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Coupling is probably the most important technique in the subject of interacting particle 

systems. It is also very useful for other stochastic processes. For discrete time Markov processes, 
the coupling theory was studied expansively by Dobrushin tsl, Griffeath tgl, Wasershtein tl~ and 

others (see the conferences in[9]). For continuous time Markov processes, it becomes more 

complicated. This paper is devoted to discussing the coupling theory for jump Markov processes. 

In Section 1 we introduce three basic conditions for the coupling. Then, In Sections 2---4, we 

discuss the conditions respectively. Finally, Section 5 presents some basic couplings which should 
be most useful in the subject we study. The main results of the paper can be shown by Theorems 

(14), (16), (21), (24). (26), (30), (36) and (37). 

In the subsequent paper t61, which is mainly based on this paper, we will give a construction for 

large classes of Markov processes on product spaces which need not be compact. 

w Basic Conditions for Coupling 

Let (Ei, ~,) be an arbitrary measurable space and (X~/))t~0 be a Markov process, i = 1, 2. A 

coupling is simply to construct:a Markov process (~t),~o of the two processes (X}~ i = 1, 2 on a 

common probabitity space with the product state space (E, s = (El x E2, s x s which has the 

property: 

(1) marginality: 

Pxl'x2)[X, zA1 x E23 =/~I[X}:~AI] 

xiaEi, Ai~s i = 1 ,  2, t>_,0. 

~xl,x2~[X,~E1 x A2] = P~2[~2 )eA2] ,  

*~ Partially supported by the Ministry of Education and the Foundation of Zhongshan University Advanced 

Research Centre. 
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By using the transition probability function, one can rewrite (1) as" 

(2) P(t, (x,, x2), .4, x E2)=P,(t,  x,, AI) 

~(t ,  (9~1, X2) , E 1 x ~2)  -~ P2(t, ~f2, ~2 )  

zi~Ei, A ~ s  i, i = 1 ,  2, t~>0. 

*~ It is also called q-process. 

where 

q,(x~) = q,(x l, El) < oo, 

~ttP,(t, xi, B,) t=o = q,~xi, Bi) - q,(xi)J(x,, Bi), xi~E~, Bi~Ei, i=  1, 2 

where 6(x, B) = Is(x ) = 1, if x ~ B; = 0, if x ~ B. We call a q-pair regular if it determines a unique 
jump process/~t, x, .).*)Thus, a coupling for jump processes requires reasonably the following 
property: 

(3). regularity: the q-pair ~(~)--~(~, . ) i s  regular. 
Sometimes, a coupling.is used to compare an order relation of two copies of the same jump 

process with different starting points. In this case, E 1 = E 2 = E, s = s = s and E is endowed 
with a semi-order "~<". One wants to know whether the process (Xt)t;,o has 

(4). order-preservation: 

xi~x2::~XlX2}IX~tl)~<X~:2)l- .~l , t~>O, (x,, x 2 ) ~ .  

A function f on E is said monotone, if 

(5). ~ , . < ~ . ~ , ) ~ ) ,  (x,, ~ ) ~ .  

Now, if (2)--(4) are satisfied, then for each nonnegative monotone function f ,  we have 

(6). x, ~ x~ ~ ~,"A~,) ~ ~2,A~,), (~,, ~ ) ~ ,  ~ ~> o 

~ / ~ x ) =  fP~~ x, dy) ./(y), i =  1, 2. 

Throughout the paper, we assume each (E i, s is separable. That is, {x} ~ s for each x ~ Ei. Also, 
we restrict ourself on jump process P~(t, xi, .) with totally stable and conservative q-pair q,(xi) 
-q,(xi, .), which means that 
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The conditions (2), (3) and (4) are usually needed for a coupling. However, these conditions 
are indeed not explicit, they depend on the unknown process J~t, ~,.). The explicit condition 
should be described by the given q-pairs q,(xi) - q~xi,.) (i = 1, 2) only, and this point.is just what 

are going to do in the next three sections. we 

w 

tion, 

Marginality 

Let ~i~t, x, ~) be a jump process with q-pair ~x~ - q(x,.), then by the conservative assump- 
one can see that 

limJ~t, x, ~)-~(~, "~)=q(x, _~)-q(x~I~(~, x e ~ ,  ~ r  
tx~O t 

From the condition (2), it follows that 

Hence, by 

q,(x,, A , ) -  q,(x,)la,{x,) 

= l i m P , ( t ,  x,, A , ) -  f~x,, ..4,) 
t'~o t 

= lira iir~t' (x,, x2), AI • Ez)-5(x,, A,) 
t x~ O t 

the monotone class theorem, we get 

f q,(x,, dyx)J{y,) - qt(xt)j~x,) 

I" 
Jq(~, ,  X2; dyl ,  d y 2 ) . ~ f l ) ~  ~ x i ,  ~2)Axi), 

Regarding fEbs as a bivariable function, and using the 

one 

(x,, x2)e~, Axes 

r 
fi./(Xl, X2)~ 

can rewrite the above equality as 

(7). ~/[. ,Xz)=f~ ~ independent of x 2, f s b E , ;  
t~x,,.) = fly" independent of xx, fsb~2. 

*~ bE is the set of all bounded s functions. 

following operators 
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In other words, we have proven 

(8). L e , - m _  (2) ~ (7). 
Next, we prove (7)=~(2). 
It is known that q-pair q(x)-q(x,.) on a separable measurable state space (E, s determines 

uniquely the minimal jump process Pmin(t,x,.). If we define 

(9). pmin(~.,X,.)= [~ pmin(t,x,.)dt, , l>O,  x e E  
d o  

then p,~i~(~,., A) is the minimal solution 

(lo). A~)=  j ~ - - 4 - ~ ) ~ ,  - ~ + ~), 

for each fixed A > 0 and A e s 
e(t,x,.) a jump process. 

(11). Lemma. Supoose that (7) ho/ds, then 

~"(~,(~, ,xz) ,A~ • E~),< P?~~ 

/~"(~,(~,,  ~ ) ,  El • As) .< p~'"(~, ~ ,  A,) 
X>O,x~eEoA~es i = 1,2. 

to 

x~E 

We also call the Laplace transform P(~, x,.) of a jump process 

where P~'~(~, x,,.)(i ffi 1, 2) and ~'"(~,(xx, x2),. ) are the minimal Jump processes determined by 
q,{~,) - q~, , . )  and q(~) - q(~,.) r~pe~ti~eZy. ;n m r t ~ , l a r ,  i f  q(~)-q(~,.) ~ regular, then so are 
the marginals. 

Proof. By the comparison theorem [2; Theorem 6], it suffices to show that 
h(xl,x2) = P~'ia(~,xl,Ax) satisfies 

fo(~,~;ey~,~y~) ~, , ~(x~,A,) ( x ~ , ~ ) ~ .  (12). h(~, ,~,)= j - ~ u  ~ , y ~ ;  + ~ + q(~,,~),  

This follows from (7) and  (10) immediately. 
(13). Theorem. Supose that ~i)~l(,q,.) is regular, then (2)<:~(7). 
Proof. Since Lemma (8), it is enough to prove (7) =~ (2). By Lemma (11) and the assumption, 

one can see that 
(14). P(~(xl,xz),Ax x Ez) ~ P,(~,xx,Ax) 

If 

for 

> 0,x~eE~, i = 1,2, AxeE ~. 

(IS). P(a,(x,,~,),A, • E,) < P~(~,~I,A,) 
some 4>0, (xl,xz)e~ and AIEs 

1 = ~P(~,(xI,,~),A, • E~) + ~P(~,(~,,~,),A~ • E,) 

< xe1(z,~x,A1) + ~m1(~,x1,A~) = ~P,(~,~.E~).< 1. 

This is imposible. 
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Itqg,dm.ay 

The uniqueness criteria for general q-processes were obtained by Chen and Zheng ITl. In this 
section, we first present some sufficient conditions for uniqueness which arc usually more pract- 
ical. Then we study the relationship between the regularity of the coupled q-process and the 
regularities of its marginal q-processes. 

(16). Theorem. Suppose that there exist a seqence {E,} T c s and an ~0~s (the set of  aU 
nonnegative E-measurable functions), such that 

E. TE, n~>l; sup r  
zaB a 

(17). 

(18). ~m 
m"* OD 

and there also 

(19). fq(x, x E E  

then the q--process is unique, i. e., the 
Proof. Without loss of generality, we 

inf ~p(x) ---- O0*); 
~tEn 

exists a c~R, such that 

(a). Since for each g > 0, 

and by the condition (19), 

q-pair q(x) -  ~x,') is regular. 
may assume that c t> O. 

f P ~ ( ~ , ' ,  is the minimal solution to dy)~y) nonnegative 

['q(~. dy),..~+ ,,,(-) 
fffi j~. + q(.),v, :t + q(--------)' 

f~., "dy). r + r , ~>~  
r ~ + q ~ _ c  ~ -  c ~+---~ 

it follows from the comparison theorem that 

~oo.  

(b). Set 

(20). q.(x, dy)=I~.(x)~x, dy), q~x)=q~x, ~ ,  xeE,  n>~l 

*) For ~ condition, the author has a helpful diao~on with S. Z. Tang. 
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then q,,(x) - q.(x,') is a regular bounded q-pair for each n t> 1. Clearly, the q-pair q.(x) q,,(x,') 
also satisties the condition (19), therefore, by (a), one can see that 

P,(;~ ~, ay)~).<?-2--~_ ~, x~E,  ~>c ,  ~>~1. 

(c). For x eE.,  we have 

P"(~.  ~. E,)= rq(~' ~z)e-'~l~ E,)+.a- (x' E,) 
J~  + q(4 '"' y' ~ + q(~) 

__ rq_~__x, dy} . 6(x, E.) - . P - , . r  y, ~ . ) + - - .  
J l + q.(x) 1 + q,(x)' 

and for xq~E,, we simply have 

f g(x, E.) q~(x. dy) ,. E.) + , P'"(~,  ~, E.) i> 0 = - -  - -  P (~, z, 
+ q.(4 ~ + q,(4 

Thus, we always have 

P".(,~, ~, E.)>_. lq--'~ ' dy)e~,o(,~, Y, E . )+  ~(~, E,,) 
Jl+q.(x) ~--+q.(x)' ) . > 0 ,  xeE.  n>~l. 

Now, the comparison theorem gives us that 

P'~(~, x, g,)~>p.(~, ~, E.), ~>0 ,  x~g, n~>l. 

(b). By (b) and (c), we get 

= l - e . ( l ,  x, E~.)>.l- l~x)/(( l-c)  inf (p(z)), l > c ,  x~E 
~r 

and so 

).P~'"(~, x, E) = ] i m  ~.P~I"(I, x, E,) >/1, i > c. 
t l - *  {lO 

This completes our proof. 

(21). Theorem. For the uniquess o f  q-processes, each o f  the following conditions is 
suffwient: 
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(i). *~ there exist a ceR and an toes such �9 to>~a and j,,i 

f q(x, ~D~6) < (c + q(x))~x), xeE~ 

(ii). there exists a 2o > 0  such that ~i;iT 

dy) E; 

(iii). for each t >t 0 and x eE, 

f p-'-(t,  x, a y ) ~ r ) <  ~ .  

Proof. By the proof (a) of the above theorem, one can find (i)=~(ii). 

Now assume that the condition ( i i )ho lds .  By the forward Kolmogorov equation[3]: 

e-,.(;t, x, A ) =  x, 
dz) ~(~, A) 

;t + q(=) + aa + q(x) 

and the monotone class theorem, it follows that : 

f f-~2-~ dz) ;t-+-~x)'~x) ; t >  O, we E, f es  ~,.(aa, ~, ay)~)= ~,.(;t, x, az) ~-~-g=)+ 

In particular, taking ;t = ;t o, f = ;t o + q, we obtain 

f(;tO "31- q(y))i l21nin(;tO,~ �9 X , d])= fenlin(;to, X, dy)q~)-t- 1, x e E .  

Combining this with'( i i) , '  ~;e have 

2oP(;to,  X, E ) =  1, xeE.  

This certainly implies the uniqueness. The last assertion can be proved by the similar way. 

(22). Remark,  It is easy to show that the condition (21) (i) implies the assumptions of 
Theorem (16). �9 To  see this, simply[ take. 

E.=  {XeE: q(x)<~n}, q~(x)=q(x), xeE.  

�9 l Similar but stronger condition was given by Basis[l]. 
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but the converse fails. The following counterexample is due to J.L.Zheng: 
Take E ffi {1, 2, ... } and let {qt, qa, "'" } be the primenumbers in the natural order. Set 

q~.l + l ffi qi, i c E ;  qqffiO, j # i, i + 1 :  

This Q--matrix (qu) satisfies the assumptions of Theorem (16). To this end, we take c ffi 1, r ffi 1, 

'-~ 1 fi I) | 'P' == aU, (1 "1" ~) ,  i ~ 2~ Since . -x  (1 -t- and .-rE 1 / q. are convergent or divergent simulta- 

neotmly, it follows that l im p.  = oo. Therefore, the assumptions are satisfied with E, ~-- {0, 1, 
I1"*r 

2, . . - ,  n}, and so the Q-procesa is unique. 
Next we show that the condition (21). (i) fails. Indeed, we will show that the condition (21). (ii) 

fails also. By the backward Kolmogurov equation, one can easily figure out: 

1 
P. (~)  = o. k < i; P. (~)  = ~ + q,; 

q'"'qJ-~ , j >  i P,,(~) = (~ + q,)... (~ + q,) 

hence 

Qo 

Pu('~)qJ ffi (~ + q,) .... (;t + qJ) 

Because 

~mj(~-~-' - - 1 ) = ~  J =0, ~ > 0  
J...oo aj+ t j . - .~aj+ l  

one can see that the above series is divergent for each ~ > O. 

(23). Remark. We point out here that the Theorem (16) is quite general. In some special case 
(for example, for generatized hirth-dcath Q-processes), the conditions of (16) are also necessary. 

Now we turn to discuss the relationship between the re~d~rities of a coupled process and its 
marginal processes. The next result was proved in Lemm~ (11). 

(24). ~ Ifa ~ow~d ~ - ~ #  #(~) - ~(~..) , a t , f y~g  (7) ~ ,espY.  then i ,  m ~ s i ~ :  ~- 

Note that there are many choices of coupled q-pairs satisfying (7), also, the coupled q-pairs are 
usually more complicated than the given marginal q-palrs, it is certainly more interesting to prove 
that the regularities of the marginal q-pairs imply the one of a coupled q=pair. Unfortunately, We 
do not know at the moment how to prove it completely. What we can do now is to present the 
following result, which is an interesting application of Theorem (16) and quite general: 
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(25). Theorem. I f  the marginal q-pairs q,~x,) - -  q~(xi,') (i = 1, 2) satisfy the assumptions of 
Theorem (16), then every coupled q-pair satisfying (7) is regular. 

Proof. For i = 1, 2, we use ~ ) ,  tpi and c[to denote the subsets, function and constant in the 
assumptions of Theorem (16) corresponding to the q-pair q,(xi)- q,(xi,'). Put 

(~1, 

Then {~.}~ c g and 

(26). 

and so 

On the other hand, 

lim inf ~x")>/ ( l im inf 

/~ ,=Ett~)xE~ ), n~>l ,  

By (7), one can see 

x2) < q,(xl) + qz(x2), (x,, 

that 

Finally, using the 

f q~xi, 

and the condition 

f ~Xl, x2; dy,, 

< (c, v c2 + ~{~, 

qh(xl)) A ( l i m  inf r 00. 
\n~ Qo x2r 

assumptions: 

dyi)q~,(Yi) <~ (c, + q,(xi))cp,(x,), xie Ei, i = 1, 2 

(7), it follows that 

x2))tp(zl, x2), (x,,  x2)~E.  

Therefore the q-pair ~ -  q(x,') also satisfies the assumptions o f  Theorem (16). 

(27). Coronary. I f  the marginal q-pairs satisfy simulataneously one of the conditions of 
Theorem (21), then every coupled q-pair satisfying (7) is regular. 

~4. Order-Preservation 

In this section, we assume that E 1 = E 2 = E, s = s = F.., that E is endowed a semi-order 
" ~  ", and the subset { (x, y) ~/~: x ~< y} = ~' is g-measurable. We also assume that the coupled q- 
pair is regular. 

sup ~(x~, x2) < oo, n >t 1. 
(Xl,X2~n 
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We can rewrite the condition (4) as follows: 

(28). Order-preservation. 

~(,,(~,, x2),~) = 1 , ~> o, 

By differentiation, the above condition gives 

(29). ~(~, x2; ~ )=o ,  (~,, ~,)~r.  

Indeed, we have 

(30). Theorem. (28) <~ (29). 

(~,, x~)e~. 

Proof. We have seen that (28)=,(29). Now assume that (29) holds. Note that 

t~o,(~,(,,, x , ) , ~ ) =  6(x'' ~2; ~)  + ~(~,, ~,) =o ,  (~,, ~,)~r.  

(~,, ~)~', 

Suppose 

/~"( : t , (~,  x~),~) = O, 

then, by (29), we get 

~,+,,(~,(~, ~,),t,) 

"~" q(~l, X2) Y2)'I~) "~" I~O'(~'~(Xl' Xl)'Ft) 

J~ ;~ + q(x,, x2j 

{x I, xz)e~, n>~l .  

(~1, ~2) e P, ~ > o. 

Hence, by induction, it follows that 

~,,(~,(,~, ,~),~) = 0, 

and so 

P(~,(~I, ~2),~) = 0, 

This finishes the proof. 

D.  l ~ i e  Couidlngs 

This section presents some basic couplings. To this end, we need a notation. 
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Let #x and #2 be two finite measures on (E, E). Denote by (gi - # 2 )  • the Jordan-Hahn 
decomposition of g i - # z  and define 

#1Ag2 = #1 -- (#1 -- #2) +. 

Clearly, #i A#2 = # 2 A g i  �9 
Let q~x,)-q,(xi,') be a given q-pair on (Ei, e,), i =  1, 2. It often happens that 

and 

E, e E2 (resp., E 2 ~ El). 

El6~: z (resp., E2es 

In this case, one can naturally extend the q-pair ql{x~) - q,(xl," ) to {E2,s simply by defining 

q,(x} = 0, x e E2 \ El. 

Because of this reason, we may and will assume that 

E, = E2 = E,  s = s = s 

The simplest coupling is 

(31). Independent Coupling. 

x2) = f q, (xt, dy,)~@,, x2) - f (x, ,  x2) ) ~: (~ , ,  , 

fq~(~,, #2)(/(x. y.)-[(~,, ~2)) + 
d 

:(nd(., x~))(.,)+(a~.,,.))(x~). (.,, ~ )~ ,  f ~ .  

Perhaps the following coupling is the most useful one: 

(32). Basic Coupling. 

elf(x,, x2) 

=f(q,(~,,.)-q2(~2,.))+(dy)~, ~2)-f(~,, ~2)3 

f(q2(x2 ,')--q,(x,,')) + (dy)[f(x,, y) - f (x, ,  x2) ] + 

f(q,(~,,')Aq2(x2,.))(dy)Tb, y)-f(x,, :2)] (x,, x~)~, i~bg. + 
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For more .examples of couplings, one can see [4] and i-5]. 
It is not hard to check, for the basic coupling, that the order-preservation condition (29) 

becomes 
(33). for each (x,, x2)~P, 

(q1(x,,') - qz(x2,')) + ( {y~ E: y > x2}) = 0, 

(q2(x2,') - qt(x,,')) + ( {yeE:  y < x,}) = 0. 

(34). Basic Coupling for q-Processes with Finite Product State Space. 
Let S be a finite set. For each u ~ S, let (E~, s be a measurable space as above. Suppose that 

q" (x) - q" (x,') i s a q-pair on (1-[ E~, I-I s - (E, s satisfying q~(x) = 0, x E E and the measure 

q~(x,') constrained on 

for each a c S .  Now, 

{yeE: y . # x . ,  ur y . = x . ,  u E S \ a }  

set  

q(x,') ~., q~x,'), q(x)=q(x, E), x~E.  

Clearly, q(x) - q(x,') is a q-pair on (E, E). Corresponding to (32), we can define a coupling as 
follows: 

(35). 

= Z (q~(x~,')- q'(x2,')) + (dyl)Lf(y ,, x 2 ) - f ( x , ,  x2) ] 
a c S  

+ • (q'(x2, ')-q'(xl, '))+(dy2)[f(xl,  y 2 ) - f ( x , ,  x2)] 
aCS 

+ E (q=(x,,')Aq:(x2,'))(dY)[f(Y, y ) - f ( x , ,  x2) ] 
ae-S 

(x t, x2)~/~, fEbg .  

The basic coupling will play an important role in the subsequent paper [6]. 
In Addition. After the present paper was written, J. L. Zheng and X. G. Zheng proved that the 

regularity of the marginal q-pairs implies the one of their coupled q-pair for Markov Chains under a 
slight assumption, by using martingale approach. Then the author and J. L. Zheng find a simple 
proof for general case. We present the proof in the following two theorems. 

(36). Theorem. Given q-pair q(x)-q(x,.) and a sequence 

Define 

E. 1' E, sup q~(x) < oo, n >, 1. 
~ E  n 

q.(x)-q.(x,.) by (20), Then q(x)-q(x,.) is regular i f f  

lim P,,(2.x,~) = O, 2 > O, x~E.  
R r 

{E~}~ ~ c s such that 
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Proof, The sufficiency follows from 

p-'"(~,~, E.) t> Pl(~,~, E.), ~ > 0, ~ E ,  n t> 1 
which we have seen in the proof of Theorem. To prove the necessity, note that by the backward 
Kolmogorov equation, Fatou lemma and the comparison theorem, we have 

~m P.(~,=,E.) >I ~ ( ~ , = , ~ ) ,  ~ > 0,=~E. 
m ' * 0 0  

Thus, if q(x)-q(x,.) is regular, then 

1 I> 1 -- ~ lim Pl(~, x, E~,) 
m"* ~O 

= ;  Um P.(;,~, E.) i> ~P(~,~, ~) = I, 
l--~ OD 

and so the condition is necessary. 
(37). Theorem. I f  the marginal q-pairs q~xi)-q~xi,.)(i = 1,2) are regular, then so is each 

coupled q-pair satisfying (7). 
Proof, Take 

~')  ffi {x,~El:q,(x,) <~ n}, i  = 1,2, n >i 1, 

~'~ = ~ r  ~ x ~,o, n >/1 

and define ~"~xi)-ql')(xt,.), i =  1,2 and r176 by (20) respectively. Since 

sup ~(x) ~< 
;'.~.~ 

and Theorem (36), it suffices to show that 

<~ ~ ; , ( ~ , x , , ( ~ ; , )  ~ ) + P~',(~,x2,(~' , )  �9 ) 

sup ql(x,)  + sup qz(x2) < oO 
zl .~'~ z2.sP ~ 

where the q-processes are determined respectively by the above ~a~rs .  But this is an easy 
consequence of the condition (7) plus an application of the comparison theorem 

Admowledgmmt. .  
The author would like to thank ProL S. J. Yan and Mr. J. L. Zheng for their helpful 

COlD_l~el]ts. 
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