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ABSTRACT

The uniqueness problem for the totally staklz q-processes in the ease of the state spaces being
countable was solved by C. T. Hou. Im this paper we shall extend Hou’s theorem to arbitrary
abstract state spaces. ‘

The couvstruction of g-processes has been  studied for about half a century. When
the state spaces were countable, the existence and uniqueness problem was being sue-
cessively improved by W.Feller™' J, L. Doob™, G. E. H. Reuter** and others.
Finally, C, T. Hou fully sclved the case of all states being stable. When the state
spaces were abstract, the problem was studied by D. H, Hu'%"'J, but his definition of
g—processes did not fully include @Q—processes of countable state spaces, In this paper,
a new definition of g—processes is presented, and it can not be extended further, We
have obtained 2 uniqueness criterion for g¢—processes, which includes Hou’s uniqueness
theorem.

I Norarion

Let (E,&) be an abstract measurable space, And all singletons {x} (¢ € E) belong
to 6.1 (r&4, b&,b& 4, £+ ) denotes the set of all finite measurable (nonnegative finite
measurable, bounded measurable, nonnegative bounded measurable, nonnegative measur-
able) functions; £ (., &.) denotes the set of all finite o—additive set functicns
(finite measures, o—finite measures).

Definition 1.1, The functions g(x) — ¢(z, AY(x € E, A€ &) are called a g—pair,
if g(-)e&Ep,q(-,A)er&y for Asq(a, -) € Ly for z,q(z, {2}) =0 and ¢(z, E) <
q(z) for every z € E. We call z stable if

q(z) < + oo, (1.1)

and we call g(z) — g(x, A) totally stable if (1.1) holds for every z € E.z is called
a conseivative point if

q(z, B) = q(=), (1.2)
and g(z) — q(z, A) conservative if (1.2) holds for every z € E.

Definition 1.2. Given a ¢-pair ¢(z) — q(z, 4), a Markov process P (¢, z, 4)
(t=0,z€ E, A€ &) [6; Definition 1.1] is called a g—process if
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Hm, [P(tiz, A) — 6(x, 4)] - t7 = q(z. A) — 3(x- )q(x)

(z€E, A€ R), (1.3)
where
K ={Aec & liﬂsuéad[l — P,z {z})] = 0}. (1.4)

o(x, A) =1 if 2€ 4;6(z, A) =0 if z& A,

Theorem 1.3. Suppose (E, &) satisfies {(z,2):x€E} € & X & (for example,
E is a Hausdorff space). Then every totally stable Markov process is a q—process with
respect to some g-pair q(z) — q(z, A), where “totally stable” means that

g(z) = lim [1 — P(t, 3, {z})) + 7' < o0, Nz € L.
>0+

Proof. By [13; Theorem 4.1], the above limits always exist, and

§(z, AL im Pz A)it < oo, VA€ R, E3z& A.

RN
In [183] Rendall proved that if we define q(z, 4) = §(z, A\{x}), then
i) & is a ring;
ii) g(+) and (-, 4) € &, for every A € &;
iii) g(z, +) is a measure on & for every € E;

iv) if sup g(z) < oo, then A € &.
*ECA

Therefore there exists 4, € B such that A, 1 E, and hence g(z, -) can be extended to
a unique measure on & for every z € E, and we may also write g(z.-). Clearly,
the extended g(z)—g(z, A) is also a g-pair, and for every Mz € E, ¥4 € &, we have

’l_i.r& [P(t,z,A) — 8(z,4)] - 17 = q@(z, A) — §(2)8(=, A).

Lemma 1.4. Suppose that q(xz) — q(x, A) is totally stable. Then, for every
fized A € &, inf P™"(4, 2, E) > 0 holds for some Ay >0 if and only if it holds for all
€A
A>0, where P™*(lyz, A)(L>0,2€E, A€ &) ts the minimal nonnegative solution
of the following egquation:

— q(=, dy) 8(z, 4) P
(B) P(h, z, A) g_———l LU0 pGy, ) + KBRS G 0ne B A e ).

Proof. It is enough to prove the necessity. Since P™*® (4,z, A) satisfies the resol-
vent equation [7; Theorem 5.1. (iii)], if A << iy, then we have P™*(4,z, E) | (1 1)

for fixed z. Hence

inf AP™(L, 2, B) = Ads". iléf Pmin(lg.z, E) > 0.
€4 xecd

On the other hand, since

2(@) — 2,() + G — @) | 27"y 2, dy)2,(y) = 0 (1.5)

.

(}-,‘IL>07I€E)7
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where z;(2)01 — AP™ (4,2, E)(A > 0,z € E), then we have
1Pl BY T (1), (1.6)
and hence iléf AP™(2, 2, E) > 0 for 1 = 2.
xC4
Definition 1.5. A q-pair q(z) — q(x, A) is given. A measurable partition {E,},5
is called a g-partition if
sup q(z) < +00,(Mn=1), (1.7)
x€E,
inf 1P™%(, 3, E) > 0, (¥n > 1, %1 > 0). (1.8)
x€E,
Remarks. Fixed an arbitrary 1 > 0. Put
E,,(D)={zeEBn—1<qgz)<n (m<- 1DT<AF" 1,2, E) <m?*}(m,n=1).

From Lemma 1.4, we know that {£,,.} iz a g¢—partition. From now on, we always
assume that we have taken and fixed a ¢—partition.

Theoreva 1.6, Let g(z) — q(a, A) be a total stable q-pair. Again let {E, )i
be a q-partition and P(t,z, A) be a Markov process, then

i) P(t,z, A) is @ q-process if and only if
lim [P(t 2z, 4) — 8(x, A1t = g(2, A) — 6(x, A)g(z)

-0+

(Mz€E,Ae FNE,,n=>=1). (1.9)

ii) If q(z) — q(a, A) is conservative, then P(t,z, A) is a q-process iff
lim [P(t, Z, A) - 6(-’31 A) ]t_‘l = q(z, A) - 6(15, A)q(:ﬂ)’

>0+

(Vz€E, A€L). (1.10)

Proof. Assertion i) follows from the proof of Theorem 1.3, and assertion ii) follows
from [13] or Theorem 2 of § 6.1 in [10].

As usual, the Laplace transform P(A,x, A) of a Markov process P(%,x, A) is also
called a Markov process. It is not difficult to prove the following

Theorem 1.7. A Markov process P(k,z, A) is a q-process if and only if
lim 2[2P(4, 2, 4) — 8(2, )] = q(, 4) — 8(z, 4)q(),

(Mz€E, A€ £ENE,,n=1). (1.11)

1I. SoMe LrmMmas

Hereafter, we always suppose q(z) — g(x, A) is totally stable.

Definition 2.1. We say that a Markov process P(4,x, A) satisfies (B,) or (F,)
if we have respectively:

(Bn) | [(l + Q(-T))b‘(x’ dy) - Q(E’ d’.‘l)]P(}v’ Y, A) = §(x, A),
(A>0,2€E, A€ £NE,), (2.1)
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and
(Fo) \PQy 2, dy)[ (A + q(y))8(y, A) — q(y, 4)] = 6(z, A),
(A>0,2¢E, A€ &NE,). (2.2)

Proposition 2.2. In order to make (B) hold, it is necessary and sufficient that
(B.) holds for all n; and in order to make (F,) hold for all n, it is necessary and
sufficient that there must be

(¥ P(1,2. A) = ‘\ P(4, z, dy) \A 9(y, dz)(2 + q(2))™

+ 6(z, A+ q(@))™, (A>0,2€E,A€&). (2.3)
Proof. Here we only prove: (2.2) holds for all » which is ejaivalent to (2.3) to
be held. The first is equivalent to
| PGum a4 = | PG dgialy, 4) + 8z 4D,
(A>0,z€E,Ac&). (24)

Regarding bolh sides as measures in- A and taking integrals for (1 + ¢(z))™* 6(=, 4),
we obtain (2.3). Conversely, if (2.3) holds, then regarding both sides as measures in
A and taking integrals for (A + q(z)) - 6(z, A), we obtain (2.4).

By [7; Theorem 3.1] and [8; Theorem 5.2], we obtain
Proposition 2.3. P™*(i,xz, 4) satisfies (B) and (F).
Let

-

= {f €0 : (b + aCDFC) = JaCr dF Y,
%1 = {p€ Zi0() = | @@ e a)( + ay)h

= {p € Z0: [pDLG + a(@)3( 4) — ala D] = 0, ¥4 € & 1B, ¥n > 1},
RQyprzy A) = 6(z, A) + (A — p)P™"(p, 2, A), Ay p >0, 2€ E, A € &).
Definition 2.4. f, € b& (12 > 0) are called a (functional) coordinated family if

:
f1() =\ R(g 2, ,dyf.(y), (4, p>0).
1€ & +(2>0) are called a (measures) coordinated family if

ei(r) = K @ (d2)B(ps 4y, + )y (A g >0).

v

By [7; Proposition 6,2], and using the proofs of Proposition 2.2 and [7; Pro-
position 6.5], we can prove

Proposition 2.5.

i) For any fized Ay=>0 and [ € 2/2,, put fﬂ(-)QSR(lo, e+ ) f21,(y)(=>0),
then f,€ @/, and fi(4>0) is a coordinated family.

i) 2 =%"1. For any fized 20> 0 and @, € %, put (p#(-)éj ®1,(d2) R (4g.
w oy » )(p > 0),then ¢, €, and ¢1(A>0) is a coordinated family.
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iii) The dimensions of G/; and %"y are all independent of A >0, and denoted by
dim 27 and dim 7 respectively.
Lemma 2.6. In order that (2> 0) is a coordinated family of measures it is

necessary and sufficient that there exists a w € &, such that

§ w(dz)P (A, z, +) € L4, (2.5)

-

and there exists a coordinated family 7, € 771,(2 > 0) such that
m(-) = [o(@)P™ oz, ) + 1. @6)
Then w afnd.fn(l > 0) are unique.
Proof. It is enough to prove the sufficiency. If #; is & ccordinated family, then
p() + (= ) | 1) P 1 2 4) = 7(4) > 0
so that |
2y 4) = (1 — 27 | (@)L 2P="(2, 2, 4) — 3(z, )],

From [13; Theorem 4.11, we know that Pmin({,, {2}) = exp [—q(2)t], and hence
A1 — APmir(4, 2, {2})] < q(2)(A > 0,z € E). Fixing v and letting 1 — 00, we obtain

»1,(4) = lim (1 — l_‘v)SE\A?},(da:)lszi"(l, T, 4) + lim (1 — 27'v)

A > A0

| AP (2, 4) = 11> [a(d)laCon 4) — 8o Aa()],

for every A€ LNEn(n=1).

Set
au(4) = v () = | (@) e, 4) — 5z, a()]
(A& NEnn>1), .7
then '
0 < w,(4) < +0(MAE€LNE,,n>1). (2.8)

w, can be extended to a unique measure w, € &.. We will prove that

\ w,(d2)P" (v, z, A) < ,(4), (%‘A €E&,n=0), (2.9)

where PO(v, 2, A) = 0, P"V(4, z, A) = SP(")(L o, dy). ‘( qCy, dz2) (4 + q (&)™ +
6(x, A)(A + q(2))™(n = 0). When n= 0, (2.9) is trivial. Now suppose that it holds
for n. From (2.7) and (2.8), 0 << \ n,(dz)q(z, A) << 0o for A€ & NE, hence

0< [ nan) | 4w a)( + a()) < o0,
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g w,(dz)P" (v, 2, A)

— S w,(dz) UP“')(v, x, dy) L vq:!_l,qd(zz)) + fiﬂ”qé;)]

jn,(dy) SAp+q(z)+Lv+q(a:) 1(4) €& Enym

This shows that (2.9) holds. In (2.9), letting n-> 00, from [8; Theorem 8.2 and
Lemma 4.1] and the monotone convergence theorem, we obtain

1(4) = | 0,(d2)P™"(v, 2, 4), (A € &). (2.10)
Now set -
i(A) = 1(A) — | @ (dIE™ (s, 4), (A € &), (2.11)
then from (2.7) and the fact that Pmit (i, z, A) satisfies (B), we obtain
| 1.(d2)( (s + 4(2))3(a 4) — (> 4)]

= w,(4) — S w,(dz) j Pr(v, 2, dy)[ (v + q(y))8(y, 4) — q(y, 4)]

- w,,(A) - w,(A) = 0;
for every A€ K NE, and n > 1. This means 7, € %¥",. Now we want to prove that
w, and 7, are determined uniquely by #,. If w; and 7, also satisfy (2.11), then

S w,(dz)P™i"(v, x, A) + 7,(4)

- S_w,',(dz)P“‘i"(v, o A) + 1(4) (MAE€ &)

Regarding both-hand sides as measures in A and taking integrals for
[(v + q(z))s(z, A) — q(2,4)] (A€ £NE,),
from P™*(A,z,A) satisfying (F,) and 7,, 7, € ¥",, wec obtain
w,(4) = w0, (4), (MA4€e&).

Thus, we have already proved that the decomposition is unique for any fixed » > (.
However

7(4) = §n,(dx)3(v, 3z, A)
- g w0, (d2) ( Poin(a, 2, dy)R (v, 1,y A) + ( 7, (d2)R (v oz, A)

~ [ @udaypmin(a, 2 4) + | 3u(@RIRG, 1o 7, ). (212)

v

Clearly, S w,(dz)P=e(L, z, +) € &4, and from ii) of Proposition 2.5, we know that

5 ﬁw(dx)R(”, )v, Z, ') € (7‘1(1 > 0)
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Therefore from the uniqueness of w, and #,, we know that w, is independent of 1, and
therefore it can be denoted by w. Furthermore 7;(4 > 0) is a coordinated family.

Lemma 2.7. If 7,(12 > 0) is a coordinated family of measures, then
Furthermore, if 1, € (4 > 0), then

An(4) — v (4)
= (2 = )| @3¢, 4) — 2P7io(, 2, 4)]

= (= )| @6z 4) — 2P, 5, 4)]

(l,v>0 A€ L) (2.14)
Proof. By the coordinatisii, we have
) =4 + 6= 1) | (d2)Pmin(is 2, 4)

- -

= n(4) + v | ,(do)Pmo(h, 7, 4) — | .(d2)AP=7(hy 2, 4),

so that (2.13) follows. If 7, € &7, also, then from the fact that P™"(4,z, A) satisfies
(F,) (n>=1), we know that

3«”}1(14) — wn,(4)
~ > [u(ANE,) — v, (ANE,)]

~ 3 {[ m@iate 40 B —a(2)s(, 40 B

®

— | @) tata ANE) — oo ANEDT}
= 33 6 = 1) | mlde) | B0, 2, ey ANE — ooy ANE,)]
=(»—1) > ﬁm(dx)[vP‘“i“(v, z, ANE,) — 6(x, ANE,)]

- — ) 5 (@) [8(z, 4) — vPmi(p, 2, 4)],

and the second assertion follows from the symmetry between A4 and v,
Lemma 2.8. Let 0;(A > 0) be a coordinated family of measures, and similarly to
Lemma 2.6, we have

() = [ @(@)P™Ca, ) + 5() (>0, (2.15)

then
P(hyz, A)2P™*(h, 2, A) + [1 — AP™(4, 2, E) (e + 2u(E)) ™' (A)
(A>0, z€¢E,A€&;c=0 and ¢ + L (E) >0) (2.16)
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ts @ Markov process. It is a q-process if and only if one of the iollowing conditions
holds:

1) q(z) — ¢(z, A) is conservative;

2) w=0;

3) w(E) = +oco;

4) lim Aq(E) = +0o,

Proof. In order to prove that P(1.x..4) defined by (2.16) sarisfies the resolvent
-equation, it suffices to prove that

a';,m(A)-—— omA) + (4 — u) Vo (dx)P(uy 2y A) = G,

where o3 = (¢ + A7, (E))™ (A >0). Traa the coerdinavion of 1,(2 > 0). it suffices
to prove that

g, — O + (l 2 _u)a'ufu \ ﬁl(dx)[l — !‘Pmin(‘“Y .’I',-E)] =0

But 03[1 + Ao, (E)] = oo le + iq(E) + py (E)] is symmeiric for 2 and g. <o
that the above equality holds.

Sinece P™* (i,x, A) is a g—process and from Theorem 1.7. we know that P(1.x,
A) defined by (2.16) is a g—process if and only if

lim 23 [1 — AP™*(2, 2, E) (e 4+ An(E)) ' (4A) = 0

et
(r€E, AcEENE,n= 1), (2.17)
From [7; Theorem 3.1. (6)1, we have
lim A[1 — 2P™*(2, 3, E)] = ¢(z) — a(«, ), (2.18)
(Mz€eE).

vy being fixed, there exists a AN = N(vp) for every YA€ & VE,,n =1 such that

Z g n»(dz)q(z, A) << e: so from Lemma 2.7, we have

m=N+1 *Em

[ ntamatr, 1) <3 | niCdadaCa 2) +,

m=1 “°m

for v = »,. From this and [10; Appendix, Lemma 11], we know iha:
wnu(4) = w(4) + | n(d@)la(a. 4) — g(2)6(a, )] > () (2.18)

From (1.6), the monotone convergenee theorem and lim AP™® (A, z. A) = 6(z, A), we

F

have
lim | w(dz)AP™"(L. 7, B) = w(E).
A i

+>o

From this, Lemma 2.7 and (2.15), we obtain that
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gim;,m(E) = Eimlﬁz(E) + w(E). , (2.20)

If &im},m(E) + w(E) =0, then w = 7, = 0, hence 7;=0(% =>0), i.e. P(dyz, A)=
pP=r(d, 2, 4) and at the moment the Lemma is trivial, Now we assume that

lim 27,(E) + w(E) > 0.
A2

From (2.18)—(2.20), we obtain that
lim 22[1 — AP™2(4, 2, B)1(e + Ana(E))7a(4) = [q(x)
—q(z, B)]lw(4A)[e + o(E) + }imlm(E)]“(z EE, A€ ENEn>=1). (2.21)

Therefore,” from (2.17), P(%,z, 4) is a g—process if znd only if one of the conditions
i)—iv) holds.

Lemma 2.9. There ericts o A >0 such thui

2(i2 2 inf iP™*(4, 2, B) = 0, o (2.22)
*E€E

if and only if tiere exists @ w € &, such that «»(E,) < +oo(Mn=1),w(B)= +x

i

and | w(de)P™n(h, ¢, E) < 0( ¥4 > 0).

Proof. The sufficiency follows from

| @(dz)Pin(a, o, B) = 17e(1)es(E).

-

We return to prove the necessity. Assume that (2.22) holds. Then, there is an infinite
subset N of the set N of positive integers such that

Z iélf AP™R(Q, 7, B) << co.
£CE,

nel

Furthermore. we can take z, € E,(n€ N) such that Z AP (A, z,, B) << 0. Take an

nER
arbitrary z, € E,(n¢ N\ﬁ), and put
' 1, if ne N
oz} =1{ :
0, if ne N\XN
(A2 D w(AN{z,}), AESL,
nEN

then w(E,) = o({z,}) <1, o(B) =2, w({z,}) = o and

n

[ w(az)rpe(a, 2, B) = 37 2P=o(h, 7,0 B) < o0,
P . ”E& : .

The proof is completed.
By using the typical methods in [12], it is easy’ to prove
Lemma 2.10. Let U(-, A), T(+, A), P(-,A), Q(+, A) € &4 for each A€ &
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Uz, ), T(z. ), P(x, - ) € &, for each z€E.

1) If for each A, P(-,A) s the minimal nonnegative solution of

FC) = | UG af) + T, 4,

then g P(-, dy)gly) is the minimal nonnegative solution of

)= \ U(sdyf(y) + § T(-,dy)g(y)

for every g € b 4.
ii) If for each x € E,Q(z, ) is the minimal nonnegative sciuiisn of

() = [eCaun, )+ 1 -,

-

then ( U(dz)Q(z, - ) is the winunal nonnegalive solution of

o () = | 9@V > + | V@1,

for every ~U¢€ &£ ,,.
Lemma 2. 11.
1) If feb&, and

L LG+ a8 dy) ~ (2 d1f () = a(-) = 0,

then f () = KP“‘“’(A, <, dy)g(y). Moreover, if dim @7 = 0 also, then

$C> = [ PoCs, -, oy,

(i) If pe &, and

i p(dz)[ (i + g(2))o(z, A) — ¢(z,A)] = U(A) > 0(A€ £ NE,n>= 1), (2.23)

then

p() > 5 U(dz)P~*(d, z, *). (2.24)
If dim%™ = 0 in addition, then

w(+) = | UC@R)PPn(a, 2, ). (2:25)

v

Proof. We only need to prove ii)., By the proof of Proposition 2.2, we know that
p is a solution of
#() = ¢@) | 4@l + a1+ U@ +a@1 @26)

However, P™*(4,z, 4) i the minimal nonnegative solution of (F), and from Lemma
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2.10. ii), ( U{dz)P™(4.z, + ) is the minimal nonnegative solution of (2.26), 30 {2,247

holds. Clearly,

w() = | U@DPPe(hz, Y e, (4> 0).

’

hence (2.25) holds when dim ¢ = 0.
Lemma 2.12. We have dim @/ = 0, if there exists a A >0 such that

inf P™ir(4, 2, E) > 0.

*€E
Proof. The assertion follows from [12; Theorem 5].
Lemma 2.13.

i) If fer& and

.

j P4y oy d’.’!)f(y) =0, (2.27)
then there emists [ = 0.
i) If n€ & and

| aC@nPm(a,2,4) =0 (4€ & B> 1), (2.28)

Ahen there exists u = 0.

Proof. i) Since P™*(1,x, A) satisfies (B) and (2.27), we have
£C) = | oC dp) )
=[i+ Q()] S Pmin(lﬂ ~,dy)f(y) - S Q(‘7dy> 5 Pmi“(la@l’dz)f(z) =0

ii) By (2.28), we have

| wamypmna, 2y = 5 gu(dx)P“““(l, 2+ NE,) = 0.

7

:Since P™i(A, z, A) satisfies (F), we have

wa) =3 | wan) = 3 {[ wtan) | Pooa, 2, a0+ a))

Loy ANE) — oy ANED]} =0,
(Ae&).
Lemma 2.14. Set G(LA)€b&, for Ac &,G(x, ) e Ly for 6 E, and
0<<G(, )<L

Suppose g€ b& . and f* is the minimal nonnegative solution of

1) = | 6C, dndr) + 90,



SCIENTIA SINICA (Series A) Vol. XXVI

1y
4

Put ‘
D = {z.g9(z) >0}, (2.29)
then
iggf*(x) = glégf*(y)- (2.30)

Proof. Let f¥(z) = g(z), fo*(z)= } G(z, dy)f'™(y) + g(z)(n = 1). Since
(2.29), we have f%(z) <=up FO(y) < supf*(y)(¥zéE) It " (z) <;}épf*(y)
(Mz € E) for some n>1, then for every :cEE'\D, we have

Fo(z) = | 6o aF ) + o)
j Gz, dy)f " (y) < sup FHy)z, &) < sup i)

Letting n— o0, we cblaiu f*(z) édlell_r)\ ¥ y)(Mz € E). Taking supremum Zor
z over K on tae lett-hand sice, we obtain (2.30).
Lemme 2.15. /f dim @7 = 0, then it follows
infAP™e(4, 2, E) = 1nf APP( ), 2. B, C(2.31)

XCE
where £ = {zx € E.q(x, E) < q(&)}.

Proof. By [12; Theorem 9], AP™"(A,z,E) is the minimal nonncgative selution
of

q(-, dy) 3
7Oy = | LA f) +

hence z; =1 — AP™=(2, -, E) is the minimal solution of

_{aC,aw) q(-) —q(-, E)
I()Sl+()ﬂw JoEsB v=r=n

Because dim @/ = 0, it follows that 2, is also the minimal nonnegative solution of the
above equatmn So from Lemma 2.14 we have

sup[1 — AP™*(4, 2, E)] = sup[1 — AP™#(}, 2, E)],
*€E *€E

and hence (2.31) follows,
Lemma 2.16. For every g-process P(A,z, A) we have
AP(h,z,A) = SP(/L z, dy)l gy, A) — q(y)é(y, 4)]
+ 6(x, A) (>0, z€E, A€ &SNE,,n=1). (2.32)

Proof. By the resolvent equation, the assertion follows from the proof of Lemma
2.6 before (2.7).

Proposition 2.17.  There exists only one q-process which satisfies (F) if and only
if the minimal q-process P™*(A, z, A) 1is honest or dim ¥ = 0.

Proof. Sufficiency is clear. We will prove the necessity. Suppose that the minimal
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g-process F™r(4, 2. 4) is nct honest and dim % = 0. Fixing 2, > 0, taking
0 =% T2, € :7/10

and putting 7,(+) = (ma(dz)R(lg, Aszx, ), A>>0, from Proposition 2.5. ii) we know

that 7;(4>>0) is 2 coordinated family and 7; € #7,(A>0). Taking 7, instead of #; in
(2.16), we obtain a ¢-process which satisfies (F) and is different to P™»(A,z, 4).
This leads to a contradiction,

ITT  Procrs oF Maw THEOREMS
Theorem 3.1. Suppose that g-pair ¢(z) — q(w. A) is totaiiy stable. Then there
crists only one g-process of and only if we sincdtancously hove

i) c(ADQinfapmali. z, E; >> 6, (32 >0). (3.1)
EX

i) there exisie auly one g-proccss which satisfies (F).
Proof. Necessity. If (3.1) does mnot hold, then taking w asin Lemma 2.9 and from

Lemma 2.8, we know that (2.16) gives an honest g—process. However, P=2 (2, z, A)
iz not honest because (3.1) does not hold, and so g-processes are not unique,

Sufficiency. Having the preparations of the preceding section in mind, it is not
difficult to prove the sufficiency. One can find the idea of this proof from [5]. The
details are left to reader,

By Lemmas 2.15 and 2.12 and by Proposition 2.17 and [6;§ 4], we obtain
Theorem 3.2. Suppose g-pair q(z) — q(x, A) is totally stable, then there exists
only one g-process if and only if the following three conditions all hold:

i) infipP~=(i, z, E)>=>0 (4 >0);

xEE
ii) dim &7/ = 0;
i) g(z)—g(x, A) is conservative; or although it is mot conservative, it is still dim
¥ =0,
From this it 13 easy to prove that

Theorem 3.3. If g-pair is bounded, then there exists only one q-process.

We would like to thank Profs, Yan Shijian and Hou Zhenting for their comments.
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