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MULTI-DIMENSIONAL Q—PROCESSES’

YAN SHITAN (® 1-42) OCHEN Mmra (FkA k)™

Abstract

In this paper, the authors propose # welhod which 1edvres ihe multi-dimentional
problem to one—dimensionsl ores. By keaping the ido2 in mind, some sufficient conditions
which are much more praciical for the uniqueness, recurrency and ergodicity of multi-
dimensional @-processes are obtained.

T2 conditions are effective not only for the models in non—equilibrinm systems, but
slso for their couplings and others.

§ 1. Introduction

Some stochastic medels for linear Master equations of several variables have
been introduced in the studies of non-equilibrium systems™ 2%, In probability
language, the models correspond to some @Q-processes which satisfy the forward
Kolmogorov equation. Thus, one would like to know the uniqueness, the
recurrency, and the ergodicity for the Q-procesges. It is known that there are some
general results about the above problems (ef. [4]). But these results are not
effective to those models studied in [8]. As we know, there is only one paper'™
which studies directly the properties mentioned above for ftwo-dimensional @-—
processes. In this paper, we will propose a method which reduces the multi—
dimengsional problems to one—-dimensional ones. By keeping the idea in mind, we
obtain some sufficient conditions which are much more practical for the uniqueness,
recurrency and ergodiciiy of multi~dimensional Q-processes. These conditions are
effective not only for the models in [3], but also for their couplings and others.

Now, we are going to state the main results in this paper.

Let B be a countable set and (¢(n, {): n, {€E) be a Q-matrix on ExH.
Throughout the paper, we will assume that the Q-matrices are totally stable and
conservative. Let {H,CH: Hy,+¢, k>0} be a disjoint countable partion of B, and
put
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SUP{CZE_‘](%C) N EEk}’ j>k’
Qn;E{ & .1)

inf{z’q(n, C)”YEE::}, i<k,

€H;

We say that a @-matrix is regular if it determines at most one @-process.
The following two resulis are on the uniqueness for ¢—processes.

Theorem 1. Suppose that (q(n, {):n, {EE) satisfies the folicwing two

conditions:

E+1
g, D>0, ne B=riel ) &, (1.2)
Ty =sup{g () m€ I}-<20, k>0 1.8

Then, (g(n. L)) 42 regular iy 30 15 (qis) .
Theorem 2. Foy each k€ Z,={0, 1, 2, «--}, let By be a non—empty subset of Hy.
Suppose that (g(n, {)) satisfies (1.2), (1.3) and the following conditions:

NE By, {€ Eyys, ¢, >0 € Byya, 1.4
k€ Z,, n€E\By, ¢(n, {) >0, € By U Byya. @.5)
Define '
: g(n, DeE& O 1. :
3o, O+ 3 LBDLED ] ven), j<p,
~k = s §) f) ) . > 1.6
=1 sup {{egm[q(n, O+ 2 Al q(g)( 0] nGBk}, j=k+1, (1.6)
0, j>h41.

Then, (g(n, 1)) is regular if 50 is (gy).

It is clear that Theorem 2 reduces to Theorem 1 in the case of B,=H, (k€ Z,).

Let S be a finite or countable set, and set X =275, For n={n,: u€S}€ X, we
put

[nl = 2im Xo={n€X: |n|<co}.

Clearly, X=X if § is finite. We use & to denote the element in X, so that || =0.

If E=X, in Theorems 1 and 2, we see that (¢(», {)) is a multi-dimensional
(even infinite dimensional) @-matrix. What the above theorems mean is reducing
the uniqueness problem in multi-dimensions to the one in one-dimension by
.choosing an appropriate partition {E,}§ of B. This idea is very useful since the Q-
matrix (gy) ((gy)) in (1.1) ((1.6)) is a generalized birth-death @-matrix, for
which we have the following uniqueness criterion.

Theorem 3.

(i) Suppose that

. =0, i>k+1; quu1>0, K, jEZ,. a.7n
Then (qu;) %8 regular iff
ngomk =00, (1.8)

where

L)



92 CHIN. ANN. OF MATH. Vol. 7 Ser. B

r ]
mkE;Zo FP/qi,i01, KEZ,,

P=1, b€, |
E=1
A FP=q;i,, ’2 ¢PFP, 0<i<k, 1.9)

[
Lqé"=2 Grsy O<E<k.
j=0

(i) Suppose that (1.7) holds except qoy=0. Then {gys) is regular if
Ri—co, 1.10)
where R’ can be obtained frem (1.8) and (1.9) nhin O is replaced by 1 and Z, is
replaced by Z,\{C%. ’

The above thiea theorvms will be proved in § 2. Theorem 8 ig an extension of
[6, § 8, Jorollary 1j , for which our proof is much more simple.

It is olear that both R and R’ are computable, so they are very convenient in
the practice. As their applications, in § 3, we will discuss the uniqueness for the
following models™:

An autocatalytic production of a chemical

X: A+ X5 2X, X+X 225 B.
Its Q-matrix is
Mae, {=n+e,,

Nu
7‘-2( > C =nN— 2e,
q(”b {) = 2 ’ ’
Nup (U, "U), {=n—eutey, ukv,
0, other {+#n,
where § is the set of seats, w, vE€S, e,={0u: vES}, a and 7n,WES) are the
numbers of A-particles and X-particles, respectively, p(u, v) is the transition rate

7, CEXO; (111)

of an X -particle from v to v. We will assume that
Doy, v) SO<o0, u€l

Schligl model:

At A
A+2X =2 3X, X — .
Aa Ay

Its @-matrix is

Ma, ( 1;“ >+?\.4bu, {=n+te,,

Q('r]) :) =1 }“2< 7;“ )+7‘-37}u; C=7]—eu) (1.12)

nup (Y, v), {=n—e.te,, utv,
L0, other {+#7.
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Lotka—Voterra model:
A A
A+ X 250X, X4+ Xy 22X, B+X,— D+B.
Its state space should be X = (Z%)5, For each n€ X, n={n,: u €8, i=1, 2}, set
2 .
| =) >\ nu. Then Xo={n€ X:|n| <oco}. ny denotes the numbers of X ~particles
ueRg=1

in u, and we use p,(u, v) to denote the transition rabe of an X ~particle fzom w to v.
Now, the @-matrix for the model can be written as follows:

M@, § =n+6y,
Agbunes, {=n—eu,
Q(”.’: :) 7=‘Jl :\'97‘\(177112) C=Y,’_3u1+eu2, (..l .13)

N9 Ps (U, 'D) 3 C=7I—eul+ev¢: b=1, 2, u#v,
0, other {1,
where ey= {30t vESRN, j=1, 2}.
Brusselator:

A
A2 %, BrX, 2 X.4D

A A
2X,+ Xy —>8X,, X;—>0.
Again, the state space is X = (Z3)5. Its Q-matrix is
(M@, {=n+ 6,
At {=1— €41,
Aabynut, {=n— 61+ eus,

a(n, D = (1.14)

Nt
}“8< 2 )nuﬂyc=7]—eu2+9u1;

77:;42’4(“, ”)) C"“’)—Gm‘*'eou =1, 2, U+,
.0, other {+#1. 4

The point of applying our results to the above models is simply choosing
Ey={n€Xo:|n| =k}
As another application of Theoerm 1 and Theorem 3, we will discuss the uniqueness
for coupling @-prooesses. To state this, notice that there is a one~to-one mapping
between @-matrix (¢(n, {)) and the following operator:

Qren =3 4, OO ~Fm), 1€ Xo, .15)

where f is a bounded real function on X,. So we can also use the term “Q-process’”

instead of @—process,
Theorem b. Let S be finite, X =275 and

(@f) () =3 B, 1) (f(n+e) = f(n)) +238(, 1) (F(n—e) —F ()
+§7(u; Vy Ny, 'ﬂv) (f(n—6u+ev) _f('rl)): (1-16)
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‘where 8,  and y are non—negative and 8(u, 0) =0. Suppose that 8(u, k) and y(x,
2, k, 1) are increaging in % and I, and define the coupling operetor 3 as follows:

Qf('fb C) =u

uFs u

2 {B(u; nu) [f(”’)'i-@m C) —f(”’b C)] +6(u) "'7«) [f("]—eu; C) —f(?% C)]

+ B(u, Zu) Lf(n, C+3u> —f("]; D] +3(x, Zu) Lf(m, {—ey) =f(n, C)]

+ 3 (B, 1) ABG, L)L (r+ew, Lo =7 (n, D]

+8(U,, 7}u> /\8(?1,, Cu) [f("?“@m \Z_eu> Z f("l; Z;]}
+HE,U (7(“7 Yy Ny "70) —’Y(U; v, Evm ’Cv))?
[f(n—sut2l) - f (-]

+,':2(‘."<“; Yy Lur §o) — 7 (4, v, M, ne))

* Ef("?; Z_‘eu"_ev) _f<77: C)]

+§ 7 (u, v, N4, ne) Ny (4, v, Lu, §o)

. [f("?_eu"‘ev) C~3u+ev) -'f(ﬂ, C)];

“where f is a bounded real function on X X X. Set

1

(ry=max{3 B(u, M): |n| =k},
Se=min{8(u, nu): |n| =k} ,kEZy,

=7 1 84" +Sa

3 ] kg[ 2ry ++ 2""'1;""1’1]’ r0=0, r,>0, k>1,

R=

— 1 sk.”sl i
3o+ g | >0, k€ 4,

R=+co,

then, both Q—process and $-process are unique. Moreover

Zeg 5“: (n, C): (;i; g)) =p(t) 7, "6)
Z5G, O, O, G, D=2t 1, D,

and for each n<<{ (i.e. 7,<,, u€S), we have
where p(t, m, {) (p(, (1, ), (7, D)) is the Q-process (&-process).

(1.18)

(1.19)

(1.20)
.21)

Of course, the approach used to prove Theorem 5 can be generalized, but we

will not do it in this paper. It ig easy to check (see § 4) that the Q-matrices defined

i (1.12),

theorem works for the above models.

Ffollowing
Theorem 6. ILet E=X, and let (¢(n,0)) satisfy (1.2) and (1.8). Let E,—{6},

(1.13) and (1.14) satisfy the assumptions of Theorem 5. Hence, this

The recurrence for @-processes will be studied in § 5. The main result is the

Ey (b=1) be finite. Suppose that the Q-matrices (q(1, {)) and (qi;) defined by (1.1)
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is drreducible and regular. Then, the (¢(n, {))-process is recurrent if so is the (gi;)—
process. Moreover, the (g:;)—process is recurrent iff

ST
k=0
where F™ is defined in (1.9).
The positive recurrency and ergodicity for (¢(n, {))--processes will bas studied
in § 6. The main results are the following
Theorem 7. Let (q;;) be an arbitrary iryzducidic and regular Q- natréz on Z2.
Then the (gy;)—process is positive resurrent iff there exvicts & non—negative solution (w;+
1€ Z,) to the following trequaties:
'ng‘jmj+1<o, o, @q‘,iw,-l <0, (1.22)

Jor some i, Z . (equivalently, for any i0€Z.).

Theorem 8. Let S be finite, and let (g(n, {)) satisfy (1.2) and (1.8) with.
Eo={0}. Suppose that both (g(m, L)) and (gi;) defined by (1.1) are irreducible. If
(qi5) s regular and for (1.22), there ewists a nomnegaiive solution (w) for é,=0,
which is increasing in i, then (g(n, {))-process is positive recurrent. In fact, it is:
ergodic, i.e. there ewists a probability measure {u (M)} on X such that

tl_'lgﬂp(t, §&EmM=u), & 1€X, (1.28)

where p(t, £, M) is the Q—process corresponding to (g, {)).
Theorem 9. Let (q.;) be a Q-matriz satisfying (1.7). Then, there ewisls a non—
negative—and increasing solution (@) to (1.22) with i,=0, ¢ff
dE:}E}: dy/ FP <0, (1.24)

where F” is defined by (1.9) and
k-1
do=0, dy=gi}o(1+ S d, ), k>0, (1.25)

Moreover, if (1.24) holds, then the function (w;: ¢€Z,) defined by
ue=0, w3 =8, U1 =1+ F P uy—d, k=1 (1.26)
8 @ non—negative and increasing solution to (1.22) with 44=0.

As an application, we will show in § 6 that Schlogl model is ergodic. For the:
models defined in (1.11) and (1.13), we have nothing to do since § is an absorbing
state for these models, However, for the Brusselator model defined in (1.14), our
conditions do not work, this is a remainder problem.

One may ask whether the condition (1.24) is equivalent to the positive:
recurrence for the (g;;)-process or not. The answer is negative. To compare the two-
properties, we have

Theorem 10. Let (qi;) be a @-matriz satisfying (1.7). Then there ewists a non—
negative solution to (1.22) with ¢a=0 $ff
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3‘=‘Sﬂ‘p{<§ @) / <z20 FO): kez, }{w. (1.27)

If the Q-matriz (gi;) 4s also irreducible and regular, then the condition (1.27) is
equivalent to the positive recurrency of the (gi;)—process.

It is obvious that d<<d. For birth-death processes, itis not difficult to show
that d<oo iff d< oo,

§ 2. Tnigueress

Lemma 1. Lo (¢y): &, jEE) be o G—matriz. Then » :
(A+-gdu<F gy, 0Sus<l, i€ 1,1>0 (2.1)
o=

has only zero solution ¢ff _
(M+gdw=3 gy, 0<u<L, € B,0>0 2.2)
7+

has only zero solution.
Proof It is well know that the maximal solution (u) to (2.2) can be obtained
by the following procedure: define
uP=1, i€E,
u{+o =’_§ qiP/(M+q.), n=>0,iCH,

then
UM\ as n—>oo for each ¢ € H.
Now, suppose that (v;) is a non-zero solution to (2.1). By induction, if is easy to
show that o,<u( for each =>1 and ¢CE. Hence w>v;, (¢€H). This is a
gontradiction.
Proof of Theorem 1.
By [8, § 4.8, Corollary 1] or [9, § 5.4, Theorem 1], it suffices to prove that

for some A>>0 (or equivalently, for each A>>0),
(A+g(m)ulm) =2 g(m,Du)), 0Sw@)<Lnel (2.3)

has only zero solution. Suppose that there exists a non-zero solution {u(n): n€E E}
for some A>0. Set

uy=sup{u(n): n€ B}, kEZ,. (2.4
Then (u,: k€ Z,) is non-zero. For each k€ Z,,, choose 8,>0 and n™® € Ey, so that

Sk(}u "}‘0;;) <%‘ and u(n(k)) = (1“ 81;) Uy. . (2 .5)
Replacing n in (2.8) with ™, it follows from (1.2), (1.3), (2.4) and (2.5) that

2u+[3 3 0™, 0+ 3 gt 0+ 3 40, Ol

n%+{ € By

Sur(h— &x(A+0x)) +¢ (1)< A+-¢ (1)) (1 - &) wa
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SO g™)u@®) =2 ¢, HuD)

k-1
(%) A (k)
< gcgjﬂ(’?  Dut B a®, Qut

% g(®, Dugss,

€ Hye1
‘Le.,
' k=1 .
2wt B, 0 m—ud < S g0, 1) (hraa— ). 2.6)
2 =0 €E, &3
Clearly, u; is increasing. By (1.1), we now get
k—1
-%‘-uk—i- 720 qm(u,,—u,') g 9':5,1;1.1(?14;.‘.1'— u,«,-); ﬁ‘E Z+. (2 7)
By (1.1) and (1.2), tLis meanas that
/
( .2".. +qk>uk<]§quﬂt}, 0<uk<1, k E Z+. (2 .8)

2
But this is impossible by Lemma 1 and the regularity for (g,;).

Proof of Theorem 2. The proof is similar to the proof of Theorem 1. We leave

it to the reader as an exercise.
Proof of Theorem 8. (1). Suppose that (g;;) satisfies (1.7).
only one increasing solution to
(+adw=2 i, Uo=1,1€Z,
for each A>>0. In fact, we have
up=1,
-1 .
Uiy = [(7\-4'9;)%— E)%‘uy ]/Qt.wi, i=>0,

$—1

Uppr — U= {%q«; (s —ug) +?~u.] / Gii41, 00,

We now prove that
Mty Stgos1— Uy (U — o) TP + Mgy, k€ Z .
When k=1, (2.12) holds since
1 — Yo = Méo/ Qo1 = Moo,

Suppose that it holds for k<n. Then, by using

k=1 k—1

20 @ (i — ug) = E) ¢ 1 —w), k€ Zy,

(2.11), (1.9) and the increasing property of uy, it follows thab
n=1
* -
5,041 [gq". (uk+1 uk) +}\,u,,]

n—=1 n—1
<o [ (= ti0) 3} gPFO+ i (Dgme+1)]

U1~ Un=

Then there exists

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

. n—1 n—1
= (s = we) PO+t S qiheagihes 390 F P +ghn F)

= (s — o) FO+ Asymy,

n-—1 ! ’ -1
Uns1— Ua> Crntt [%huoq,‘."’mk +Au, ] =>MioQa 1 ("Zoqff’mu + 1) =AMy,
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By induction, this proves (2.12).

(2). To prove (i) of Theorem 3, it is'enough to show that (2.2) has only zero
solution iff (1.8) holds. Suppose that R<<co and (u;) is the solution to (2.9) con-
structed b.;r (2.10). By (2.12) and (1.9), we get |

Uiy ' = 1< (Ug — t0) w *F§ + Ay << [A + (21— Uo) Gos] M.
Hence wyp ' —1<1/2, and so log(upssue®) <2(upauil—1) for /£ large ecough.
Therefore, there exists a constant 0>>0 such that

k=1
log uy— 3V iog (a1 ') S QR < o,
=2
This implies that
U= 1im Y <00,
koo

Now, up==wuzt€ [0, 1] is a non-zero solution to (2.2). Conversely, if (2.2) has a
non-zero solution, it is easy to show that R<co,
As for (ii) of Theorem 8, it is enough to notice that (2.2) has only zero
solution iff ‘
(}\.+qk)u,,=j*2mqu,-u,, o<y, k>1

has only zero solution in the case of gg;=0.

§ 3. Uniqueness for Some Processes of
Non—equilibrium Systems

As applications of the results in § 1, we will prove in this section that the Q-
matrices defined by (1.11)—(1.14) are regular, i. e. they defermine uniquely the

@-processes.
Theorem 4.
(i) The Q-mairiz (¢(n, L): M, L€ X,) defined in (1.11) is regular if
a=supia,: u€ S} < oo; 3.1)
(ii) Let 8 be finite, then the Q-matriz (g(m, {): M, {E€X) defined by (1.12) is
regular; :

(iii) The Q-mairiz (¢(n, {): n, {EXo) defined by (1.18) ds regular if (3.1)
holds;
(iv) The Q-matriz (q(n, {): 1, L€ X) defined by (1.14) is regular if
' a= §Gu<°°. ' (8.2)

Proof Take Hy={n€ X |n|=k}, kEZ, in the four cases. Then (1.2) and
(1.8) hold.
For (i) and (iii), the conditions of Theorem 8. (ii) hold, and
T, x2S Maak.
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Since

R~ 2 <2F,\)/q, ¢+1>> 2 F( )9k F4122 2 (7»1@17) "1=oo,

k=1
now, (i) and (iii) follow from Theorem 3. (ii).

The Q-matrices (¢y;) corresponding to (1 12) and (1.14) are birth-Jdeath Q-

matrices. By (1.8) and (1.9), it is easy t0 carry out thet
R=i é St tSivr
=hsory gy’
Qe -1y Th= Qo ke
For (ii), we have
/

( ‘.
7= sup! p 3 Ui, T +Ashy )| =F ;<2 Na(B*—k) +As D) b
1:4‘-3' \ ues

Here we have used
sup{ u%;"lﬁ: [n| =k} =K.

By (8.5) and
Xma/ |8 1°<Zmi/ |8

s,,=inf{ o [xa ( g“ >+x3n,, } (7] =k}

=>6" 1?\‘2 [1nf 2 77u 3 Sup Z 7]3] + (7\,3 +?‘42/3)k

Inl=kues
Now, by (3.4) and (3.6), we gelb

k
]jm 85841 >]im SiSx—1 >2)\‘2 9 S 4 Ma P
o= 150 TpcTip1Ty /m Tl 5—1T%—a = 1/( ’ ‘ ( 1 ) )'

wo see that

It follows from (8.3) that R=oo, Therefore (ii) follows from Theorom 3. (i).

For (iv), we have
r,‘=sup{§ Mag: |n| =k} =Ma, kEZ,.

By (3.8), we get

R=> S ._1_=<>o.

=

Therefore (iv) follows also from Theorem 3. (i).

To conlude this section, we discuss two special cases.

Proposition 1. Let (i 4, jEZ,) be a Q-matriz satisfying

é(f=0: l’b—.ﬂ >2
and
{r,,Emax (§2k A%+3) §2k+1 2k+2+§27¢+1. axe3) >0,
8= TN (G, -2+ Gow, 2415 et zu—-1) >0,

(3.3)

(3.4)

(8.5)

(3.6)

(3.7)
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S 841 o .
; ZO AT ) . (3 .8)
Then (q.) is regular.

Proof Simply take Hy={2k, 2k+1}, k€ Z, and apply Theorems 1 and 3.
Proposition 2. Let (g,;: 4, j€Z,) be a Q-matriz satisfying
¢;=0, 4, j=n and |i—7|>1, (8.9)
Guinniis1>0, KE L,

where n i3 a given positive integer. Set Ti=1{(pixnives, k320 and tu==7 4 nsp_1, E=>1
Then (qy) ts regular if (8.8) holds.

Proof Simply teke Fo+={0, 1, 2, -, n}, Ky —{n+4k}, k>1 and-apply Theorems
1and 8.

§ 4. Further Applications

In order to prove Theorem 5, we introduce a relation “—>” on X x X as follows:

(m+ew, L) or (n, {+ew), nu*La
M—eu, O, M Lu, W>1,
(0, O —>{(n, {—~en), m*Lu, 1, (4.1)
(m+eu, L+eu), mu="Cu,
(m—ew, {—ew), mu=0u=>1
for each ¥ € 8. Then, define
"Bo={(6, 0)},

Bua={(n, 0 3,0 € B such that (1, O, D} U B, 4.2)
Eo=-§o; Ek+1=§k+1\§k; kEZ.;..
Lemma 1.

(1) For each n€ Z,, B,c Bpy3;
(ii) For each n€ Z,,

B {6, O {(Ben 3 en): 4.3)
=hm+1 ’
me=1, 2, «-+, 2;hy=0,1, <o, m; 8§Duy, +-, u, may be rrepeated}
, 3 n
U{<z=21 Cuy z=216"'+z=§,16"'>: b=1, 2, -, n; k=4, 4+1, -, n
S Sua, -+, U, may be repeated },

where 2 6,,=0 whenever a>>b;
(iii) E(n€ Z,) are disjoinied, UE =X%xX and {E,.} satifies (1.2) and (1.8).
Proof (i) Olearly, BocB;. For each (1, {) € B,. (n=>1), by(4.2), there exists
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~ n—=1 _ LB ~ -~
an (77, {) €| J B, C‘[ B, such that (v, {)—> (7, {). Hence (n, {) € By41. By induction
= =0

this proves (i).
(ii) To prove (4.8), denote the right side of (4.8) by B,. Olearly Bo—Bo.
Suppose that B,= B, for all n<k. We then have to show that B,=B, for n--#.

™ "
First, we consider such an element (7, {) that has the fexrin (E s ;“ c,,,). If
T=:1 e=hmtl

m<k, then

(n, O =(ni' €us m_ eh.,>EE‘,,,=§,,,c:§ .
=1

1=rm+1

We mey now assume that m=15. Hence

Ry k
o D =(Sew 3 0n)-
If hy=Fk, then '
¥ k=1 -
("77 Z) =(l=21 euv 0 )'_)< l=21 euu 0 >€ Bk—lv
If hy<k, then there are two cases:

(a) The times of u; appeared in {uy, -+, U3} and in {1, =+, Uy} are different.
Then

k-1

(n, 0> L) =(Fow 2 en)eBra

I=hx+
(b) The times of uy appeared in {uy, -+, %} and in {us4+1, Ut are the same.
Then we may assume u,=1u;. Hence
(777 D""("I—Gu.: g_euk) e Ek—l-
Therefore, in both cases (a) and (b), we have (%, {) € B;.

2 :
Next, we consider such an element (n, {) that has the form (2 uy > €y, +

K =1 =1

ST e,a). There are three cases:

I=#;+1
(a) The times of u; appeared in {uy, +-+, w,} and in {uy, -, %, Ukq1, *--, Uy} aTe
the same. Then (7, {)—>(n—e,, {—e,) € By
Now, assume that the times of u; appeared in the above two sels are different.
Then, u; should appear in {u;,y, ***, Ugs1y =+, Upt.
(b) If us € {atip4, »++, Uy}, We may assume that u,=uy. Then
(, D> m—eu, {) € Bia.
(¢) If g € {tis1, ++5 e}, then
(n, D>, {—ew) € Bys.
In the above three cases, we always have (7, e E‘.
Combining the above discussions, we get B, Bj.
Conversely, assume that (n, ()€ B, If (n, C) € By_.1=B,_;, then it is
immediately that (7, {) € B; by the definition of B,. Therefore, we may assume
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(n, {) & By_1. Then, by (4.2), we can choose an
@ De g§l=§k—1=§k—1
such that (i, {)=>(7, [). We say that (7, D) = (n+ew, 0, (n, {+en) or (n+e,, {+
ew) . Otherwise, sinco (4, £) = (i—ew, 0), (7, {—eor (F—ew, {—eand (7, ) € By s,
we would have (7, {) C By_oCBy_1=B;_4, this is a contradiction. So, by (4.1),
there is a « € S such that
(1, O =(i4en 0), (7, E+e) or (Fte, L+e).

By the definition of B,_s, we see that (n, {) € By. Henee 5, B,

By induction, wo have pr o\wd B.= B, for each n>>0,

(m\ Suppose thab (n, ) EE,cB,and 7((, ), (7, D))>0. Then by 1.17)
(ﬁ, () should be one of (aew, ), (1, {Eew), (ntew, {Xe) MES), (mt+au—ey, ),
(1, L= eu—e,) Or (n+eg—e, {+eu—0y) (u, vE S, u%v). By (4.3),

~ ~ n+1
(7]r Z) EB'H-l: IQ)EM
and #0 (1.2) is satisfied.
The remaing are obvious.

Lemma 2. Tet ¢ ((n, 1), (77, O))be the Q-matriz corresponding to @ defined in
(L.17). Then, for each(n, ) € By(n=>1)there exist {vy, +-+, v,}3 8 and {as, +++, a;} <

J
7., D aj=mn such that
=1

LB WD, 6D -Fe0w, 0. @

J
2 crecver, X aze,, determined by the right side of (4.4) varies over the whole set {n: |7|
=

=n} whenever (v, {) 1aries over the whole set E,.
Preef (i) By (4.8), we see that (5, ) € F,=B,\B,_, iff it has the form

k¢ [ n
<§ Cu,; ;=21 €y +z=§+1 e ), (4.5)
where i € {0, 1, «--, n}, k€ {4, 4+1, -, n}, §Duy, -+, ¢, may be repeated butb
{tis, =05 Ut N {Us1, =0, Un} =
(ii) Denote the distinct elements of {us, -+, wb\{ty1, <=, Uat, {Msz, -+, e}
and {w 1, =+, Uny DY {01, -+, w1}, {0541, ==*» Vs,} and {vs,41, *++, vy} TeSpectively.

Then we may write

H J J
- 1 a
[}‘_a 6,“=2 aje,,+ 2 “§ )ev;’ “i>0’ @; )>0; .
F=J141
4y
‘f> €y, = 2 a§ %€y, (4.6)

Il
2 2
l > e,= 2 a‘ e,,, aiP>0.

Seba;=a," 1w, j=u _y}‘l, -+, J. It fallows from (i) and (4.6) that
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= =J5+1 .
J J , #.7)
(=2 @jey,+ > ae., + 2 aVe,,
< j=Tar1 J=Ui+l
and
J .
> a;=n. (4.8)
= -
(iii) We are going to compute _ g, 0, @&,0) for (n, D€E, Wil
T EF

we need indeed is figure out
Bon={(@ D€ty (0, 0~>G, D}
By {(«.1), (4.6, (4.7) and (1), we see that

(a) (n +e,, L+e,), (ntes, O, (, {+e,) & Faa.

() TEGELL, -, Jo}, then (n—e,, £—6,) € Bacs; (n—t0, O and (1, {—0,) €
E,.

(¢) If jE{J1+1, -+, J3}, then (n—e,, {) € B, 1, either (, {~e.) C I,y (when
a’>0) or (n, {—e,,) has no meaning (when af®=0), and either (v, )+ (e,
{—e,,) (when a{®>0) or (y—e,, {—e,,) has no meaning (when ¢'"’=0).

(@) If j€ {Ja+1, -+, J}, then (1, {—e,,) € E, 1, either (s,—¢,, {) € Iin (when
a>0) or (y—e,,, {) has no meaning (when a{’=0) and either (v, {)+(m—e,,
{—e,,) (when a{®>0) or (n—e,, {—e,,) has no meaning (when a}"’=0).

Combninig the above discussion, we get

Gk q((n, O, (mC))— ) q(m 0, @G, )

€ Fa1 B>
7 J
=28(/‘)1: "71:3)/\ 6(’1),, Cv,)+ 2 6(”1} 7]0,)+ 2 6('0!; CvJ
j=1 i=J3+1 =J g+
7
‘=§1 3(vy, @y).

(iv) The last assertion of Lemma 2 is obvious.
Lemma 3. Under the assumptions of Lemma 2, for each (0, {) € E, (n>0),

J
there ewist {vq, -+, v,3 8 and {a@, -, @} Z,, Za,=n such that

gﬁ(")j; a;) < ~-S Q(("l, C)) ("l: Z))<2[Z :8("}!) “J) + EB(“ 0)]. (4-9)

#,0)¢
J
Moreover, Dlae,, varies over the whele {n: |n|=n} whenever (n, {) varies over the
=

whole B,.
Proof Notice that (i) and (ii) in the proof of Lemma 2 are still available,
Using the rotations and the proof for (iii) given there, it follows that
{(m, Z) EE»+15 (9, O—-, Z)}={(77+3w {+ew): u€{vypa, . v}
U{(r+es, O, O, Lten): j=Ja+1, -, T}
i3y (1.17) and (4.7), we get
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Z Wm0, G D)
= 3 B, W) ABW, LY+ S [Bvy, m)+B(s L]

}f:fgzl i=Ji+t
J J

=28(vs, a)+ 21 B(vs, a’)+ X B(u, 0).
7=1 i=J1+1 gt;;i"

Now (4.9) follows since 8(u, k) is increasing ip F.
Lemma 4. Under the assumptions of Lemma 2, for exch n, k€ Z . and each (n,
0 € E,, we have

oy 480 0, G, 0)=0 | (4.11)
whenever -k > 1L,

Progf 1Jsing the proof of Lemma 2, it is easy to show that

{G, DEB: (n, D>, D}=9¢.

This proves (4.11).

Proof of Theorem 5. For the @-matrix (¢(n, {): n, {EX) defined by (1.16),
take H,={n€ X: |n| =k}. Then the Q-matrix (g;;) defined by (1.1) is a birth—death
-matrix and satisfies

{ Qh:.k+1=ma'x{m:2k+lqc'7) C) l"ll =k}=mry, KEZ,,
grua=min{ 3} ¢(n, D) |n] =k} =5, BEZ,\{0}.
For the Q-matrix (((m, §), (1, D) (, {), (1, ) € X x X)) replace Ey, in (1.1) by

E, defined by (4.2), and define a Q-matrix (g,;) according to (1.1). By Lomma 4,
(¢:;) is again a birth-death @-matrix. By Lemma 3 and Lemma 2, we have

;kagk.k-!-l—'_:ma'xi; ,,Z, &((’n; C)’ (?7) Z))' (77) C) eEk}

M {) € Brr1
<max{,§32,8(u, N6): |Tl| =k} =2r>1y, kEZ,,
SkE&k.k—iEmin{@ OEE]E g, D), @ D) (0, HEE}

—min {33 (u, 1): |1] =k}=S, bEZ,\ {0},
Hence, if (1.19) holds and r,>0 (4€ Z,), then (4.12) and (4.13) imply that

(4.12)

(4.13)

2[_1_+_§L+...+_&«'_“&]>R=oo,
=0l Ty T -1 T *T1To

2{—}—+~'§"‘ +---+—l§'ﬁ'—',’-s'3—]>R=oo.
k=0L 1y T3 5-1 7% "T17o0

_Therefore, 2 and {3 are regular by/Theorem 1 and Theorem 3, (i). If (1.19) holds
and r¢=0, 7,>0 (s€Z,\{0}), then the conclusion follows from Theorem 1 and
Theorem 8, (ii).

Finally, the remains are easily consequences of [10].

Proposition 3. Let S be finite. Then the Q-matrices defined by (1.12), (1.13)
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and (1.14) satisfy the assumptions of Theorem 5.
Proof The calculations are elementary once we write down the Q@-matrices.
For (1.12)

7 N
le(u: 77“) =A1Gy ( 2“ )+?‘44bu: a(“; nu) =2As ( 3 )"'}\'3"7«"
\
7 (%, v, N4y 7o) =1up (Y, ), u, VEL, uFw.
For (1.13) and (1.14), S and u should be replaced with 8% {1, 2} and (v, %)

(w€S, i=1, 2) respectively. Then, for (i.13), we have

(4.14)

f f@unu, =1,

:8(.('L") 'I/), "/m) '=10 =2

0,i=1
6 u, 'I‘/ » ui) ={ ’ ’ .
(( ) K 7\'3bu77u2; 7’=2;

AN, U=9, =1, j=2,
Nap (8, v), ukv, t=5=1,
NuaPa(%, V), uFv, t=4=2,
0, other (u, ¢) # (v, §),

7((“: 'I’): ('v) .7): N, ’70:‘)':

and for (1.14), we have
7»1@,‘, '7‘/=1,
0,¢=2,
. A, 6=1,
8((u, i), =
(w3, mad = o

Mb.m,d, U=, ?;=1, j=‘2,

B, 8), mu) ={

Ka(né‘i)‘f)ug, U=y, 'l./=2, 7-=1,
n“pi(ur ‘D), U, '1’=.7=1: 2,
.0, other (u, %) % (v, §).

7((u, 1), (¥, 9) 5 Nuts Neg) =

§ 5. Recurrence

Lemmal. ZLet (gi:4,j€ ) be a regular srreducible Q-mairiz. Then, the (q.;)-
prooess €8 recurrent i ff S
_w¢=I§np7mmk, 0<z,<1,icE (5.1)
has only zero solution for some jo € H (or equivalently, for any jo€ E), where (p;;) is
the jump matriz of (g4), i.e., '
R A
0, i=j4,4,j€E.
P.oof Olearly, wecan fixa jo€H. By [7, Theorem 1], the (g;)—process is
recurrent iff the jump chain (py;) is recurrent. Then, by [4, Theorem 6.6.1] it is

(5.2)

equivalent to that the minimal nonnegative solution of
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ah‘ =k§ ﬁgkwk'l" Z_hh, ) E E, (5 .3)

is #{=:1 (4 € ). Therefore, by [4, Theorem 5.6.3], the proof is reduced to showing
that (5.3) has no nonnegative non-constant bounded solution iff (5.1) has only
zero solution. To this end, let (;: ¢ € HE) be a non—zero solution of (5.1). Then
(yi=1+2z; iCH) is a nonnegative non-constant bounded solutici: of (5.3).
Conversely, if (5.8) has such a solution, then the minimal nonnegative solution of
(5.8) satisfies ;<1 and there exists at least an 4 4 so thab <1, since (y,=1,
i€ E) is a solution of (5.8). Hence, (z;=2l—a i&.Z) is a non-zero solution of
(5.1). ‘

Procf o Theorem 6, By Lemma 1, 1o prove the first part of Theorem 6, it
sullices to show that (6.1) has only zero solubion implies that

() =#Zo§(?7, Du(D), 0<u(n) <1, n€ X, - (5.4)
I wnly zoro solution, where (p(n, {)) is the jump matrix of (¢(», {)). Now, the

proof is similar to the proof of Theorem 1. Suppose that {u(n): n€ X} is a non-
zero folution to (5.4). Then
g(u()= 3 q(n, Hu(d), 0<u(n)<1,7€ Xo. (5.5)

Seb wp=sup{u(n): n€ By}, i€ Z,. Since Eo={0}, E,is a finite set (A>1), there
exists an n® € B, (k>1) so that

uw=u(@), w=u(n®), (5.6)
qoo =g (B)u(8) =§)9<9; Ou(@<£§;}7(0; O un=qo1us. (5.7

If k>1, by using the method in the proof of (2.6), it follows that

b
9, Dt 3 (g, 0) =)< 3 40, D (=),
sow, 1, and

k~1
Grolly+ §1 Gt (U — %) <@ e2 (Ugra — ), k=1, (5.8)

Combining (5.7) and (5.8), we get
Qkukﬁq&%‘%ﬂ% keZ,.
It is now easy o show that =0, ¢ € Z, (ef. the proof of § 2, Lemma 1) since (5.1)

has only zero solution. But this is a contradetion to u(n) #0.
As for the second part of Thorem 6, by Lemma 1, we need only to prove that

o= 2 A% g, 0<u<14€Z, (5.9)
k04 G

bas non-zero solution iff i‘ FP< oo, Notice that (5.9) has non—zero solution ifl
k=0

o= NI g 0<w,<1,4€Z, (5.10)

k%0, Q4
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has nonnegative bounded solution, and (5.10) has ab most one solution which is
To=1=14, (5.11)

~ ~ =1 ~ o~ ~ .
Lyp1— Xy= <;§; iy (2, — ) +Qeozc>/‘]4,¢+1; i=1.

Clearly, (5;) is increasing. Thus, the proof is reduced to showing thot (z,) 18
bounded iff

S FO < oo,
k=0
Observe that

!;% 3y ~ ~ =1 ~ ~
!514 ¢ (Er1— ;) =§J g (2, — 25).

Hence
~ ~ =1 D ~ (© )
wc+1—ﬂ7s=2—q"'—(%+1—-’”f)+ % =1
=1 Q41 Tivit1
This proves that (y;=2;,;— 2, ¢>1) is a nonnegative finite zolulion to
i—1 H o)
=T BT i1, B 12)
=1 Gi,i+1 Qiist g

On the other hand, the solution to (5.12) is unique, i.e.,

0
z; = g:(l )/912,

= SN 011G G T,
and it is easy to show
%=F, i=1
by induction. Using the above remarks, we get
To=21=1=FP, z,,,—2,=F©®, i>1.
This of course implies-what we need.
Proposition 4. Let 8 be finite. Then the (q(n, {))-preeess defined Ly (1.12) is
recurrent. '
Proof Take Ey={n€X: |n|=Fk}. By (3.4) and (3.6), We Luve s ., Ty1-—>00
(k—>c0). Hence
| OPZCER RIS B

e O SR
Now Theorem 6 is available.

§ 6. Positive Recurrence and Ergoiicity
Proof of Theorem 7. If the (gy)-process is positive rccurrent, then for some
(each) 4o € Z, there exists a nonnegative solution to

o= L”-wﬂ—ql, § o, (6.1)
4

JHboot Q4
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E-qi—d py<l 0

f+io Gy
by [4, Theorem 9.4.1]. But (6.1) is just the condition (1.22) if we set z,=0, in
addition. Therefore (1.22) is necessary.
Conversely, if {u;: 4€ Z,} is a nonnegative solution of (1.22) for an i,€Z,,
we define
o,=1, i %iy; ———-2 gs Uy, =1 (6.2)

Then c;+$ <0, 1€ Z,, and s0

_,S;‘__'z_‘__ — ] V .
Uy * _1 q‘ (M )+ ?»+q 7q’EZ+; (6 3)

where c==(inf{e;/A: j€Z+})/\0>—oo. Denote the Laplace transform of the
minimal (gy)—process by (PgE™(A)). It follows from [4, Theorem 3.3.3 and
Theorem 3.3.1] that

u;—c>g P2 (A) (e;—Ac). (6.4)
Since (gy) is regular, A.Z Pr(A) =1, 4€ Z,, A>0, it follows from (6.2) and (6.4)
that
%>2 Pyt (7&)0;~2 P () + PR (M) e =27+ PiR (M) (6,—1),
ie.,

Xu‘>1+APW (;\,) (Ogo - 1), ie Z+.
Because of ]j%.lg ApER(A) =lim p,; () =wy, 4, € Z,, we have
A t—s00

0=1+my,(0;,~1), $€Zy,
and 80 oy, %0 for each 4 & Z,. This implies that w;=w;>0, ¢, j€Z, and > w,=1. So
3

the (gi;)-process is ergodic.
Proof of Thecrem 8 By Theorem 7, it suffices to prove that -
23 ¢, Du)+1<0, n#4,
12900, Du(d) | <eo (6.5)
has nonnegative solution. To this end, put

u(n) =uy, € By, k€ Z,.
Given 1 & Hy, there exists only one ¥ & Z,\{0} so that € E,. Hence

Zq(n, Du@®)+1= —kg—:cgfﬂn, O (u—u) + m%ﬂ@l(n, 0) (e — ) +1

< —g%i(uk—uf) + G, w41 (U1 — ) +1=$ Qustty+1<0
by (1.1), (1.2), uy,/" and the assumption of this theorem. But
340, Du®) = Z a0, Dus =g
is finite, so (6.5) holds.
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Proof of Theorem 9 Let {u: ¢€Z,} be a nonnegative increasing solution to -

(1.22) with 44=0. Then
o1 (us —uo) = IIZGIO:’UII <00, (6.6)

2q,,;u,+1<0, k>0. (67)
7
By (1.7), (6.7) and Abelian transform, we get
Qe (Uip1— i) +1<!2le('“70 “ay) == .4 qg‘(uﬂi_ui)- (6.8)

Put vy =wye1—u;(k>>0). Then =, is finite by (6.6). Ry (1.9), (1.25), (6.8) and
induction it follows that
0, <FPvo—dy, k€ Z,. (6.9)
‘Now, (1.24) follows from (6.9) since ut, v,=>0, k€ Z,.
Conversely, if (1.24) holds, then (6.6) holds for (u,: k€ Z,) defined by (1.26).
.Hence, by (1.9) and (1.25), for each ¥>0, we have

. k=1 k-1
14+ quie1 (rr— i) = Qo ks 1 F 0% — @, a1 +1 =EO g FPOuy — 20 q2d
8= 8=

k=1 k=1 k=1
=3=20 QI(cs) (F §0)u’1 - ds) = g) QI(cs) (ua+1 - uo) = ]_EZOQM (uk - uj) )
i.e. D) grst;+1=0, and so (1.22) has a nonnegative increasing solution when o=
J

0.
Corollary. Let (qu) be a birth-death Q-mairis:
Te=qx,x+1>>0, £>0,
8 =qx,5-1>>0, k=1,
"Then, the condition (1.24) is eqwi/ualent to

Z “Th_ oo, (6.11)
k=0 8k+1
Proof By (1.9) and (1.25), we have
Ay _Tieemy 1 G Jmerem L ST ToTioTs
B S8 Ty (48] To 1220 $18a%+ 841

Proposition 5. Let S be finite. Then the Q-process corresponding to Schligl

-model s ergodie.
Proof By (3.4) and (8. 6), —>0 (k—>c0). Henoe (1.24) holds.
Proof of Theorem 10 Let (u,. @E Z,) be a nonnegative solution to (1.22) with
$0=0, and put vy, =wuy.3—u;. Then (6.9) holds, and so
13 X © ks k k
0<uk+1=§ ’!)k+uo<<§ F; )'l)o—l:zo d[-f-uo <<§ F§°)>u1—§)d,.

Therefore, we have d<uy<co. Conversely, if (1.27) holds, we choose uo=0, u;>d,
and define u; (k>2) according to (1.26). Then, by using the proof of Theorem 9,
+fb follows that

T T
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Z _q,-]-u,+1=0, 705&0,
J

’Z gols= o1ty is finite,

and
e~1 k=1 k—1
= (FOu;—d)=d S F®—31d, >0, k=2,
1=0 i=0 =

We geb a nonnegative solution to (1.22) with 4,=0.
The last assertion of Theorem 10 is obvisus.
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