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Dedicated to Professor Lee Kwok-ping (L; Tuvping) On the
Occasion of his 50th YVear of Educaticnal and Scientific Work

The circulation decomposition for a Markov chain with discrete
parameteir was introduced in 1979 by Qjan Min-ping(1), However,
from physical and mathematical point of view, the analogue for a
Markov chain with continuous parameter may be more interesting,
It is certainly true that we have a circulation decomposition for
such chain at each time t, Theorefore, the pojnt we are really in-
teresting is whether the circulation decompositions change when the
time varies, and if so, does there exjst any stable property¢

Look at the following example Let £={1,2,3) be a state space,
aad let

l/—l 1 0)
Q=0 -1 11'
L1 0 —1)

be a Q - matrix. The corresponding Q - process is P(¢) = (Pyy(t);
1,]€EE),;
PiiD) = Doa(t) = pys () =1/3+(2/3)e 2t 2cos( v/ 31/2),;

T 13

)
),

Pia(t)=p2u(t) =y, (1) =1/3+(2/3)e 2t °°5(‘~/73’—

T
Pta(f)=Psz(f)=P21(f)=1/3+(2/3)€-“/2 COS(\T,s‘f'l‘
Its stationary distribution isw =my=m;=1/3. Since
”1‘712“}7"2‘121=JT2Q23*”3Q32=”2(131_”1Q13=1/3,

——

* Received 257 an_, 1982
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Q\v= (q“-);has a circulation as follows,

P
N /
\ ‘//13
3 N\ v
€)

i

Tor eacht, we have
TP o) —ma o, (1)Y=, Pos(B)—ma Py () =a4dps (1) —m py3(t)
=r(t)=(2./3/9)e %" 2gsin(\.f‘s't/z)
when 7(¢,) %0 we also have the same circulationiat time f, as above,
The flow of the circulation is r(¢), but the direction of the circula-

tion may not be the same Notice that r(2z/\/ 3 ) = (. beuce there is

no circulation at time t =27/ 3 .

In view of the above exampls the circulatioa decompositions
may not be the same for different times It can be happened that
there exist infiujre civevlaticns for some ¢=¢,;. but there is no
circulation for another t=¢,, However, we will prove. uuder some
hypotheses, that the circulation decompositions are almost stable
(Theorem(24)). This result posseses obviously some practical mean-
ing In particular, it shows that the self-organization phenomenon
exists widely, for which we will discuss in §3.

[n this paper, we will also study the reversibility for g-pro-
cesses, the relation between the reversibility for a g-pair and anen-
tropy production, and the distribution of detailed balance points
and non-detailed balance points on [(, oo].

§ 1. Reversibility and Entropy Production

Let X =(X,:t220) be a Markov process with initial distribution
u and Markovian transition function p(¢, x, 4) (¢20, xEE, AC &)
[2; Definition (2.2)]. Denote the absolute distribution of the pro-
cess at time ¢t by '

W ety A = [udnpa, x, 4, 20, 4€8

By the proof of [2; Theorem 2 5], we get
(2) Proposition X =(X,) is reversible iff

(3)j n(s,dx) pit, x, B):J p(s, dx) pit, v, A), Vs, t0.V 4,Bc &
A4 B

(4)Proposition For any sub-Markovian transition function, eq,
(3) implies that p(¢, x, A) is reversible with respect to u[2; Defini-
tion(3.3)]. If p(¢, %, A) is Markovian, then eq  (3) is equivalent to
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the reversibility for p(t,x, Ay,
Proof The first assertion is obvious, The second assertion
folows from

[ pescdorpet B = [ (Jutdy) pes, v, d0)pct, .8

- [Amdx)p(s, . E) p(t, x, B) =ij:<dx>p<t.. %, B)

(5) Definition p(¢,x,A) is called strong reversible (with respect
tou) if eq. (3) holds,

If p(t.x, A) is a (totally stable) g-process, then, by the proof
of [2; proposition (3 1)), it follows that

(6) J‘A,IT(S,dx)q(x,B)=Lp(8,dx)q(x,f4), ¥s=0 V4, BE¢

we then call the g-pair q(x)-q(x, 4) strong reversible (with respect
to ).
Set
up WY
J (ty-Ay 15) =

Ja

K" T, 4,B) =1ogU p(t,dxm(x,B)/f Pt dx)g(x, 4 |,
A B

G, p)= \Y JE P, A, BYK* P(t, 4.B),

t>»0 A, BE
we call G(u, p) an entropy production for p(f,x, 4) with respect

p(t, dx)q(x, B>—Lp(t,.dx>q<x,.A> ,

to
} .’[‘h.e follewing conclusions are obvious,

(7) Proposition

(i) G, p)=0;

(ii) Gy, p) =0 iff the g-pair g(x) —q(x,4) is strong reversible
with respect to u,

(8) Remark For discrete state space, the entropy production is
usually defined by
3 (Pi(t)Qi 1—pi{t)gi) )103(17; (q;3/05(q5, ),

i. 3cE
This is not available for the general state space, so we use the new

definition of the entropy production, but they coinide in the strop
reversible case,

(9) Theorem G(u, p™in) =0 iff pmin¢s, x, A) is strong reversible
with respect to p,

Proof Use the proof of [2; Theorem(5.3)].(6)and proposition(7).

(10)Theorem Let p(t,x, A)be a couservative g-process satisfying
the forward Kolmogorov equation

0

(F) p , ‘,A)<EJ e‘*‘p(t,x,A)a'f)
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- 5 QL\L,‘CI: (S\\. .z'l)
Jp(}"x’d'wj.ﬁ+«7(_z) /.-rq\'c)

and let G(u.p)=0, Thea the g-nrocess is uhique in u-equivalent
sense, ") and plf, . A4) is stationary with stationary distribution u.
Proof Denote the Laplace transform of p(t Ay by p(2,A). We

have
i

pi, A= ace"“[p(t,x. Aypdx)de
S0

=JP(/.-,.‘C,A)lu(dx) [
U'W - )J 2 dz)+‘$(f—-‘-1—) lutd o

a4 rq( ) /+-7(

A R as+q(z)

lc\L[\’:)
at+ G{ ")

[ u(dx) ,[(fivc)/)() , l\\' aly,d2)
[
)

= | SO (o, dwra(TarGratn) )

a2 +q(x)
where ,
@ () [9() aty,d2).
Next, by (7_-ii), we have )
[ 0, d0race, 8= | pth,drace, 4), VI>0, ¥ 4,BE »
Frem ti;ns and the mono‘tane class theorem, we get
Jvf(x>p(2.,dx)(qg)(x) =Jg(x)p().,dx)(qf>(x), Vi, g€,

hence

u(dx) Ca(x, By,
p(), 44) jA/ +q(x)+}A/;—7J(x),D(/,dx)
T CED) A
JMTq(}T’*"“”A’ ) L p(dx),
1.€,
udx) _ [ A
L.z. 1300 JA/+q<x>p(’ dx),
and so

w(A) =ip(i, Ay, ¥YA>0, VA€¢
On the other hand
lp(t:A)—P(S,A”

<|1p¢t, %, 4) = pes, %, 4) | ued)

*)See (2, Definition (6.1)). For the measurability of the set given there, we need a
little condition on (E; &) .
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so p( +,4) is continuous, By the uniqueness theorem for Laplace
transform, we get
w(A)=p, A, Ytz0, YAES#,
[a particular,
Jottx, Erucdxy = pee, By =u(E) =1
therefore
pit, « L, E)=1, u—a.e .,

(11)Theorem For agiven conservative g-pair u(x) ~g(x, 4),there
exists a strong reversible g-process or there exists a g-process with
Gu, py =0 iff the g-pair is reversible (with respect to ),

Proof The necessity isobvious, We prove the sufficiency, Since
the g-pair .is conservative, we can alwavs construcc an honest rever-
ssible g-process [2; Theorem (6.3)]. By propositinn (4), ihe rever-
ibility and the strong reversibility are the same, so there cxists at
feast one strong reversible g-zrocess Finally, G(u,p)=0 follows
from proposition (7 i,

(12) Proposition Tet u ve = finjte measure on & Set

v(dx) =qe)u(de)] (g ysa1€X)+ L g ya0;Ceduldx)
then
’ vlx:g(x) = 0 ]=pfx:q(x)=0]
’ 1!((}’.\‘)

j (e ¢y s01 q(x) =ulx:q(x)<0)<eo

Moreover, g(x) —q(x, A) is potentjal with respect to u iff
we, A) = LET ) +80x, AT (guay (1)
qQ(x)
is potential with respect tov (Recall that the potentiality is a
extension to the reversibility, i e, the measure p may not be an
probability measure, but shold be a o-finite non-negative measure),

Proof The first assersion is obvious, The second one follows
from the following fact,

j v(dx)m(x,B)
A

dxy 38 |
JA[q>qu(x)“( %) g(x) +JA[Q-01

~;Jﬁwdxxux,3)+u[Ar}Bﬂ[0=oJ}

a(x, BYu(dx)

§ 2. Stabhility of Circulation Decompositions

(13) Definition R=(r;;). <y j«n 1scalled a circulation malrix,
if there exist some distinct states i,, i,, ---, i, (k>>3) and a constant
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a>( such that

fa,i=1;, j=i,.; =1, 2, ,k, Tea 1 =11)

ri;=

(0, otherwise }
then, (i, , -,i,.i,) is called the cycle of R with the direction i,—>i,~
eo—>i,—1,, and a is called the flow of R,
(14) Definition we call

c(t, A, B)~H u(dx)p(t,x B)—Ji u(dw)p(t x A)]

a flow at time ¢ from A to B,
(15) Definition Let p(¢.x,A4) be an honest dek(‘v process with
stationary distribution u  If

jAu(dx)p(.‘.x,B) = jB,u(dx)p(t,x:A). VA,BE &£,

we say that ¢ is a detailed balaace point, We abbreviate it by DBP,
and we use the abhreviat.on NDIP for a point which is not a DBP,

(16) Proposition”’ Let p(t,x,A) be honest Markov process
with stationary distriobution g, Then :

(i) either there is only one DBP (i e, t=0) or there are infinite
ones;

(ii) either there is no NDBP, or the set of all NDBP is an open
set with positive Lebesgue measure,

(iii) the set of ail DBP is not dense in [0,c0) whenever p(¢,x,
A) is irreversible

(iv) if the g-pair q(x)-q(x,A) is irreversible with respect to u,
then, for each g-process p(t,x,A), tiere exists a >0 such that
each 1€ (0,6) is a NDBP for p(¢,x,4).

Proof (i) Since p(0,x,A)=08(x,A), we know that¢t=0 1saDBP
If £>0 is also a DBP, then so are nt(n>>1) by Kolmogorov- Chapman
equation,

(ii) If p(t,x,A) is reversible, there is no NDBP 6 Otherwise,
there #,>>0 and 4,B€ & such that C(¢,,4,B)>0. On the other hand,
for the fixed 4 and B, C(t,A,B) is continuous in ¢, hence C( -
BY>0 in a neighbourhood of ¢, This prove our assertions,

(iii) If the assertion was not true, then p(¢,x,4) would be
reversible since t—p(t,x,A) is continuous,

(iv) If there is sequence {t,} of DBP such that ¢,\0, then the
proof of [2; proposition (3.1)] could show that the g¢-pair would
be reversible with respect to u_

(17) Hypotheses From now on, we will suppose that the given

*) We can say more in spacial case, see(20).
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q-pair g(x)-q¢x,A) is conservative and bounded, the unjque g-pro-
cess p(t,x,A) is stationary with stationary distribution g,
We will fix {4;}*, to be a measurable partition of &,
Endowing the supremum norm on b#& (the set of all bounded
s-measurable functions), we get a normed space which is also denoted
by b&. Deline

Qf (x> = |(atx,dy) =3Cx,dy)ax Yf(»,
Q =Q/jall +1
where [ is the i{dentity operator on 6&#_ Then we have

(18) Lemma, Q and @\are bounded linear operatoss on H£ to itself,

IRt <z2lal, Q<3
Qis also a positive operator, 1f 0<fn /' f, fr) fEbe, then
Qrf ()~ Q (%) (m—>c0)

for each x€ £ 2ud cacu n2=1.
Proof We oalv preve the last assertion here, When n=1, it is
clear that

Qfm(x) = Jq(x,dy)fm(y)-—q<x)fm(x)

;‘:qu,d,v)f(_v)—q(x)f(x) =Qf(x).

Assume that the assertion is true for n, since [[Q" fal|<<2"q)" || fmll

2"fql" - fif
Q"+ fal) = (90, d 1) (Q fn(3D) = 90 Q (),
we get QM f(x)——>Q" ' f(x) (V A €FE) by dominated convergence

theorem
(19) Lemma For fixed 4 and B, as a function of ¢,

| pedptt 1B
can be extended to be an analytic function,

Proof The assertion follows from the following facts,

Lu(dx)p(t,:é,B)

= [A/J(a’x)e‘qu(x)

=3 ,ﬁj (QMrg)(xX)uldx)s
A

n=g9 !

| @1 udn |<ejanrucamr<dagp®.
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(20) Corollary Under hypotheses (17),if p(¢,x,A) is irreversible
with respect:to u, then each point in (0,00) is ' a NDBP except an
isolated set,

Proof From [2; Theorem (5.3)] we know that there exists at tE
(0,00) and A,,B, € & such that !

J u(dx)p(t,x,By) —,—‘—-J u(dx)p(t,.ic,Ao)'
By B, :

Putting
A= { Iu(dw)p(t x B)—J udx)p(t,=x, 4) YA,BE# },

then, by proposition (16), we see that either AL =®orisan infinite
set_ In the second case, notice that : ‘
Ac {t: J ;L(dx)p(t,x,Bo)=J y(a’x‘,‘p(t,x,Ad)},
Ag B,
the assertion follows f{rormm Lemma (19) and ghe following fact:
Assume that .1 s aa infinite se’ containing a cbnvergent sequernce,
f and g are twe analytic functions, If f and g comclde on /, then
f=geverywhere,
(21) Lemma Under Hypotheses (17), we have

ZQ"IAi(x)=0
i

Y[R PWES

7
for each x € E and n>],

Proof From Lemma (18), we know that a" and Q" (n>1) are

bounded operators, a"(n>1) are positive and Ha]|<3, therefore
PINOLIPNES =<Q"ZIA,.)<x> = (Q"1)(x)
i i
=Q" ' (q(+ ,E)-q(+))(x)=0
3 I/@"IAJ.(x) =3 a"IAj(x) = (Q"D(x)
i

H

< QT<3n.
(22) Lemma Under Hypotheses (17), we have

Ju<dx>Q"f<x>=o

for each fEb& and each n=1,
Proof Since p(t,x,A) is stationary, we get
0=J#(dx)p(t,x,A) -0(x,A4)

t
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= [ et pt,x, )/t - [ wdol-pt,x, 201/t

+JAy(dx)p(t,x,A\{x})/t
Using the fact thatYxgB€ &,

and dominatecd convergence theorem, we obtain VAE &,

0=J'Ac.U(dX)Q(X,A) - Lu(dx)q(x) + J’A‘u(dx)q(x,A)
=J#¢<dx)q(x~4> - Ju(dmf 8(x,dy)q(y)
A

= [utamQI .
This shows that the assertion holds for n=1, Now, by Lemma (18)
and monotone class theor=m, it follows that
|nd0i ) =0, Vi€be
On the other haud, by Lemma (18), we have
Qrfebs, VYfebe, Vnzl.
Therefore, we get
[udn@r feo = |udn@@ M=o
By induction, this proves our lemma,
Define
™ = [JA,-u(dx) Q" 4, (x) - JAju(dx) Qrl 4, (x) ]

dyy = (J_Mu(dx) Q"IA,(x))/\(Liu(dx) a""IAi(x) )
We see that ¢ % >0 by Lemma(18),
(23) Lemma Foranyi,j, and n, we have
(i) ¢4 =0
(ii) ¢y el =0

Gii) 2 ey =Y =0;
: i

+
b

(iv) Z_C (inj) <o,

i
Proof The first two assertions are obvious, It follows from
Lemma(21) and Lemma(22) that

; (CEm -Cyy = ; (L,“(d") Q“]Aj(x)

_JA”’_(dx)/c\)n[A‘(x) )
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¢

= [ wtdn) Qg+ a0 - futd Q) + D™ o, (0
i j ;

:JA .[-L(dx) Z[Aj(x)—J;t(d,x)[Ai(x)zb

: i i o

. This proves (iii), Asfor (iv), by Lemma (21), weihave

IS ED I HA ,u(dX)a“IAj(x)é’
i in § A J

~ 3
<2[udx) 1 Q" 4, (0] <237 <od
5 '3
(24) Theoremn (Stavility theorem of circulations).
Let g(x)-q(x,A4) be a bounded conservative! g-pair, the q~
»process p(t,x,A) is stationary with staticnary distribuiion u, and
let {A;}7 be a measurable partition of &  Deline

a it J a(dx)y pit,x, As)
4;

then the matrix A(f) = (a;;(+)) can be decomposed ifi_to two parts;
Aty =Dty + 3 R ()

keH _
where the first part D(¢) which is a symmetric matrix is the detail-
ed balance part; the second part Y | R, (¢) is the circulation part,

keH
each R, (#) is a circulation matrix; ff is at most denumerable and
may be empty Moreover, when time varies, each cycle of R, (¢)
(k €H) is not changed (but the direction and the {low of R, (¢) can
be changed) maybe except a countable set of (0,o0), In other words,
the circulation decompositions are almost stable,
Proof Because

a;i(t) = J'A M(dx)ethA,- (x)

=e—tnan ‘u(dx)ethnS]A.(x)
A J

_e-thnZ(f“qu) j [l(dx)Qﬂ[A (x)’
n=0
hence
A =exp(-tay U pe womy,
n=0 .

where
D™ =(d (), nz20; M ey, n=1, COV =0,
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These matrices do not depeand on ¢, clearly, D{" is symmetric,
= n

hence D(#) Eexp(~t”q||)zg%”)_D("’ is also symmetric, On the
) :

other-hand, each matrix C(*) satisfies the conditions in Lemma
(23), using the proof in (1; §5.3) we get the following circulation
decompositions,

Ctm=75" Eu’“ n>1

leH,
where H , is at most denumerable, Here, we agree with the conven-
tion that a summation over an empty set is zero, The flecw of

En ,is denoted by ?,._ <0, Clearly En ,=0. Some oi the circula-

tion matricesin { R, , :n>1, |€ Hy} may have the sams cycle but
different directions, we relabel all the cycles by 1, 2, -+ Thus,
among the circulations with &th cycie, there may be two opposite
directions, Putting *he circulation matrices which have the same
direction together, we get two circulation matrices, _r_kl ) ﬁkl
and 7., (1) Rys, where B,, and R,, do not depend on t. We have
arrived at,

Aty =Dy + > (rei () R+ 7 a (D) Ri2).

kel
We are now at the position to discuss the stability of circulation
decompositions, All together there are four cases,

(i) Among r,, (1) Ry, andr ., () R,,, someone, for instance
R .., is disappeared, Then kth cycle never vanishes since 7 ,, (1)>0

for all >0 and B,,+0. Indeed, 7, (t) can be expressed by
T () =eXp(—t”q”)2ca(_fU&‘1_|'|)_’

where c,>0, and there exists an a, such that ¢,y>>0,

(1) Ty () =7 (). Tn thiscase, 7., (1) R+ 7 12 (DR,
is 2 symmetric matrix, so can be merged into D(¢),

(ii1) 7k,(t)>7k2(t) for each t>0. In this case, we .can re-
place T,“ ) Ry, + 7., (1) Ry, by a symmetric matrix (also merg-
ed into D(¢)) and a new circulation martrix ARk(t)E(_;'—k,(t) - ?kz
(t))R,.. By (i), R, (t) never vanishes, Similarly, we can discuss

the case of r | (LT s (1) for each >0,
(iv) The cases (i)-(iii) are disappeared, then for some ¢, we

have 7, (t)=T7,, (#), and for another t, we have 7, () # 7 ., ().
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;As discussed in (iii), we can always replace T,“(t)é Rei + Thy (B .
;72,” by a symmeiric matrix and a circulation mafri_x R.(t). I T e
(t)= T, (), then the flow of R, (#) is either Td () = T (B (in
the case of 7., () > 7 ,s (1)), or 7 ,, (1) = r,, (#) (in the case of :
P (1) < Ty (0); in the two cases, the cycles of - R (t) are the -

“same but the directions are different. If 7,, (f) =7 ,,(¢), then the

“circulation R, (¢) vanishes, In other words, kth cyc‘;le vanishes only

H
i

~at the time ¢ belonging to ;
: A ={120: T ()= T4y (D},
Tf 4, is a finite set, then 4, must be ar isclated sct, Therefore,

we may assume that 4, is an iufinite set_ Next, oy the above con-

‘struction, we krow that teth 7, (4) and 1 ,,(¢) can be regarded as
analytic functioas in ¢, Hence, 4, must be an isolated set. Set

U

A=y,

We see that /[ is at most denumerable,
We have now proved our main theorem,

§ 3. Self-Organization Phenomena

Various dynamical patterns have been observed for numerous
systems far from thermal equilibrium in physics, chemistry, biology
and so on. This is just the self-organization phenomena(3,4). Many
nonequilibrium systems can be studied by Markov processes with
continuous parameter (3,4,5). When thesystem (resp, the Markov
process) arrives stable (resp. stationmary Markov process), either
the system is detailed balance (resp, reversible Markov process), or
it is'not detailed balance (resp, irreversible Markov process), The-
orem (24) tells us that the patterns (resp. circulations) should be
arised in any nonequilibrium system, and the patterns are almost
stable even through the flows of circulations now strong, now weak,
and the directions of circulations are not the same when time ¢ varies,
It seems that the self-organization phenomena exists widely,
not only for the systems far from thermal equilibrium, but also for
the svstems near equilibrium (i e, linear nonequilibrium), 6 The
reason we can not easily observe the patterns is the flows of circu-
lations are too weak
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