(0)
P»>AT > S —
(=) = 50y = 1)
Letting N 1 oo and using (4.8), we obtain
P>)(T = w0) = 0.

(ii) First, we assume that f,(c0) < co. By (4.7), we have
1
fol 5 )P AT < 8) + 1N BT, > 83) < ().

Hence
f*(N) - f*(")
«(N) = f4(1/n)

P*Y(T, < Sy) < 7

and so
fa(o0) = f4(r) <1
«(0) = f4(1/n)

P=I[T < 0] < P*¥T, < ) < ;
Next, we assume that g,(0) = 0. Set
N 1, (nC(u)
3 O .
gx(p, N) f,, Ci(s) dsfs () W< <p<N

For 0 < p < N, set g9 (p, N) = 1 and define

g9(p, N) = ["Cuw) s [V ”C*( ) g¢”(u, N) du
inductively. Then, it is easy to check that
g (p,N) < —l—g*(p, N)", m=0.
Hence
un(p) = Zog‘""(p, N)
is well-defined for all p € (0, N]. Moreover,
uy =1, uy <0,

1+ g4(p, N) <uy(p) < exp(g4(p, N)),

un(p) = a*(p)| —ug(p) + Telr )uN(P)
and so

E%VN(P) = o0, 2Luy(p(x, ¥)) < uy(p(x, ¥)).
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Finally, fix x # y and set |x — y| = r > 0. Then, by a truncating argument, for
every N > r, we have

uN(r) > Ex,y[e—Tn,N/\t/iluN(p(xTn,NAt’ YT,,,N/\t))]

= Ex’y[e_t/2uN(p(XTn,N/\" YTn,NA‘)): Tn = SN A t] .

1
= uN(;)e_t/2Px’y(Tn'$ SN /\ t),
that is,
1
P>XT,<SyAt)< e‘/2uN(r)/uN(;).

Letting n — o0 and then N - 0, we get
P~ T<t)=0, t>0.
This gives us
P»Y(T < ) =0.
Equivalently,
P>»Y(T =) =1. O

ExaMpPLE 4.10 [Classical coupling of Brownian motion (B.M.) in R¢]. We
have y(r) = y4.(r) =d — 1, a(r) = a*(r) = 2. Hence

r—1, d=1,
f(r)={logr, d=2,

1 -r"*?)/(d-2), d>3,

1 2

Z(l - r) N d= 1,
g(r) = 1 l 1 r2 d 0

Z ogr — 9 + ? ’ = 4

and so the coupling is successful if and only if d = 1. This result should come as
no surprise since Brownian motion does not hit points in d > 2.
. I
ExampLE 4.11 (Coupling of B.M. in R? by reflection or projection). In both
cases, we have y = 0 and « = positive constant. Thus, f(r)=r—1, f/(r) =
1 > 0 and so these couplings are successful.

ExampLE 4.12 (Coupling of different diffusions). Take d = 1, a,(x) = a, > 0,
axy) =ay>0, b(x)= —bx, by(y)= —by— by, by, b,>0. Using the
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coupling by reflection, we get
2
a(u) = a = (@ +a;)’,

2 2
y(u) = ;(—blu + b2u),

(bl_b2)2 r b, b, ’
f(r) = exp(———aﬁ)l——)j;exp{z-(u - Z;) }du,

f'(r) >o0.
Hence the coupling is successful. If a, # a,, then the basic coupling is also
successful.

REMARK 4.13. Based on the idea of reflection, Lindvall and Rogers (1986)
proposed a coupling by taking

o(y) (x = y)(x - y)*
o~ () (x=y)* |

Under some hypotheses, they proved that this coupling satisfies the conditions of

(i) of Corollary 4.3, so is successful. Since the hypotheses of Theorem 4.2 for

success are weaker than those given in Corollary 4.3, our criterion is applicable to
their case.

c(x,y) = o(x)(a(y)* -2

EXAMPLE 4.14. Take o(x) = V2ax, b(x) =cx+d, x>0, a>0and d > 0.
The diffusion process on [0, c0) for this operator is well-defined [cf. Ikeda and
Watanabe (1981), pages 221-222]. Use the coupling by reflection,

e(x, y) = —2ay/xy.
We have

A(x, y) =trA(x, y) = A(x, y) = 2a(Vx + ‘/5)2,
a(r) =2a inf (Vx +y)’

lx—yl=r
= 2ainf (Vx + Vx + r)2
x>0
= 2ar,
c
Y(u) = Eu’

C(s) - exp[§(§ -1)

r—1, c=0,

f(r) = {a[l_exp[g(l_r)”, c+0.

c
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Thus, f(o0) = oo if and only if ¢ < 0. Notice that in one-dimensional case, if
vy = 0, then
18 —7r

(4.15) g(0) < o = lim ds < 0.

r—0 r a(s)

In the present case, y < 0 and

. 1S—r
hmf ds =1< c0.
I‘—>0r S

By Theorem 4.2, we conclude that the coupling is successful for all ¢ < 0.
Since inf, _ ja(r) = 0, Corollary 4.3 is not available for this example.

EXAMPLE 4.16 (One-dimensional linear growth model).
o(x)=ax+b, blx)=cx+d, a=#0.
Consider the basic coupling
c(x,y) =(ax + b)(ay + b).
Then y(u) = yu(u) = —2¢/a?, a(u) = a*(u) = a’u?.
It is easy to check either f(c0) < o or g(0) = c0."Hence the coupling is always

not successful. Even if ¢ < 0, then f(o0) = o0 and f(0) > — o0. Hence, it is not
difficult to prove that

Px'y( lim |X, - Y| = 0)=1,

but we still have
P»Y(T=00) =1, x # y.

The above example shows that the basic coupling is useless for the V-metric.
However, for negative c, the basic coupling is not only effective but also provides
an exponential rate for the W,-metric (Theorem 2.3). Conversely, for B.M., the
basic coupling gives us

P (X, ~Y,=x-y)=1
and so is useless for the W;-metric. But as we have seen in Example 4.11, we still
have an effective coupling for the V-metric. Thus, the suitable couplings are

different for different metrics. For different models, we even need different
metrics.

Now, we return to the third coupling given in Example 1.2.

EXAMPLE 4.17 (B.M. in R¢).
alx; — ¥

_ AT s 1< j<d
B+'xi_yi|) Y

el =
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Observe

trA(x, y) -

!
™

=2a(d_,3§ ___1___)

jo1 B+ lxi — il
B
B+u

< 2ad(1 -

= 0’ if |x — y| = u.

Thus,
tr A(x, y)

- ~1<d-1,
A(x, y)

and so

20 u
y(u)=d——1, a(u)v—-ﬁm.

Our criterion (Theorem 4.2) is available only for d = 1.

However, this coupling is successful in any dimension. The reason is that we
can use the following simple result to reduce the general case to the case that
d=1.

DEcoOMPOSITION LEMMA 4.18. If a coupling consists of two independent
parts, and each part has the property that when they hit they will move together,
then

T=T,VT,,

where T, and T, are, respectively, the coupling times of the two parts. In other
words, the coupling is successful if and only if each part is successful.

We have seen that Theorem 4.2 is less and less effective as the dimension
increases. The role of Lemma 4.18 is to deduce the higher dimensional case to the
lower dimensional case. The idea is that, if the components of the original



COUPLING OF DIFFUSIONS 169

process are independent, we may construct a coupling in two steps: First, for
each component, construct a coupling such that after the marginals of the
component meet each other, they move together (cf. Theorem 3.1 and Lemma
3.4). Second, link these individual couplings together independently. Example
4.17 illustrates such a construction. As another application of this idea, let us
again consider B.M. in R% Take the coupling diffusion coefficient as

I c(t, x, y)
t, , = ’
alt, =, 7) (c(t,x,y) I )
where
it %, 3) = (g py () + I 7 (D)8, 1<i,j<d,
and

T,=inf{t > 0: X,(t) = Y(¢)}, 1<i<d.

This construction works also for the higher dimensional analogue of Example
4.14.

REMARK 4.19. We now would like to know what coupling is the “optimal”
for the V-metric. For simplicity, we ignore the drifts for the moment. Based on
Theorem 4.2, we may say that a coupling is V-optimal if

(4.20) a(x, y) is nonnegative definite and A(x, y) # 0,
(4.21) tr A(x, y) — A(x, y) achieves the minimum and
(4.22) A(x, y) achieves the maximum.

By the Schwarz inequality, we have
(4.23) trA(x, y) > A(x, y).
Thus, a special case of (4.21) is that (4.23) becomes equality. This happens if and
only if
o (2 = y)(x - y)*
e -y

(424) c(x, y) + c(x, y)* = ay(x) + ay(y) — M=, ¥)

For B.M,, any A(x, y) satisfying
0<Ax,y)° <4

will give us a solution to (4.20) and (4.21). Furthermore, if we assume that
¢ = c*, then the coupling by reflection [i.e., A(x, y)? = 4] is V-optimal. Next, if
a, = a, = ¢% = constant, then the couplings either by reflection or by projection
do satisfy (4.20) and (4.21). If we insist on choosing an orthogonal matrix H
mentioned in Remark 2.11, then, for constant a, = a, = ¢®, det ¢ # 0,

H=1-20"Yx-y)(x - y)*/lo‘l(x -

is a solution to (4.20) and (4.21), but this is no longer true when the matrix o
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depends on x. Similarly, if we consider projection matrix H, the solution is

H=T-0"(x = »)(x - 9)*/lo"(x = )"

It is still an open problem to give a general formula for the optimal couplings for
V-metric.

5. Rates of convergence in total variation norm. Let us begin this
section with an example [Lindvall and Rogers (1986)]. Consider the coupling of
B.M. in R¢ by reflection. Using the functional

Zg = expla(jx — y| - |X, - Y)) - 22%], a>0,
it is easy to prove that
E®%xp[—AT] = exp[—-/A/2lx = y|], A>0
[see Williams (1979), pages 85-86, for example]. Hence

2 u?
P=I[T>t] = 1/ - /le—yl/&ﬁ)exp[_ _2_] du.

%"P(t’x’ ) - P(t» Ys ’)"Var
= V(P(t’x» ')’ P(¢, y, )) = Ex'y[I[XﬁéY,]]

= P%Y[T > t] < Const.|x — y|/Vt >0, ast?oo.
On the other hand, it is known that

1 2 u?
il R . _ |2 -y _z )
S1P(62,) = P(6, 3, e =y = [ exp[ 2}du,

thus, the coupling by reflection is exact for the V-metric. Similarly, one can

easily check that the coupling by projection will give us the same rate 1/ V¢ up

to a constant. This procedure produces some estimates for the rates of conver-

gence in some special cases. Now, we are going to use a different idea.
Obviously, if E(T™) < oo, then

t"V(P(t,x,-), P(t,y,:)) <t™P[T>t] <E[T™T>¢t]->0, ¢t— co.

This leads us to study the moments of T.
Recall that

Thus

_ r 1 NC(U)
F, n(r) = -/;/nC(s) dsfs () du, l‘/n <r<N,
and define
F(r) = lim Nlim F, n(r), 0<r<o,
S C(u)

M, (s, 8,) = (C*(31)C(32))_1 /;/nE(T) du, 81,8, > 0.

For the following result, we are again comparing with a radial process.
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THEOREM 5.1. Putr=|x — y|
() If F(r) > — 0, then E*XT) < c0.
(i) If T, y < 0, P*?-a.s. and

. N _
tim [ [M,(s,, 5) — My(s5,5,)] dslds2/f Ca(s) ds = +oo,
n— 00 1/n<s, <r 1/n )

Noow s <N

then E*Y(T) = 0, x # y.

Proor. (i) From (4.7), we see that
(5.2) E=(T, y) < —2F, y(r).
Let N - o0 and then n — o to get
E®X(T) < —2F(r) < oo.
(ii) Set
C(u)
Gu(r) = [[ Clo) s [© 2o du.

Since G,(p) 2 0, G;(p) 20, G;/(p) + (1/p)¥(P)Gi(p) = 1/a*(p), for p > 1/n.
We have

2LG,(p(x, y)) < 1.

Hence
(5.3) E*2G,(p(Xy, . Yy, ,)) < Gu(r) + $E*(T, v)-
On the other hand, if we set
Hy(r) = [ Cu(s) " as,
1/n
then
1 1

H,(p) 20, Hj(p)=0, H(p)+ ;Y*(p)Hé(p) =0, px—.

Because

E*H (p(Xr, .Y, ,)) = Ho(r) + E=7 [""LH,(p(X,, X)) du > H(r),

we get

(5.4) Po¥Sy<T,) >

Combining (5.3) with (5.4), we obtain
“ H,(r)G,(N) — H,(N)G,(r)
H,(N)
Since T,, y is increasing as n — o0 or N — o, T,, 5 1 T. Thus, the assumption of

BT, ) =2
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the theorem implies that
E®YT) = . O

ExaMPLE 5.5 (0.U. process).
o(x)=1, b(x)=—x.
Using the coupling by reflection, we get
a(r) = a*(r) = 4,

Y(r) =v4(r) = —5r?,

2
r7() du} - exp{— %(r2 - 1)},
—Fy n(r) = fl:nexp[%(ﬁ - 1)] dsLN%exp{— %(lﬂ - 1)} du
< %(/:exp(%ﬁ) &)(Lwexp(— %u2) du).

Hence —F(r) < oo for all r € (0, o), and so
E*Y(T) < .

c(r) = exp{[l

EXAMPLE 5.6 (The coupling of B.M. in R? by reflection).
E*YT) =00, x+y.

Now we investigate the higher moments of the coupling time 7.

"THEOREM 5.7. If there exist constants B > 0,0 < a < B, and ¢ = ¢(a) such
that

(5.8) (B-2)A(x, y) + trA(x, y) + 2B(x, y) <0
for all (x, y): 0 < p(x, y) < o0, and

(5.9) |F(r)|<er®, 0<r<oo,

then

(5.10) E*»Y(T™) < o, me]0,B/a).

Proor. By (5.8), it is easy to prove that
)  supE=(IX(¢AT, n) = Y(eA T, 0)IF) <lx -3 n,N>1.
£20 .
Next, by using an integration by parts formula for martingale theory [Stroock

and Varadhan (1979), Theorem 1.2.8] and a truncation argument, we may prove
that

() E=(T4m) < 2m(1 + m)Ex’nyT"'”|F(|X(s) — Y(s)])|s™ " ds.
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This is the main trick of the proof. Now, by (5.9), Holder’s inequality and (i), we
would have

E=?[|F(1X(s) = Y(s))|; s < T, v] < Clx — y|P* [T, y = s] 42,
Inserting this into (ii) and letting N, n — oo, we would obtain
(ii) E®>(T'™*™) <2Cm(1 + m)|x — y|a[°°sm—lpx’y[:r > s]# 8 gs.
0
On the other hand, from Theorem 5.1 and 5.9, we see that E*%(T') < oo. Thus,
by using the inequality (iii), we may maximize the number m with property

E*XT™) < co. For more details, refer to the proof of Lemma 7 in Davies (1986).
O

ExaMPLE 5.11. Everything is the same as Example 4.12 but for simplicity,
we take a, = a, = 1. We know that

y(r)=%( br?+ — b )

Hence, i
C(r) = exp[fer(u) duJ = exp[——(r -1)+ —(r— 1)}
F, n(r) = —'/;/nexp(%sz - s) ds sNexp(— %u2 + %u) du,

2 2
|F(r)| == exp[l;1 (s - Z—f) }dsfswexp[—%(u - :—f) ]du
* and so, for any 0 < a < 1,

F(r)l_ Jexp[ = (by/4)( = by/b,)*] du
T arexp — (by/A)(r - by
Thus (5.10) holds for any 0 < a < 1, and so
E(T™) < 0 forany m > 0.

Finally, we consider exponential estimates for the rate of convergence.

THEOREM 5.12. Suppose that

(i) there exist constants C > 0, ¢ > 0 such that
(5.13) Lp*(x, y) < C — cp*(x, y),

(ii) there exist N > N, > C/c such that

(5.14) |E,,N(N1)|—f C(s)” dst Clu )du<oo
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and
NYNC(s)'ds €
(5.15) —lil%— > —.
0 C(s) " ds c
Then there exists t, > 0 such that for t > t,, we have
P>XT > nt) < K,k",
E*9(X,,,Y,,) < Kk",
for some constants K, K, > 0 and k € (0, 1).

(5.16)

Proor. Recall
i(r) = fer(s)_lds, Lf(p(x, ¥)) < 0.

From (4.9), we see that

P*YT, < Sy At) z—fﬂ_i(—;) - P=)(T, y>t).
i -1(7]
Letting n — o0, we have
f(N) —f(r)

P>¥(T < Sy P=y(T, > t),

M2 10

where T, y = T A Sy, and so

y s I =)
~ f(N) - £(0)

By the condition (5.14) and using (5.2) we get

E*(Ty, ) < —2F, n(7).

(5.17) P*)(T < - P*Y(Ty y > t).

Hence

E*A(Ty) _ —2Fyn(r)
t - t ’

(5.18) P=Y(Ty y2t) <

Combining (5.17) with (5.18) we obtain‘

[(N) = f(r) 2, n(r)

f(N) - £(0) t

IQYC(S)_I‘% 2E),N(")

> + :
JC(s) " ds ¢

for all (x, ¥): 0 < p(x, y) =r < N,.
Let

P=YT<t)>

(5.19)

NYNC(s)"'ds €

[e(s)tds e
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Then a > 0 by (5.15). Clearly, we can find ¢, > 0 such that
IE),N(NI)I «
———— S _’

t 2
INC(s) "ds 2By (NI
foNC(s)_l ds ¢

for all ¢ > ¢,. Also, we can find £, > 0 such that
C/e C «

< —— —
1—-e®* ¢ 2
for all ¢ > t,. Take ¢, = ¢, V t,. Then for all ¢ > ¢t,, we have

o[ JNC(s) "ds 2B, (M) | Cfe

2N

b

5.20 +
(520 “Loe(s) " as t 1-e

Now we fix ¢ > ¢, and let

JXC(s) ds  2F, n(Ny) _

NC(s) M ds t
By (5.19), (5.20), (5.13) and Theorem 2.3 we arrive at
(a) P (T>t)<8, O0<|x—y <N,
(b) N1 - 8)(1 — e~t) > C/c,
(c) E*%*(X,Y,) < C/c+ e p(x, ).

1-8, O0<d&<1.
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Let 7,=nt A T and {P,} be a regular conditional probability distribution
P\ A, . Then d . v, .y ®,. P is the solution to the martingale prob-
lem for the coupling operator L(a, b) starting from (X(7,_,), Y(7,_,)). Define

L,=1I <1y = Ijp sy
J, = p*(X(r,), Y(7,))L,.

Then I, < I,_; and I,_, = 0 implies I, = 0. Thus, by using (a), we obtain

E*(I,) = E=?[1, ,E*(L| 4, )]
= E*>[L,_,E*"- (1,)]

= Ex’y[In—leP' (L), o(X(7,_y), Y(7,_,)) < N1]
+Ex’y[In—1E8®P' (In)’ p(X(Tn—l)’Y(Tn—l)) > Nl]

1
< aEx’y(In—l) + ——iEx’y(Jn—l)’
Ny

where 8 ® P.= §x(, . v(r, ,y ©. _P.- Next, by using (c), we get

E*(Jd,) = E*?[I,_,E=(J|#, )| < (C/0)E**(I,_,) + e “E,, (J,_,)-
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Finally, the assertion (b) guarantees that the eigenvalues of the matrix

8§ 1/N?
C/c e ¢

are less than 1. Let A, A, be the eigenvalues and take k € [A, Vv }\2,1) Then
(5.16) holds for some K, K 2> 0.0

ExampLE 5.21 (O.U. process).
o(x)=1I, b(x)=—x,
Lo*(x,y) =4 —20%(x,y), C=4, c=2,
C(r) = exp{ - (+* = 1)1},

T §?/4 Ny _ws
- O’N(r)=fe dsf ie du < o,
0 s

f(r) = j;rexp[(sz —1)/4] ds.

Take N, > 2 = C/c. Then 2/N? < 1. Since
Jlim f(N) = oo

for fixed N, and
RN N
N-w f(N)=-f(0)

we can choose N large enough such that
) - 1) | 2
f(N) —£(0)

This implies (5.15) and hence the hypotheses of Theorem 5.12 are satisfied.
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