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ABSTRACT

For interacting particle .systems, two existence theorems are obtained; each of
them is described by two simpler conditions. The theorems cover the models ‘reatea in
Refs. [1—8] and [15—17].

1. INTRODUICTIGN

An earlier and simpler wodel of interacting particle systems with the non-
compact space zero rvauge process, was proposed by Spitzer™ in 1970, for which,
an existence theerem in a special case was given by Holley™ (1970); and then, in
general case, given by Liggett®™ (1973). Recently, Andjel™ (1982) simplified
the proof of [3] by using the technique developed in [5] (1981), where Liggett
and Spitzer considered the existence and ergodicity for six models. On the other
hand, Basis'® (1976) studied quite a general model of interacting particle systems.
Unfortunately, the results in {5] and [6] are not entirely suitable for the reaction-
diffusion processes discussed in [7] and [8] which often come across in the study
of nonequilibrium statistical physics (see Refs. [9] and [10]). The main diffi-
culty is that the state space is neither locally compact nor o-compact, and the op-
erators usually are not locally bounded either. In this paper, we use the theory of
g-processes, and the results in [11] combining with the idea in [5] and [6] to
provide two existence theorems for interacting particle systems.

This paper rests on a basis of [11]. For its stationarity and ergodicity of the
processes, we will discuss in another paper.

Throughout the paper, we suppose that S is a countable set. For each u€ §,
let (E,, oy, &€4) be a complete separable metric space, where &, is the algebra
generated by the metric p,. (E, &) denotes the usual topological product space
of (E,, &,) (u€8). Choose an arbitrary reference point 6 = (8,; u€ 8), and
suppose that {k,} in § is a positive summable sequence.
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For z = (x,; u€ 8), y= (y,; u€ S)€ E, and eS8, define
pa(x; y) = Z Pu(xu: Gu)kus
Ea

(we also write o,(2,, 6,) as p,(z), and p.(z,0) as p.(z)), and set E* = {z€ E;
pswa(z, 6) =0}, The o-algebra &* is induced on E* by the o-algebra .
The natural projection of z on E® is defined by
pu(z%, z) + psa(a®, 6) = 0.
Let us denote the set of all finite subsets of § by &;,. We assume that there
is a fixed sequence {A,}7C %, such that A,1 8. For each n>1, there is also a
fixed regular g-pair q,(z) — q.(x,.) on (E*, &4n) (see [11],[12]). The problem
we are going to study is to find a limit process of these g-processes (jump pro-
cesses) P,(f, z,.) determined uniquely by the given g-pair gq,(z) — g.(z,.). To
this end, let p be an & -measurable function (may be valued +o00) satisfying:
1° 0 << p(2) << +0o0 for each z€ E4 and n=1;
2° for each 0 <<d << oo and n>=1, {z€ E:p(a*) > d} is an cven set in E;
3° for each z€ E, p(a')}p(z) as ntoo. Put E,={r€ K:o(x) < o0}, The
og-algebra &, is again induced by & on K,
We need the KRW-distarce:
RAP, Py =infEp.(E, &)
on (K°,&*) (a€ &7;), see [6] or [13].
Now we can state our main results:

Theorem 1. Suppose

1) there exists a constant ¢ € B such that

~

yq,,(x, A (p(y) — p(x)) < c(1 + p(2)), z€ By, n>1; (1)

ii) fér cach 1<<n<<m, there exists a regular coupling Q,,., of 2, and Q,
(see [111) such that

Qn,mpw('fu ;)

S Z CuwPu(T1s ) + cu(n, m)(1 + p(2)+p (1)), (2)

ue Ay,
w € An} L1, .1726 EO;
the non-diagonal elements of (¢ ,:u, wé€NS), and ¢, (n, m) (Wé€ A, m=n=1)
being nonnegative, and

c,(t, n, m)

* k
= (ng—ll)-'-[(B;")kc. (n, m)1(w) =0, m =n-—>00, t =0, (3)
k=0 .

where B, = (c,,:u, v€ A,) and B} is the transpose of B,. Then there exists a
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Markov process with transition probability function P(t, x,.) on state space (E,,&o)
such that for each a€ &y,

limRa(Pn(ty Z, . ),- P(t’ Zy. )) = 0, r€ Eo; t> 0, (4)
Moreover, the convergence is uniformly in z€ BN = {z€ E,: p(z) < N}. Finally, for

fized t, P(t, x,.) is continuous in the following sense: if z, x,€E,, n=1,
sup p(#,) < o and limp,(z,, ) = 0 for every u€ 8, then

LmRB.(P(, %,5.), P, z,.)) =20

n->a

for every a€ &;.
Clearly, if

lim e, (n, m) =0, ues; supA e, (n, m) + sup Z |euy | < o0, (5)
mzn, €A, u >

mgzn->x .
then the condition (3) holds.

The condition (3) means that the interaction is decreasinvg when the distance
between the components increases. The next thecorem relaxes the restricvion for
the special p defined by

p(z) = D) eu(@)k,, =€ K, (6)

4€S

& denotes thie set of all lipschitz continuous funetions with respect to the
above p. For t¢ &, L(f#) denotes the Lipschitz constant of f.

Theorem 2. Let p be the function given by (6). Suppose

i) there exist ¢, € R and a nonnegative matriz (b(u,v):u, v€ 8) such that

j 2.(5, dy)(p,(y) — p.(2))

< g, + c1p, () + Z Pu(x)b(u’ v), (7)

uea,

V€A, x€¢Ey, n>=1,

where

18u>07 we S; z lguku< 05

and

Z b(u, v)k, < Mk,, ue 8

for some M > 0;
ii) for every 1< mn<<m, there exists a regular coupling 8,., of Q, and O,

such that

-Qn.mpw(xly 'EZ) < z cuwpu('xl) xz)

HEM,
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+ D 2l @) guw + Pul(m)eu(n, m), (8)

PTYIRY

w€ Ay, 2, L€ Hy,

where (¢us)y (gus), (cu(n, m)) are all nonnegative, and satisfy (5) and
¢y, n) =0, W€ Ay, n=1; sup D Guy < 0. (9)

Then, there exists a Markov process with transition probability function P(i, z,.) on
state space (E,, &,) such that
R, (P.(4 ,.), P}, z,.)) >0, n—>co, z€ E,. (10)

Morcover, the convergence is uniformly in finite intervals. Finally, the semigroup
{P(t)}smo on & defined by P(t,z,.) has the properties: P(0) = I; P(t) is a con-
traction tn the wuniform norm; there is a constant c¢;, 0 << ¢; << 00, such that
| P($)f(z) — P(Of(]| < eL(f)p (=, y)
t>=0, z,y€ E,, f€¢ <. (11)

II. Proor or THEnzEM 1
Let us begin with several simple lemrmas in this seetion.

Lemma 1. Let g(=) — ¢(2,.) be a o-puir on a general measurable space (X,
B, p and f(t,.) (£ 2:0) le nonnegative B-measurable functions. Suppose that
f(t, ) vs differentiuble with respect to t, for every z€ X, and f(0,.) = ¢. Then,
tn order o make

SPm‘“(t,x, A ely) < f(t, @), £=0, v X,

where P™*(t, x,.) ts the mintmal q-process determined by the g-pair, it s suffi-
cient that

% f(t, z) = 5 gz, ap){f(t, y) — @@, #)], t =0, ze X,

Proof. Simply use the comparison theorem [14, Theorem 6] and the backward
Kolmogorov equation:

~t el
P(t, z,A) = S PRLIE AR S q(z, dy)P(s, y, A)ds
¢
4+ 7 1Ds(xz, A), t>=0, x€¢ X, A€ B.

Without loss of generality, we will assume that the constant ¢ in (1) is
nonnegative. The next result is an immediate consequence of Lemma 1 and the
condition (1).

Lemma 2. There holds

-

5 Pt z, dp)p(y) < (1 + p(x))e* —1

t>=0, 1€ By, n>=1,
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where P,(t, z,.) is the q-process determined by q,(x) — q.(x,.).

The next result is our main estimate.

Lemma 3. Under the assumptions of Theorem 1, we have
Bt 21y 1) = | Bun(ts 20, 225 sy ds) puns 02)

< 1™ p(2,2)] (w)
+ [ 1@+ p@) + pG)er =110 e, (n, m))(w)s,
t>=0, 2, € By, we A,, m=2n=1, (12)
where P,,.(t; x,, 2,;.) is determined by 9,,,.
Proof. Fix n<<m and define column vectors:
R(t, z, 2,) = (BY.(t, @, 2):w€ A,),
Pay, %) = (P21, 7):w € A,),
(D(t,' 2, %) = ([(2+ p(x) + p(x))e” —1]c (n,m) :ws A,).
Then, (12) is deduced as follows:
R(t, x,, 1) < oo P(x,, ) + g; eB:(l—”G‘(s, Ty, 2,)ds.
By Lemma 2, we nced orly to cheek that |
el":' B} P(x, z;) + eB:t BX S: e—B’TJ D(s, x,, x,)ds
+ o, z,, x2)
> [ GunCan, 25 dy dgde™ [P, 1) — Plar, )]

*
B" (£—s)

+ SQn,m(xl; &232; dyl) dyz) SO €
— (s, z,, x,)]ds,

[D(s, W15 yz)

where Gpom(@1,2%) — Gnm(2:, 223 dyy, dy,) is the g-pair determined by &,,,.. BEquiv-
alently, the above inequality becomes

B¥*

ft
e BXP(x,, x,) + S e
0

B’T”_s)(}i— D(s, x,, x,)ds + eB:t (0, z,, x;)

> géa,m(xu 5 dyy, dyz)eB'T’ (P(yss ) — P(&0; @) ]

o [ Gy 25 A, AP () — () + (P () = p(2))]
. 'E 6P (n, m)ds.

£

But by the conditions (1), (2) and the nonnegativity of P , the above right
side
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*
BYe-s) d

*t 3
< % [BXP(ay, 2,) + 0(0, xx,xz)]+§oe 2 0G5, a0, 7)as,

which completes the proof.
Now we are in a position to prove Theorem 1. Taking z;, = &, = z, we see
RY.(t, =, ) < 2(1 + p(x))e“c(t, n, m),
t>=0, ze By, we A,,m=n=1,
hence
R(P, (¢ x,.), Pu(t, 2,.))

< g Pow(ts 2, 23 dys, ) Dulys, 1)

= > RY,.(4, z, x)

wea

< 2(1 + p(2))e” D] cult, n, m) =0,

wea
m=n—> 00,
Starting from this fact and using [13, Theorcm 2] and the procf in [61, we may
construct a probability measure P(¢,z,.) on (I7, 4 ) with the following properties:
a) for fixed ¢ and B€ &,, P(1, ., B) ie & o-measurable;

b) for each + = 0 and .€ E,,

ﬂ P(t, z, dy)p(y) < (1 + p(x))e” —1;

¢) for every a€ &4,
},i_I.I:,R“(P"(t’ z,.), P(t, z,.)) = 0, uniformly in z€ F™.
In particular, it follows that
P(t, z, BE)) =1, t=0, z€ E,.
By the property c¢), the condition (3) and the estimate (12), we get the final

assertion of Theorem 1.

To complete the proof, it remains to check the semigroup property. That is

[pct+s, o dapren) - | Pt @ an| s, v, @)1

for each bounded & -measurable function f. Note that if two finite measures co-
incide on finite dimensional open sets, then they must equal. On the other hand,
each such set can be approximated by a bounded function which depends only on
finite coodinates and is Lipschitz continuous with respect to p, for some o€ ;.
Therefore, it suffices to prove the above equation for such a function f. In the
following, we will fix such an f.

First, by (12), the property ¢) and the final assertion of the theorem, we
obtain

H Po(t, atn, dy) F(y) — | P 2, dy)f(y)
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N

Po(t, z*n, dy) f(y) — S P.(t, o', dy)F(y) ‘

|
|| Putts s ) 1) = [ 2Gs 2, a)f) |

+ || Pt oty an £ = | P o an | o,

for n— 00 and then m — c0. Hence

tim | PoCt, o, d) 1) = | P( 2, ) 1) (13)
uniformly in « on p-bounded sets. Similarly,
tim [[ PaCt, o, anfn) = | P, anfon] = o (14)

uniformly in # on p-bounded sets.
Next, by Lemma 2, for given &€ > 0, there is an N large enough such that

Po(t, o, {y€ B:p(y) > N}) < e (“—]‘fﬂ) n>1. (15)

(&)
Finally, if we use “4 = B” to denote “|A — B| < &”, then we gct
EP(t, x, dy)g P(s, y, dz}f (2}

(
= tim | 20t 2, 3| Pals, v, d2)f(2)

rimend [

== Jim lim ‘ P,(t, x, dy)gEA P,.(s, y'n, d2)f(2)

>0 nore ) J

(&)
= lim lim SE(N)P"(t’ €Ly dy)LA Pm(87 .?/Am; dZ)f(Z) (by (15))
0 m

= tim [0 ot 2, dp) |, Pals, w7, d)1()  (by (1))

©

= tim [, Palts 2, @) |, PaGs, w, d2)(2) (by (14))
&)
=tim | Pu(t 2, dp) | PuCs, w, 4221 (2) (by (15))

= limL P.(t+s, r, dnf(y)

_ [E P(t+s, x, dy)f(y).

This finishes our proof.

III. Proor or THEOREM 2

We first note that Lemma 2 still holds because the condition (7) implies (1).
Next, using the methods in the proof of Lemma 3, we may prove the two fol-

lowing results:
Lemma 4. Let (7) hold. Then there exists c, € [0, 00), such that
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( P.(t,z, dy) o, (1) < D) [ou(®)ed’ + g,04']

“€y

©

!
3 L, v, (16)
I=0 Y.

t=0,2cEy,ver,n=1,
where (bP(u, v):u, ve A,) is the l-tvmes product of (b(u, v):u, vE A,).
Lemma 5. Under the assumptions of Theorem 2, we have

Eﬁ,m(t Tyy ) < {33*‘17-(“1: wz)](w)

§ ds ) [ou(2) e + Be] Z

w€ Ay,

LB (ke 0. (ny m) T ()

+ s 30 Toulmdew + o] z;,—
- =0 Vvl

HEAy,

S 0, )k Vg, 1w),

vEANA,
t=20,x,€E,weca, , m=2n=1
By Lemma 5 and the assumptions of Theorems 2, we now obtain

R, (P, {5, ¢,2) Pu(t,o,3)—>0, m=n—>o00, 10, z€E,. an

"N N Yyt )

In partieular,
R.(P,(t, 2,.), P,(1, 2,.)) >0, m=n— 0, (18)
t=0, 2€ By, a ¢ ;.
From this, as we did in the last section, we can construct a probability measure
on (E,,&,) with the properties a) and b) mentioned in the last section so that
RA"(P,,(I‘, z,.), P(, x,. ))—~0, n— o, 19
t=0, z¢€ E,.
However, the convergence in (19) is not necessarily uniform in z€ E{, which is

just the point why we need a different approach to prove the semigroup property.

Lemma 6. Let < satisfy sup {L(g):g € @} << co. Then for each t =0
and z € E,, we have (P,(3) — P(#))g(z) — 0 uniformly in g€ % as n— co.
Proof. Set g,(z) = g(z*#),z€ Ey,n =1, then sup L(g,) << L(g). The assertion
n2>1

follows from the property b), (19) and
[ (P.(8) — P(¢))g(x) |

L(9)B4,(P.(t, ©,.), P(, x,.)) + L(g) D] pu(@)

UEA,

-

<
<

+ L) | Pt d) D) pulw).

UeEA,
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Now, by Lemma 5 and the assumptions of Theorem 2, we see that there is a
constant ¢, € [0,00) so that

| P.(8)f(2) — P.(8)f (%) | < L(f) g ﬁnm(t; Ty, Tyy AYyy A1) 0 (Y1s Y2)

< L(f) [ Z S ﬁnm(t; Tys T2y GYss AY) D w(Yss Y2)

W€,

+ Z (21, xz)]

we A,
< e’ L(f) p (1, %2).
By this and Lemma 6, we get (11).

Now, it is not difficult to complete the proof of Theorem 2 by means of

[5].
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