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Abstract

This paper deals with the problem of existence and uniqueness of the stationary distributions
(abbr., s. d.’s) for the processes constructed in [4].The main results are stated in § 1. For the reader’s
convenience we first restate the existence theorems (Theorem 1 and 2) of the processes given in [4].
Then two existence theorems (Theorem 3 and 4) and a uniqueness theorem (Théorem 5) for the s.d.’s
of the processes are presented. The last result (Theorem 6), as an application of the previous ones, is
about the Schlégl model which comes from nonequilibrium statisticali physics. The details of the
proofs of Theorem 3—-6 are given in § 2—4. .

{\scrE} u

§ 1. Statements of the Main Results

_ Throughout the paper, we suppose that § is a4 countabls get, For each 4 €S, let
(Ey, pu, E.) be a complete separable meiric space, where & is the o-algebra gene-
rated by the metrie p,. Denote by (Z, &) the usual topological product space of
(Eu ps) (mES). Choose an arbitrary reference point 8= (f,: x€8), and suppose
that we are given a positive summable sequence (%,) on S.

For 2= (v, u€RN), y= (ys: uES) € F and acS. Define

Pal(®, y) = EP« (@, Ou) By
For simplicity, we also use the notations:

Du (w) = Pu (qu, u) Da (w) = Pa (ZU, a)
Set H*= {o € H: Pg(2,0) =0}, The o-algebra &= is induced on E* by the o-—algebra.
&. Denote by #* the projection of » on E*:
Pa(@”, @) +Pya(a®, 6) =0
Let us recall some. notions, We say that ¢(z) —g(z, +) is a g—pair on a mea-
surable spafe(X, & )if ¢(+) and ¢(+, B) are #-measurable for each BEH, q(z, +)
is a nonnegative measure on % for each € X and
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g(@, B) <g@) <o, z€X, BEZ.
A g-pair ¢(z) —q(z, +) is called regular if it is conservative:
g(@, X)=9g(@@), s€X
and there exists only one transition probability function P (¢, », B) (150, z€ X,
B &%) such that

-dgt—P(t’ @, B) lt=0=Q(‘vy B) _IB(w)q‘(m); s€X, ECH,
lirgP(t, o, {o}) =1, w£X,
>

The function P (¢, «, +) is often called & g-procass or & jaump process. For a given
g-pair, the general uniquenese criteria for ¢-processes were obfained in [6], and
some more practical suficioni conditions for uniqueness of g—processes are given in
[38]. Thus, wa inay and will cousider only the regular ¢g—pair subsequently.

Sinoce the ¢--pair ¢(z) —¢ (s, +) corresponds naburally an operator:

0f @ ~[ ¢ WF W) ~¢@f@). s€X, fEDB

where 5% =the set of all bounded Z-measurable functions, we also use Q instead of
g—pair,

We now return to our main context.

Suppose that there is fixed a sequence { A,}1 of finite subsets of § such that:
Aw?1 8. For each n>>1, there is also fixed a regular g—pair ¢,(®) —g.(z, +) on (E*~
&) . The problem we are interested in is to find a limit process of those g-processes.
P,(¢, o, +) determined by the g-pairs ¢,(z) —¢.(w, +) (n=>1). To this end, let p be
an &-measurable function (may be valued +oo) sabisfying:

1° 0<p(z) <+oo for each € E** and n>1;

2° for each 0<<d< + o0 and n>>1, the set {x € K: p(¢**) >d} is an open set in E;

3° for each 2 € K, p(z*~) 1 p(2) as n 1 oo,

Put By={z € B; p(z)<oco}, the o-algebra &, is again induced on E, by &,

One of our main tools in the study is the KRW-distance:

B.(P, Q) =it [B¥X Epa (@, y)u(ds, dy),

where « €.%y=the set of all finite subsets of §, and the greatest lower bound is com-
puted over all the measures u on £*x &* satisfying

w(Ax B% =P(4),
p(Bex A)=Q(4), Ace,

The probability measure having the above marginality is called a couple measure-of
P and Q.

To get the upper estimate for KRW-distance of two g—processes P;(%, ;, )
with state space (Ei, &) and g-pair ¢;(z:;) —g:(z;, *) (vesp. Q,), i=1, 2, the goal is
coupling, The most interesting coupling is certainly the Markov coupling which is.
also a g-process P (I; x1, @s; dys, dys) with conservative g-pair ¢(z1, @ws) —gq (@1, o
dys, dys) (resp. Q). Then, it is easy to show thal the operator Q must satisfy the.
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marginalities:
Qf (¢, #9) =Quf, @2EEy fELSE,
Qf (w1, +) =Qsf, 1€ EH;, fEbS,,
Woe then call 2 a coupling operator of @, and Q. For the given Q; (=1, 2), there
are infinite choices of coupling operator Q. The main result in (3) claims that any
coupling operator 2 determines a unique g—process iff so do the marginal operators
0, and Q,.
Now we can state our first existence result for the limit yrocess,
Theorem 1. Suppose that the following ccaditions bold:
1) there exists a constant ¢ €R sach that

[aat. i) @ 13) ~p @) <e+p(2)), @€ Ho, n>1, @

2) for each 1<n < m there exists a coupling operator Q,,, of 2, and Q,, such that
L, mPw (m:lr -'52) < u;/\; CuwPu (miv m’) T Cyp ('n‘r m) (1 +p (ml) +p (wﬂ)); (2)

wE Apy, @3, szEo,
where the non—diagonal elements of (¢, %, wE€ §) and the elements of ¢,(n, m)
(W€ Ap mz=nz=>1) are nonnega;bive and satisfying

Co(t, n, m) = 2 e +1) [BDYe. (n, m)](w)—>0, m>n—>,o0t=0,  (3)

where B, = (C4,o: 4, vE A,) and B, is the transpose of B,.
Then there exists.a Markov process with transition probability function P (%,
@, +) on state space (H,, &) such thab for each finite subset a of S,

linz(l)R.,(P,.(t, @, *), P@ @, +)) =0, xCE, t=>0, 4)

Moreover, the convergence is uniformly in € EY = {z € Ey: p(v) <N}. Finally, for-
fixed ¢, P(Z, #, -) is continuous in the foliowing sense: if z, z, € Ho, n>>1, sup p (@)

< oo and lim py (2, ©) =0 for every % €S, then
lim Ro(P (G, 2, ), P(t, o, +)) =0 ®)

for every a €.%, = the set of all finite subsets of S.
Remark 1, If

lim e¢,(n, m) =0, u€S,

Mm>n-re0

sap ¢,(n, m) +sup 2|0w|<oo

mon, UEAn
then the condition (3) holds,

The condition (3) means that the interactions are decreasing when the distance.
betwoen the components increases. The next theorem relaxes the restriotion for the
special p defined by

p(2) = %Pu(a’)kur sEH, (6)

Denote by . the set of all Lipschitz continuous functions with respect to the.
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above p. For f € #, denote by L(f) the Lipschitz constant of f.

Theorem 2, Let p be the function given by (6). Suppose that the following
two conditions hold,

1) there exist ¢; €R and a nonnegative matrix (b (u, v): 4, vE€S) such that

jq»(w, dy) (es(¥) —pn(w))<Bo+c:pu(w)+u§ pu(@)b(%,v), VE An € Eon>1,
" )

where

B¢>0, uES§ EBuk@‘<°°
Do (u, k,<Mk, v<S

and

for some M >0,
2) for every 1<{n<m inore oxists a coupling operator Q,,,, of Q, and Q,, such
that
Q,, mPr (m, #a) < u\:b/\;‘ Cuo Pu (21, @9) + ue g."‘\,\ Py (@2) Juo+ Pw (@3) 00 (m, m),

WE Nn, 21, 2a€ Ho ®
where (Cu,), (guw) and (c,(n, m)) are all nonnegative, they satisfy (5) and
Cu(n, n) =0, WE As n>>1; St'1‘p2gu.,<oo, 9)

Then, tehre exists a Markov prooess with transition probability function P (¢,
@, *) on state space (#,, &¢) suoh that
R, (Py(t, @, +), P(t, o, «))—0, n—>o0, s€H,. . 10)
Moreover, the convergence is uniformly in # in finite intervals. Finally, the semigroup
{P(#)}tn0 on ¥ .induced by P (¢, =, ) has properties: P(0) =I; P (f) is contraoctive
in the uniform norm,; there is a constant ¢; € R such that
[P@®F @) —P®f @) |<e*L(Hp, y). 11
Remark 2. If p(z) =3 pu(2) by, then the condition (7) implies (1).

‘We now turn to consider the stationary distributions for the processes con-
structed above. ‘ ' '
A funetion h: 0<<h<< oo is called a compact function if [#: & (s) <<d] is compact
set for every d € [0, o).
Theorem 3. Under the assumpthions of Theorem 1 with p(z) =3 pu(@) kb, if
“

for each u € S there is a compact function h,<C+ oo such that

pu(@) =hy(zn), B4 € Hy; sup by (@) ku<<oo (12)
and there are constants K € [0, co) and € (0, oo) such that
[2:@ @) (@) ~1a @) <K~ (@), 1)

where Ay (z) = ZS hy(@y) by. Then

1) for each nz>1, the proocess P, (¢, z, +)has at least a stationary distribution o,
of P,(t, =, +) satisfies

ja. () hu (2) <K/, (14)
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2) the process P(%, @, +) constructed in Theorem 1 bhas at least a stationary
distribution o, which can be obtamed as a weak limit of a subsequence of the w,’s
and satisfies

[n@ @ <K/, )
where

h(z) = %3 pu(@u, 0u) Fu,

Theorem 4. Under the assumptions of Theorem 2, if
e+ M<0, (16)

then the conclusions of Theorem 3 hold {0 She process Pu(%, 4, ») and the proocess
P(t, », +) constructed in Theorem 2, ‘

Remark 3. If o s a compact funotion for each €S, then the conditions (7)
and (16) imply the ccxditiorng (12) and (18) in the case that h,=p,, uES.

Rexhark 4, Afier the author compleled the Theorems 1, 2, 3 and the subsequ-
ent Theorem 5, Li~Ping Huang has proved Theorem 4 under the following stronger
conditions: T

S b ) =Sb(, v), uES, an
sup 2 b (v, v) +¢:<0,

Here our Theorem 4 ig an improvement to Huang’s result.
Theorem 5. Under the assumptions of Theorem 1 (resp. Theorem 2) with
P (@) =2 pu (@) bu if the coefficients (ew,) given in (2) (resp. (8)) also satbisfy

P Cw<—1<0 (18)
uezs | Cu | S K <0, 19

Then
1) the process P (%, », <) constructed in Theorem 1 (resp, Theorem 2) has at
most one s, d. w satisfying

IE 7 (d2) p (z) <o (20)
If o is such a distribution, then |
Ry(P(, z, +), ®) <K (q t)e'”',' z € B,, aGSVo, (1)
where K (&, ) is a constant independent of i;

2) for fixed an n>1, if the coefficients cp(n, n) given in (2) (resp. (8)) vanish,
then the pmcess P, (%, #, «) has at most one s, d. m, satisfying

[, on@m@) <. @2)
If m, is such a distribution, then
R/\n (P,.(t, @, ')v Wn) <K,,(m)e"", xEEA”; (23)

where K, (z) is a constant independent of ¢,
As an application of the above results, we now discuss Schligl model which
comes from nonequilibrium statistical physics (see-[8], (9] or [10]),
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Take E,={0, 1, 2, -} =Z,, and p, the Euclidean distance, For this model, the
generator is (formally):

of @) =3 [x(a;) +x4b..] (f (o-+6.) —F )

+3 17 ) 100 [ (£ 00 7 @)
+“§ A'ﬁa;"p (uv 'U) (f ((U—Gu"l- 60) '_f (w\’\ ]

where 6, is the element in & whose value correspondizg 0 % is ¢ne and other values
are zero, the constants A4+, A5 and a,, b,{u € S§) are positive, (p(u, v)) is a simple
random walk on §=2¢,

In the following, we wiil ¢ttn sllow § 1o be any countable set, and (p(u, v) to
be a general tracsition probability matrix on §. We also take p(z) =3 aukb.

Theorem 8. ¥'or the existence of a prooess corresponding to Schligl model),it
suffices that sup(a,V b,) <co. Then the process has ab least one s, d. Moreover, every
mw € #(="the get of all s, d.’s of the process) satisfies

jn(m)mﬁn, vES,

where
0<7m ")GS; 270k0="7"<°°-

Therefore,
[r@p@<l71<.
Purthermore, if we set
D=sup{jw (d2)p@): m eg’}<oo,
d=mf{jw(¢z@p(m): Weg’}>o,
then there exist m, and @"* € & such that

[#* @)@ -D,

Iav. (o) p (@) =d.
Indeed, ltlm P, 0, «) =mo€EP is such a m,. Finally

G ={(A1, +*+, Ms) ER’: Iw € P such w#mo} # RY.
In view of the lagh assertion, what we need for the further study is to show that
%= ¢ which would give us the existence of phase transition for the Schlgl model.

§ 2. Proofs of Theorem 3 and Theorem 4

Our proofs base on a result due to Dobrushin [7; Theorem 1],
Theorem 7. Let (E, p, &)be a complete separable metrio space, P(z, dy)be a
transition probability function on (E, &). Suppose that
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1) waP (z, dy)f (y) is continuous function for each bounded Lipsehitz contin~

wous funetion f;
2) there exist a compact funetion A< oo on E and constants e€ [0, 1), O€ [0,
o) such that

jP(w, dy)h(y) <O+ch(xr), o€E.
"Then, for each #9€ B, there is a stationary distribution a,, seiisfying
J”"’ (dx) b (x) <max{0 +ch(a,s), O(1—¢) 3},

The following result, dve tc Basig [1; Proposition 1], is simple but very useful:

Lemma, Let (E, §) bsan arbiirary measurable space, P (s, dy) be a trsnsi-
tion probahilily fuuciion on (&, &). If there exist a finite nonnegative funotion g
on # and oovstants JE [0, oo0), ¢€ [0, 1), such that

[P@ ag@)<c+og@), o€k
Then
Jar(da;) 9(@) <O(1—¢)~2
for every stationary distribution & of P(z, dy).

Proofs of Theorem 38 and Theorem 4.
(a) Using the first assumption of Theorem 3 and [4; Lmema 1] we get

jP,.(t, &, W) b () <™ —1+6"hn(z), o€ EHM, n>1. (24)

Hence by the above lemma, for each m, € &, =the set of all 5. d.’s of P,{¢, », +)and
$>0, we have

fn (@) @) < @ —1) / 1 —e7). (25)
(b) Fix ¢>0. Denote by &,(¢) the set of all s.d.’s of P(z, dy) =P (s, o, dy).
Because k, is compaet on K and the function o— J‘P (z, dy)f (y) is continuous for

every bounded function f on "~ that is Lipschitz continuons with respect to p,,, we
gee that Theorem 7 is available, and so &, (¥) # ¢.

(e) Using the methods in [1],we can now claim that &, () is compact in weakly
convergence topology, %,+ ¢ and (14) holds,

(d) By (12), (14), we have

an(dm)hu(m) <max{K /5, sup ho(Bu)bu}/be uES,

Hence, by [7; Lemma 2], one sees that {mws} (w,EF,) is relatively compact in the
finite dimentional weakly convergencs topology, We now choose a subsequence
{mn,} iz1 if necessary such that m, converges to o as k—oco. Using (14) again, it
follows that

[ 2ra(02) o () <K /1, m<n
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and so, by [7; Lemma 4], we have
[#@ (@) <K /n.
This gives us
[#(aa)p(0) < [m (@)h@) <K /m<oo, (26)

To conclude the proofs, we now need only to check that v is an 8.d. of Pt o, +).
For this it suffices to show that

[ @@= =@ |, P« 7w @)

for any a €.% and any bouaded function f on Hy, which depends on E* and is
Lipschitz continuons with respect to p,.

In the foliowing. we fix such an f.

First, consider the process given in Theorem 1. Let “A % B” denote that | A~ Bl
< 8. Then for every ¢>0 and large enough N we have

[, 7@ P®F@) ~lim [ #(@) Pa(®)f (")

=lim 1im [ %, (d0) P (8)f (64") Llim lim [, (d0) Pa(8)1 (")

M—rco Koo

—tim [ 0 (02 Pa,(9F (o) =lim [ i (00) P 2

(
Koo J B

Qg |, (@0) Py (0 @) =1im [ o, (d0)f (@) = [ (d)f a).

The first equality comes from (26) and [4; (13)]; the second and the last equalities
comes from the convergence of w, —>w; the s~equalities due to (12), (14) and[4; (14)7;
finally, the sixth and eighth equlities due o the property that m,, is a stationary
distribution of Py, (¢, =, *).

The proof of Theorem 3 is now finished.

Next, consider the process given by Theorem 2.

Without loss of the generality, we may and will assume that ws—m. Olearly, wae
have

|[#n(@) Pa )5 (@) - [w (@) P1)F (a) |
<| @) Pa (21 2 = [ma (@) Pa(t)f @) |

+ | [ (@2) Pa 811 27 = [ (@2) Pa®)f (2=)

+ | [#(@) Pa(t)f @) - [w(dm) P()f @)

+ | [ (@) Pt f @) - [at@) P (1) @) - I+ I I TV

By (10), (11) and the dominated convergence theorem, we have
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lim ITI =0, m>1,

n-—»o0

lim IV™=0,

By the last paragraph but one of [4], (11), (26) and the dominated convergence
theorem, we also have .

lim IT?=0, m>1.

Since {P,(£)f(z*"): n>1} is a uniformly bounded functicns whieh are equicontin-
uous at each point of E*» and mw,—m, we rhiainr

Im IT7=9 A ,Da.

Finally, by [4; Lemms:a 11 and the condition (7), we obtain the following more
preoise estiinateo thax ttose given in [4; Lemma 4]:

oo 2 )
[Patt, 5, o)< 2 pu(@)e FE 800w, o)

—0

t oo
+ 3 a0 3 _lﬁ'— 9 (u, )ds (28)

UE AR

and so

[ (@) (Brnant@) AR
= lim [ora(32) [ Palt, 2, ) (Brana(®) AN
< [ (@) T [PaCt, 2, ) (Prninn@) AN
< [0 (@) B [ PuCt, 2, d)Ppnrn (@)
Letting N 4 co, we get

o oo tl
'3 )
T (32) Dpoya (7)) < ug,.ﬂ“jo & E T E“,M b (u, v)kdt
the right hand side is dominated by

S, BE B 0w k< — S8k (ex+ M) <o,

=0 1! ve 53nm

nence, we have

e L) oo 14
lim 0 5 (d2)p 11, (2) <lim 3} B,,jo ot 3 F- 3 8w, k=0

m-—>00 p-ro0 VE Am

This shows that _
limn B 12~ lim Tim | [ @) (f (") £ @) |

<L(f) lim T oy (@) ppira(2) =0.

The proof of Theorem 4 is now complefed.
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§ 3. Proof of Theorem 5

By the condition (19) and the main estimate [4; (12)] (resp. [4; Lemma 5]),
using the notations in Theorem 1, we obtain

R, (P(t, @y, »), P, s, +)) <Hm Ru(Pu(t, @1, ), Pa(3, @2, *))
<Im (orp. (as, 22)) (W) = [™'p. (w1, 23 (w), ©EF. iz, 24 € o,

Set
eB,.t= (c,(;,?, (t): ¥, W(: /\’«‘)5

eBi

={Cu(¥): w. WE N\»),
From (18), it follows tLas

Zow( <6, we s (30)

Note that, for n>>1 and aC A, €.%,,
Ro(Pa(t, @y, +), Palt, @, +))—>0
as p(z,, ©)—0,
By triangle inequality, it follows that
y>Ra(Pu(t, , +), Pu(t, y, *))
18 continuous with respeet to p, and so is &—-measurable. Thus,
y—=>Ba(P(, =, +), P(t 9, +)) =lim Ra(Pa(i, &, +), Pat, 9, )

is also &p—measurable. On the other hand, since our state space is complete and
separable, R, is indeed attainable. That is, there is a coupling measure P%%¥ (dz,,
dag)of P(t, , +) and P(¢, y, -) such that

R.(P(t. @, +), P(t v, *)) =jP<m1, 22) P2 (day, dy).
Clearly. IW (dy) P** ¥ (dw, dws) is a coupling of P (¢, , +)and Jor(dy)P(t, ¢, +). From
this fact and using (29) and (30), we finally get ’
Bu(P(t, 3, +), @) =Ru(P(4 2, -), [w(@)P(t, 9, *))
<[, #@)R(P & 2 ), Py, )

<3 Sew®|[p@+[ n@w@)]

WER HE

<3 Sow®[p@+[ P@a@) |<K (@ a)e,

wea ues
This proves the first conclusion of Theorem 5. The second one can be proved in the
same way. :

§ 4. Proof of Theorem 6

(a) The existence of the process corresponding to Schlégl model was proved in
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[2]. One can also check that the assumptions of Theorem 1 are satisfied in the case
of (p(u, v)) having finite range and the assumptions of Theorem 2 are safisfied in
the general case. The following remarks may be helpful for the readers: First, the
condition (1) (resp. (7)) guarantees the regurality of @, and hence the regurality
of any coupling operator Q,, ., of Q, and 2, (see [3] for the details). Second, we
may use the coupling:

@n,wf(ﬂ?, ) =“62A kzZﬂ {{qu(@s, 2ut+F) —qu (Y, zu+%) )T

[f@then v) —F @ ]+ @Yo Vot i) — qu@u Tut+F))F
Uf (=, yt-Rew) ~f (2, )1+ qu(@w, zut-k)

AN otk [ (o+Fey. y+ke,) —Ff (@, y)]}

+ 3B e vt D) [F @yt ke ~f (@ 9)]

+As u’%”p(u, ’l)){(fva‘ya)+[f($_3u+ Gy y) _f(a;r y)]

+ (u—o) [ f (@, y—eute,) —f (2, )]
+ 24 ANYu(f (@—6u+6,) —f (o, ¥)]}
+ A5 [“92 Yu Dgnp(u, )+ Dye 2 p(y, v)]

Am\An e Ap VE Am\An

[f(z, y—eute) —f(2 )], m>n>1, (31)
where

2
?\.10.4( 9 >+}‘:4bm j=@+1, ’I/>O,
g«(’lh j) = 7\'2< ?
3
0, otherwise,

(b) We now prove that Theorem 3 (resp. Theorem 4) with h,=p,(u€8) works
for Schlogl model in the finite range case (resp. in the general case), To this end,
take >0 and set

d=sup{(?»5M+n—)\,3)fb+)\,1<;>a.,—7\.2<;> %?O, uGS},

K =02 bibu+d 2k,

)+m, j=i-1, i>1,

Then
0<d<<oo, 0<K <0

and it is easy to check that the condition (13) holds. For Thsorem 4, the proof is
similar,

(¢) As we have proved in (b), there exists ¢y € R such that ¢;+M <0 and (28)
holds. Thus, by (10), we have

oo ] t oo z
JP(t, z, Ay, <D me™ § 'th bY (u, v)+> Bujo et g st b (u, v)ds.

Now. the same argument used in the last part of the proof of Theorem 4 shows that



18 ’ ACTA MATHEMATICA SCIENTIA Vol. 9

Jw(dm} :c,,<2 B“J oat Z b(” (u, v)dt="7,
for each w € . Also,

7] =2 7Veku<— | B/ (es+M)<oo.
(d) We-have known that

[a@p@ <71
for each @ € &, Now, let {w,} € & be a sequence so thas
[n (d0)p (2)—D.

‘We may choose a subse¢uence {m,,) if necessary such that mw,—x*. We now prove
that »* € &. Obviously,
| D=1lim j T, (02) () >J’ *(da) p(a).
Therefore, for each f € &* n:’;:,(a €.%), we have
fa*@)f @) ~ [ (@) P)f @)

~lim f jn (d2) P(4)f (z) —jw* (@) P @) f ()

<Tim Tm jar,.,‘(dav)P(t)f(mA"') f *<dx)P(i>f(mAm)|

Mo K~»oo

-+ lim [ 0, (02) P(8)F (07) — [ (80) POF @) |

+Tim [ (d2) P @) (o) —jo?* @) P @) |

<L(P®)f) Tm lim [, (@) oy, (@) 0.

In the last step we have used the same approach used in the last step of the proof of
theorem 4, since we now have (32).
Similarly, one can get a m, € £ such that

[, (@2 p(a) =a.
(e) Sinoe
(PG, 6, ap@) <7i<eo, 10,

one sees that {P(, #, +): t=0} is relabtively compact in the finite dimensional
weakly convergence topology. On the other hand, Schldgl model is monotone, by the
standard ecoupling argument, we get P (¢, 4, +) —a limit we € 2. Using the coupling
argument again, it follows that

[wo(da)f @) = [, (@) £ (@)

for each monotone function f, and so
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jm(dw)p@) —d.

(f) For Theorem 5, the following condition is sufficient
Ki+2 (M —-1) <0,
where the constant K3 is computed in [2]:

Ki= sup { (M@u+2a) (J1t j2) _»(}\,mu f’\«'s)——, Ao (214 7z+,?2)}

. $2>41>0
uel

From this we see that ¥+#R}. An important special caze iz that (P (v, v)) is the
gimplegt random walk on Z% a@,=1 snd A;=1. In which the condition

:\41 s n/\g
+1
A2 T Ay

will guarsaiee “he nnigueness of s. d. of the process with suitably chosen M >1 and
(Bo).

The proof of Theore™ 6 is now completed.
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