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POTENTIALITY AND REVERSIBILITY FOR
GENERAL SPEED FUNCTIONS (D).
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(Beijing Normal University) . (Anhwi Mormoi Timversity)

In this part of tle paper, we usn the matksds and results developed in part I
to tue vase of somnact siate spaoces.

It § & we show that quasi-reversibility for a speed function satisfying (4.8) in
[1] with finite range is equivalent to potentiality, G-g (7"), and quasi-reversibility
implies reversibility under certain oconditions. In § 6 we disouss mainly the
preceding problems for the exoluéion processes, and obtain some ideal results. Firgt
we give'the simplest oriterions for potentiality, then we prove that for the exolusion
prooesses there is always a reversible measure. If the speed funoctions have a
potential, then the reversible measures can be described by the canonical Gibbs
states construoted by the speed functions. Conversely, if there exists a positive
reversible measure, then it has a potential and the set of all positive reversible
meagsures coinocides with the set of all positive ocanonical Gibbs states. The
corresponding results for the spin-flip processes have been obtained in [3]. We also
show that these results can be obtained by our methods,

We are glad to thank Liu Xiu-fang for her discussion with us.

§ 5. For Compact State Spaces

In this seotion, we will suppose that ¥, is finite for every u€ S, hence X =] ¥,

. ues
becomes a compact space. In this case the results of preceding sections can be

improved.
(1) Theorem. Let Q be a speed function field, which satisfies (4.8), with finite range,
then Q is quasi-reversible if and only if Q has a potential.

Proof 'The necessity follows from Theorem (4.1) in [1]. We want to prove the
sufficienoy.

Since Y, is finite for every u€ S, (4.10) in [1] holds. hence G (’V ) from
Proposition (4.28) in [1]. Taking A,€ %, n>1, 4,48 and 2,€ X (S\4,), we have
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s, ., € P(X) from (4.14) and (4.21) in [1]. Because X is a compaot space, from
[6] there is a subsequence of {{t4,..}n»1 cOnvVerging to u in weak topology, so we
have w€ @ from (4.22) in [1]. Thus %(#") + & and from Proposition (4.28)in [1]
this implies that @ is quasi-reversible.

The following theorem may be regarded as the construction definition for Gibbs
gtates. W
(2) Theorem. Lot Q be @ speed function field, which has a potential and satisfies(4.3)
with finite range, then we have
® G-9(»).

Proof Proposition (4.23) in [1] and the fact that Y, is inite imply (4.24) in
[1]. Conversely, if u € F(¥"), thep from (4.20) in [1] for every A& .¥; we have

il ol X X (S\ A = | 4
@ VY X(4), wlly x XE\A) =, F@xuna(ds).
For each n>1, we put
I”={1, 2; °t n}X(A)r
® Au2 J1 A,

we X
where i= {i(w), w€ X (4)}, ,':’.«w)e{ze X(8\4), i(—'u%i<f“(wxz)<%”)—} if
1<i(w)<n—1, and A;::,,é{zEX(S\A), ";1
trary but fixed z,,€ 4,,, ¢€ I,. From (4), (5) and (4.21) in [1] we have
(6) VY€ X (4), u({y}x X (8\4)) =lim 3 psa (4.

o, (Y} X X (S\A)). Pub pans 30 pons (An) sz, € & ,.8inoe X is a compact space,

< fHwxz)<1 } ‘Woe choose an arbi-

from [9] we know that there exist u* & % and {m}such that p,,,, 5 u*. So for every
y€ X (A)we have u({y} x X (S\4)) =p*({y} x X (S\4)) from (6), hence
(7 p(Ax X (8\4)) =p*(Ax X (8\4)), VA X (4).
Therefore, for every A,€.%;, 4,48, we have MA”E%A”, and for every A€, y€
X (A), we have

lim pf»({y} X X (S\4)) =p({y} x X (81 4))

from (7). This fact implies that u4~ 5 w, hence u € & The proof is completed.

‘What can we say more for N =17 First we have
(8) Theorem. Lot Q be a potential field which satisfies (4.8) in [1] and is defined by
a speed function ¢(u, y, ) WES, y€Y,, € X), and
9 Yu€eS, Vy€Y,, c(u, y, ) EF(X),
Then ¥ ={f*, A€y} defined by (4.12) in [1] 4s a speci fication, and both (4.18) and
(3) hold.

Proof The first assertion follows from the proof of Lemma (4.11)., Now we
want to prove (4.18). VAC€ Y, fA€ € (X).

]



POTENTIALITY AND REVERSIBILITY FOR GENERAL SPEED
NO. 6 FUNCTIONS(II). COMPACT STATE SPACES 707

Let 2™ —— a(m~—>o0), then there is an mq such that (#™),==, for every m>
mo and u€ 4. So f4(2™) =f4 (w4 % (™) g4), and it suffices to prove that
(10) VHEX (A), fA(x ) EF(X(S\A)).

Fix € X, w€ X (4). From (4.8) in [1], N=1, 8(4) =4 and Remark (4.5)
in [1] we can choose n, w;,€ X (A), ¢=1, 2, «--, n guch that

WX 2204 X 2> W K2—> o >W, X 2> Wyt X 22 WX 2
for every 2€ X (S\4). From (9) we know that

g(fax2, wxz) ég qg(wi X2, wip1X2) and q(wXz, 0,X2) é‘]:! glw1 X2, wyXz2)
are continuous funotions, so from (4.8) 3a [1] we obtain

o~ M@ Xz 0(8.Kn, BXz2 G4 X2, wX2
P (@) =j’_§)ft (w)>i o8 1 E'&"K ;z,)_é',l 7 43 ///we T ; (fwAX 2z, G4 % zg !
hexnve F4(®W X z)is a consinuous funetion in z, and (10) holds.

I'inally, we can prove(3)in the same way as the proof of Theorem (2).
(11) Remark.

(i) In fact, Lemma(4.11) in [1], Corollary(4.18)in[1] and Proposition (4.23)
in [1] except (4.16) in [1] remain valid for countable Y ,(Vu€S) and N =1, if we
use Condition (9) instead of the hypothesis of “finite range” in Lemma (4.11) in [1]
and Proposition (4.23)in[1]. The proofs are just the same as that of Theorem (8).

(ii) In §6 we will discuss the case of N=1 and Y,={0, 1} (uE€S), which
concludes the spin-flip processes.

When will a quasi-reversible measure be a reversible measure? An answer is

obtained for N =1,
(12) Lemma. Let N=1, the speed function ¢(u, y, +) € € (X) is wniformly bounded
for u and y. we define a linear operator Q on € (X)as follows,
{Qféz 2 e(u, y, A4S, FED(Q),
uE8 yeYy
2(@) 2{f€CX): 3 3] |4f] <o},
Suppose that the closure Q of Q generates a unique Markov ssmigroup, then <Z is a core
for Q.

Proof It suffices to prove that for every f€ 2(Q), ¢>0, there is a g€ o7 such
that |g—f] <e and [Qg—Qf|<s. We write M 2sup {¢(y, ¥y, ), uES, y€Y,, o€
X}, choose a T'€ & such that

23 140< (5 A 5)
and choose a T1€.%; such that ay,=af, = |f(z) —f(2) | <(ﬁ /\—Z—), where k=
3 |Y,]. Putting g(«) & (r, X 6), where 8 € X (S\T'y) arbitrarily, we have [g—f|<

ueT

(13)

g g
(W AZ)’ and for every € X
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|R9() —Qf (@) | < 3 ,,;y.l"@" y, o) (dig (o) — 4if () |
+ %yg le(u, y, ©) (dig(e) — 4if (@) |
WM lg—£I +M“§”§.. Ll dig| + ] 4if 11

ueT ye

<2ME|g—f|+2M3Z 3 |4f] <F+5--.

(14) Theorem. Letc(u, y, +)EC(X)(WES, yEY,)be a speed function with finite
range which is uniformly bounded for u and y. Supposs that thers are A,€ Sy, An}S
such that Apm=Ap 1U8Ap_s, m=>1, and the closure 2 of Q defined by
(18) generates @ Markov semigroup on € (X). Thenf is gquasireversibls if ond only if it
is reversible. In detail, u is reversible for Q if arnd oy if 4t i @ quasi-reverz:dis measure
for Q.

Proof Froin Thecrem (8.25) in [1] we know that reversibility implies quase-
reversibility. Conversely, let 4 be a quasi-reversible measure for 2, from Lemma
(12), it suffices to show that

Vf, g€, | F0gdu~[g0fan,
and this is equivalent tv
(15) v4, BE | F(), IIAQIBd,FjIBmA s,
€y

To prove this we first consider that
(16> A={2} xX (8 \Am—l); B= {22} XX (S \Am—l); 21, 2aEX (Am—l) .
The equality in(15)is trivial when 2; =2,. Moreover

1n J'IAQIB dp= 3 j 2200 Y, 2) [14(2)15(i2) ~Lip(@) 11(da),
) [LoLdui= 3 [ 30 v, 0) @) Lil) - La@)1u@a).

If there are u;, ua& Am-1, U3 #us such that(z;)4,# (23)u, then for every u€ A,_;, €
X, we have
Ii(2)Is(Gx) —Ip(2) =Ip(w)I4(%) —I4p(x) =0,
Henoe from (17)and (18)the equality in(15)holds for 4 and B in(16) in this oase. If
there is only a %y € An—y such that (21)u,# (23)w, and 2:=(21)4, X (2a) 4,,..\u, then from
(17)and (18) (write w4, = m) Wo obtain '
[L0Idu= oo, Ga)a (@) = 3 0(ut, () X0 imCes X ),

wWeX(@PAm=1,

IIB.QIAd,u, = > ey, (1) 6, ZaX W) un(ZaXw),

wWEX(PAm1)
Sinee w is a quasi-reversible measure for 2, for every w& X (84,_3), we have
tom (22X W) ¢ (2o, (72) uey 22X W) = i (22 X W) € (tt0, (21) o, 22X W),
thus the equality in(15) holds too. Furthermore, the equality in(15) holds for any A
and B in(16).
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In the general case, it suffices to consider
A={2} XX (S\T1), B={za} x X (8\T9), T¢€5’f, %€ X(T).

Take A>T UTs. Since both A and B are finite disjoint unions of the sets taking
the form of{z} X X (§\ 4,), and the equality in (15) is closed under linear combina-
tion, the equality in (15) holds for these A and B. Therefore (15) is proved.

When does £ in Lemma (12) and Theorem (14) generate a Markov semigroup?
We have a simple result as follows,
(19) Theorem. Suppose that for every A€ Sy, yE X (A), the speed function ¢(A,y,
NEC(X). If there is e (4, v), AE Sy, yE X (4A)such that
(20) VAE Sy, YyEX (A), a(l, v, ) <o(d, o).
@1 sup >3 e(d, ) =Ti<eo

4--1

u MEA‘k J’n i X(A4)
(22) M >0 such thiat

; O(A,; yl) ”AK’G(A) Y, ') I<MO<A1 y):
AESy Y EX(A)

then by defining a linear operator Q on € (X )as follows,

{9f= D I RADYAS

AesnyeX(4

I@-{FEEX), 3 3 o(d, Ylif] <o},

the closure Q of Q generates a unigue Markov semigroup on €(X).
Proof An outline of the proof is, taking an arbitrary subset % of ¥y, and
putting

(23)

Qof“—‘ 2 2 O(A) Y, ')A)yif)

Ae2h yEX(H)
we can prove that|f| <|f—AQ,f|for every A>0,
Then by using the notations in[7], and setting
U, yfadif,
M, pfae(d, y, )f(),
it is very easy to prove that
o4, y)r{U, ¥), U4, y))<2NL,

AeESy Yy eX(A)

> o, MU, y), M4, ]|<Me(4, y)

A€oy yEX

for every A€y and y€ X (4). Olearly, 2(2)>7, s0 Q has a dense domain.
Moreover, we have

(24) VFED(R), YA>0, f—AQf =0=f=0

and 21=0, henoe['7]is applicable.

(25) Remark oondition (22) in Theorem (19) can be replaced by the following
condition

(26) VAE SN, VyE X (),
B> | #0(4, g, - sup [ 4o(d,,.)]]<o(4, 1),

2NL 4y y'eX(A' A'ey,,rGX(A').A.nAqu‘




710 CHIN. ANN. OF MATH. VOL. 3

where c&2 sup (4, y).

AEZnyEX(4)

§ 6. Potentiality and Reversibility for Exclusion Processes

The spin-flip processes and the exclusion proocesses™ are two kinds of Markov
processes with infinite partiole systems. Many of the results in the preceding seotions
are appli-cable to thesge processes, but the exclusion processes don’t satisfy condition
(4.8) in [1], so there are some difterences. Sinos there were discussions for spin-flip
processes in [3]. we will emphatically disouss the exclnsion rrocesses in this seotion.

We take Y,={0, 1}, YuES, and let ¢(+, «, +). &' X5 XX —> R be non-negxtive
and satisfy
) ey, v, )>0 if and orly if wys:a, for u, 2ES, ukv;

(2) e(u, v, )=clv, u, ) EE(X), u, vES,
If we put
ol B}, g, @) & { e(y, , w)., BuFE o, (Yu, Yo) = (o, Tu),
0, otherwise,
then ¢(u, v, #)is a partioular form of ¢(4, y, @)for|4|=2, but it does not satisfy
(4.8)in[1]. Then, Q defined. in § 3 reduces to

®) 0f @ =5 3 o(u, v, 2) duwf@),

wVES

where
s, o0 f (@) = f(cw,0%) —f (@),
Ty, W=1,
(w,0%) =424, w="0,

Ty, WFU, P,
In order to generate a unique Markov semigroup for the olosure of Q2 defined as above,
we need some conditions(for example, see Theorem (5.19)). If there are ¢(u, v) -
¢(v, wyand M such that
(4) Vo€ X, Vu, v€S, ¢(u, v, o)<c(u, v);
5) sup ; o(u, v)<oo;

(6) Vu, v€S8, X dwe(y, v, +)

then by writing
(1) 2@ 2{f€C(X); 2oy, v) | 4w, f| <00},
we attain that the closure of Q defined by (8) and (7) generates a unique Markov

I<M0(u, ’v)i

semigroup, the corresponding process being called an exclusion process.
Again we let X = {0, 1}%, ¢(+, +): 8 X X—R be non-negative and satisfy
(8) Yu€Ss, Vz€ X, oy, ©)>0, ’
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(9) Yues, e(y, -) €4(X),
then

0, y=2,,

oltu}, v, @) ={c(u, @), y=1—uy,
defines a speed funotion as in[1;§ 8]for N =1 and Y, = {0, 1}. So 2 defined in[1; § 3]
determines a unique Markov semigroup under appropriate conditions(for example,
see Theorem (6.19)), the corresponding process being called a spinflip process.

Clearly, both ¢(u, v, #)and ¢(u, »)satisfy the co-zero condition; so we can define
their respective speed funection fieldsas inl3;§ 81, i. e.,

~ e(u, v, @), if T=(y o, wuk T,

(10) ¢(@, )= {O, othor casos of 4%,

uES, y€Y,, 2€ X

[ (r N ~‘:= t
A1) als, &) a0 &0 T
lO, other cases of z # =,

Ty, if wHu

where (4) 4 ={ . In both cases,

1—2,, ifw=1u
we need not define ¢(z, #)in the following discussions.

‘We will give the oriteria for potentiality of the fields.
(12) Theorem. Let c(u, z)be a speed function satisfying (8). Then its field Q has a
potential if and only of
(18) o(u, v)c(w, )e(u, wr)e(v, @)

=¢(v, 2)e(u, x)c(v, wr)elu, ), Vu, v&S, V2E€ X, .

where b= wo=u(o).

Proof For the oconvenience of proving the theorem, we introduce -several
" notations.

Define a transformation {(u): X—X as follows:

al(u)=yp, € X, u€S,
then for every path L= (z=2%, 2@, .., 2™), we have
&% =2 (u){ (ua) L () = wpoius®, 1<E<n,

In the proof we also use z{ (uy)--+{ (us) to. denote path L, where x denotes the start and
{ (w;)denotes the segment 2 V—2®. By definition(2.4)in[1]we have
(14) @l (ur) L (un)) =@ () ++-{ (wa)) + @ (@ (er2) L (a)), 1<h<n—1,
Using these notations, we can rewrite(13)as
(15) Vo€ X, Vu, v€S, u#v, p@l(w){ (@) =p@{(®){(w)). Clearly,
(16) Va€ X, YueS, p(uf(m){(w)) =0,

Now we want to prove
(A7) (@l () L un)) =0
for every olosed path(i. e., ™ =2 for the above L),
Since every olosed path consists of an even number of segments, n=2m, m being a
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positive integer. We use induoction on m. When m=1, then u; =u,, henoe (17)follows
from (16). Suppose that (17) holds for n=2(m—1). Then, when n=2m, there is a k&
such that 2<k<n, w=w; and w#w for 2<I<k—1. Applying (14) and (15), we
obtain
@@ (u1) L (un)) =@ (@l (u2) { (ua)) + P ( () { (U) +++L (un))
=@ (u2){ (u1)) + ¢ ((uu®) { (Ua) -+ { (n))
=p(af (u2)) +@((w2) L () L (ua) =L (wn)).
Similarly, applying repeatedly (14)and (15), and applying (16)and w,=u,, we obtain
@ (@l (ur) L (un)) =@ (@ (u2)) + @ ((u2) { (Ua)) + @ ((un®) L (ur) L (v} ++-L (32) )
=l (ua) { () +P((unn®d L) § (a) =L (ttn) ) =2
=@ (&l (213) +--{ (vi-1) ) “+P ((upernn®) & (02) L)+ L (Un) )
= (G (u2) L (=) + P (s L () L))
P ((ursems0a®) L Wer1) =L (un))
=@ (@ (ua) +--{ (u-2) { (Uus2) ++-{ (ua) ) =0,
So(17) holds for every olosed path, and the condition is suffioient.
Clearly, the condition is also necessary.
(18) Theorem. Let c(u, v, x)be a speed function satisfying (1), then its field @ has @
potential if and only ¢f
(19) c(u, v, )e(v, W, wu®)c(W, U, w,uT)
=c(u, w, v)e(w, v, wuw®)e(®, U, @wur), X, Vu, v, we s,
Proof 15 As the preceding proof, we define o {(u, v) = nz for uskv, z,#z,.
But where {(u, @) is not a transformation on X because it is only defined on{z€ X
ZTyFyr. Wo also use o (ug, v1)--+{(u,, v,) to denote the path L= (z2a®, 2@, ...

™), which consists of z=2® and 2® =a* {(w, v,), k=1, -+, n, and we regard

{ (wy, vy)as the k'th segment of the path. By using these notations, it is very easy to
prove that(19)is equivalent to
(20) p(al(u, V){(v, w)) =@l (4, w))Vu, v, wES,
u, ¥, w are pairwise different, Vo € X, @, % &=y,
Moreover, clearly we have {(u, v) ={ (v, u), u#v and
(21) Yu, €S, ukv, Vo€ X, wy#a,, @@l (u, v){(y, v)) =0,
(22) P(@l (U, v1)+-L (s, ¥a))
=@l (u1, v2)-- (e, %)) +@@PL(Wiss, Vesa) L (s, ).

2° Under the conditions in(20), we have {(u, v){ (v, w) =2{(u, w), so clearly
(19)is necessary. We will prove its sufficiency. For this, we first prove
(23) @ (@l (w1, v1){ (us, v3)) =@ (@ (us, v2){(us, 1)),
where w1, ¥1, 4, ¥a are pairwise different and zy,#w,, =1, 2. We may and do
agsume that @y, =2y, % &y, = Ty. S0 2 (w1, v9)is well-defined. Note that

ol (u1, 1) (ua, v2) L (s, v1)L(¥a, v2) =2,

T
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ol (us, v1){(us, v){ (s, 1) =, %,
and from(21), (22), (20)we have
@ (2 (us, v1){(ua, va)L (s, ¥1){(uta, v9))
=g (@l (w1, v1){(us, 2){(us, V1)) +P((wr,®) L (s, )L (s, va))
+ ¢ (@) L (w1, 93))

=@l (w1, v){(us, 2)L(us, ¥1)) +P(Coun, @)L (W2, 1)) +@((an,®) & (us, ¥))

=g@{ (w1, v)){(us, va){ (s, v1){ (s, 1)) +@((u, @)L (11, ).
In fact, the last three steps reduce {(us, vs){(us, vs) 10 {(ua, u1) in terms of (20).
Similarly, the right-hand side above reduces to zeio, herca (2%) is proved.

3% We now prove that condition (25) is sufficiant, i. ¢., for every closed path
L= (a9, ¢, 2V 2@) =g (13, 01) -7 (u,, M), 75 have
(24) Pl (u1, v1)++-{(tn, a)) =0,

We use induction for n. When n=2, (24) reduces t10(21), and when n=38, from
(22), (24)reduces to(21)too. Suppose that(24)holds for n<m, now we want to prove
that (24) holds for n=m,

Since L is a closed path, each v, and v, (1<<k<<m) appear an even number of
times, and there is a £ such that 2<k<<m and

(25) {u1: Ivl} n {uk; 'vk} % Q, {uI: q)l} n {ul; 'vl} = Q: 2<Z<k.
Since {(u, v) ={(», u), we can assume that
(26) Uz = Uy,

without loss of generality. At the moment we write zaal (uy, v1)¢(ua, vg), then
applying (22)and (28)again and again, we obtain
@n @ (@l (g, v1)+-L(tm, Vm)
= (el (v, v9) LUy, Ve-2)L (s, )L (Ui, V)L (U, Vm)).
If v, =1y, then from (26)and(21), we obtain(at the moment we write & =a{ (ua, va)---
{(4z—1, Vp-1))that the right-hand side of(27)
=@ (u, va)---{ (-1, Vu-2){(Wiss, Vus) L (Um, Vm)),

g0 (24) holds for n=m from the hypothesis for n=m—2. If v;%v,;, then from (26)
and (20) we obtain that the right-hand side of (27)

= (@l (U2, ¥3)+-{(Un-1, Ve-1){ (W1, V) E(Urs, Vira) ==L (U, ¥m)),
so (24) holds also for n=m from the hypothesis for n=m—1, Henoce (24) holds for
any n and the proof is completed. _

We have an analogue of Theorem (5.8) for the spin-flip processes. Now we
consider the similar oase for the exclusion processes. By the equivalent relation
(2.6) in [1], and from (1), the field determined by ¢(u, », #) divides X into the
equivalent olasses{X ;. I € D}as follows,

(28) X,={z€c X, Aé{uES; T ¥ (Al)u}eyf: “g,lw":u%(dl)“}'
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where 4, is an arbitrary but fixed element of X;. Letting
(29) Xk(A)={yEX(A): lyi éﬂgf‘/«::k}:

and choosing an arbitrary but fixed y® € X, (4) (we add the suffix 4, if necessary),
we have
(80) vA€ Sy, Vy€ X (A), Ty, ya, -+, Ya such that
YoX22YP X gy Xz—> +» >y, Xz Y™V X 22y %2 for every 2€ X (S\4),
Put
(81) 9(y® Xz, y%2) =‘liI0 (Y%7, Y1 X2),
: _ n Vy G Xk (A) ’
¢y xz, y©x2) =11 ¢ (@ %2, 9. %2),
then we have
(32) Lemma. Tet Q faw a poteniial. ifor every 4 €S, k€ {0, 1, «-, | 4| }we put
Vg€ X (4), Vz€ X (S\4),
g(y® xz, yxz)

(83) fiyx2) 2lxu @K, 2, k) gy ¥z, Y9 xz) *

o 9@P %z, wxz)
K(A’ % k> =106§(A) §<wxz: y(k)xz) ’
then ¥ 2 {fi. A€, 0<k<<|A|} satisfies,

(34) 0<FL€ € (X); f(2)>0 if and only if 2, € Xo(A);
(35) VEX(E\D), T Faxn=1;
(86) VAcde s, 0<k<|A|, Vy.€ X (4),

9 € X (A\4), 2€ X (8\4),
f%(yllezxz)=fﬁ;.l(’.l/1><?la><z) ) ) f’:,f(lengz),

€X g, ()

Proof Since @ has a poten tial, fi'(yx2) is independent of the selection of y®
and the path from y™® Xz to y X2, hence the definition of f{ is justified. It is clear
that (34) and (35) hold except f € ¥'(X) which follows from the proof of Theorem
(5.8). Now we want o prove (36).

(86) is trivial when |yy X ys| #%. Suppose |41 Xys| =% and write |¢s| =k, then
from the potentiality of @ and(33), we obtain

Py = K3, 5, LU X2 X %3)
FICASZEER'Y 5D
KA, 2, HIWE X2, 9P xyax2) WP XYsX2, 91 Xys X7)
qW®xyaxz,y® xz) 1WXyaXz, Y X yaxX2)
(Y X ya Xz, yXy3 X2
=2 (s xya%2) yGXEk(A) ggfx y:i”z’ ?/"ZX ;/:X Z))
AGR Xz yOxUXD) g, g
gW®xyaxz, Y7 x2)
=f@xpx) B T @xyax),
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(87) Definition. Let .o (8\A4) =c{X,(4) x X (S\4), 0<k<|4|; F(S\AD}. n€
P(X)ig called a canonical Qibbs state cm'frespondwg to ¢(u, v, @) (or ¥75,), if for every
A€, yE€ X (A), we have
38) p({y} x X (S\A) | LS\ D) =Fr. @*x (*)sa)u—a. o. and the set of all canonical
GHibbs states corresponding to ¢(u, v, @) (or ¥,)is denoted by G,(¥ ).

For ¥, we define G,(AE.Fy) to be the closed conver hull in weak topology of all the
following wa,.x, 2€ X (S\4), 0<k<|4].
(39) VFEF, paunF) 2 3 flyxa),
and put
(40) Fa{u€P(X); A€ Sy, A2 and Hpum© Do, such 1hat gy —> u},
(41) Theorem. If 2 ias & gotential, then ‘

G.(V)=7.

Proof Just similar to the proofs of Proposition(4.28)in [1] and Theorem(5.2).

From now on, we will call a measure salisfying (3.18) in [1] a positive
measure, and denote the set of all positive probability measures on X by £.(X),
Similarly we have the set % of all reversible measures and the set Z#, of all positive
reversible measures. Clearly #Z,=%N%(X). We will establish the relation between
% and 9,(¥#,) when @ has a potential.
(42) Lemma. u € Z if and only if
(43) Vfe € (X), Vu, vES,

fotw, v, )f @u@=[o(w, v, 2)f (wom)u(ds).

Proof See[b Lemma 2.15],

(44) Lemma. u€ Z if and only if
VA€ S, Vye X (A), Y{u, v}c4,
(45) oy, v, yX (e p({y} X X (S\4) | L(8\4))
—0(t, ¥, @y X (D) n{wot} X XS\D) | LS \D). p—a. .

Proof It is easy to prove that if u€ %, then (48) holds for f =Iy,nxwanxr, 4E

s, y€ X (A), 0<k<|A|, FcF4(S\4). So from (48) we have

J c(u, v, yX () aa) Ipyxxea Ao
Xy(A)XF

= cu, v X (» d
Xx(4)XF % 2, @y ( )S\A)I (w0 XX(8\4) T
for every u, »€ A, hence

Jxk(A)XF e(u, v, yX (s ) ({y} x X (S\4) |2 (S\4))dw

me e, v, @w,0¥* (*)a)w({w oy} Xx X (S\4) | L (S\4))du,

and so (45) follows.
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Conversely, if the ocondition is satisfied, then, taking F 42X (S\4) in the
preceding equations and deducing these equations inversely, we obtain that(43)holds
for f=Ixxmm, AE€ES;, yEX(A),u, vE A, ustv. Now if u€ 4 and v¢ 4, then

J‘ o(u, v, *)Iyxzmndu= y g JG (@, », ) yxyoxeravwm G
1=

= > J’o(u, v, ')I«..,w(yxy.»xxw\uuw)))dﬂ'

=01
= J"’ (u, v, 8)Iyyxxema (w02 1(de),

S0(48) holds for f € .o and u, vE S, hence(43)holds, i. 6., p < Z%.
(46) Lemma. If Q has a potential, then for every A€ S, yE€X(A), &€ X(J\4),
{u, v}cAdand k€{0, 1, -, | A]}ese have
47 e(u, v, g X2)fi(yxn) =0 v, w0y X2)fi (woyX2).
Proof fi exists from Lemma(82). (47)is trivial when y,=y, or|y| #k£. Suppose
y® xz~yxz, then from the path-independence and (33), we have
felyxz) _ q@®xz,yxz) /_ q@@®xz yx2)
Filwoyx2)  qyxz, y¥x2)/ w0y x 2, y¥xz)
_ g (u, 0y X2, yX2) _ oy, v, WY X2)
QQUX%, (ol X 2) c(u, v, yXz)
(48) Theorem. If Q has a potential, then R =5,(¥).
Proof If pn&€%,(7%), then from (88) and (47) we know that for every A€.%,
yEX (A), {u, v} <4, the left-hand side of (45)
=c(u, v, yX ()aa) floa@x (aa)
=c(u, v, w0l X (Dndfion(woy X (Daa)
=the right-hand sied of(45), u—a. e.
So u € % follows from Lemma (44).
Conversely, if w€ %, then for every A€, k€{0, 1, -+, | 4|}, y€ X3 (4),
{u, v}, from (45) and (47), we obtain
p{yt x XS\ D | (S\D) _ p({woy} X X (S\4) | L (S\4)) ji—a. o.
Nfﬁ(yx [OFW) . S G0y X (+)sa) )
Sinoe y X 2~y X z for every y€ X,(4), 2€ X (S\4), from the above equation and
(85) we obtain Vy € X;(4),
p({y} x X (S\A) | £ (S\4)) _ p({y} x X (S\ D) | S\ A))
VHCEIOTW) FE@* (Dan)
— B X XS\ | A S\D) _
_ 2 fe@x ()

yEXx(4)

Hence, for every A€.%;, y& X (A) we have
p({g} x X (S\ ) | LS\ 4)) =1, (% (D oa) Iy s ((+))
=foua@x (*)aa). p—a.e.

Inn(()a). p—a.e.

Therefore u€ Z,(¥5,).
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(49) Remark. Theorem (48) is obtained in [4] for some special ¢(u, v, x) (See [6;
I1,§ 1.8]). The analogues corresponding to Lemma (42), (44), (46) and Theorem
(48) (taking o(y, 2), wv, F(S\4), f* and ¥(¥") instead of ¢(, », %), w2,
Z(S\A4), f& and Z,(¥,) respectively) are obtained also for spin-flip proocessest®.
But our proofs are simpler. In [3] Tang has proved that an infinitesimal generator
of a spin-flip process is reversible if and only if the corresponding field has a potential,
But the condition of potentiality is not necessary for an exclusion process. We will
discuss these problems.

(50) Theorem. Any speed function for an exclusion process «s roversitle (even condition
(1) is not required). In detail, if we pvi

(,=0, L==1 Vui§

vo‘\O) =v:(1) =1, o, 11E P(2Z)
then vo and vy are reverstble measures for the speed function.
Proof It suffices to consider v, The theorem follows from.

[ 70gare=7 @29 (®) =L F @ T 0w, v, 0) [9(w0®) ~9®)1=0= (9@ rdu.

Theorem (50) can be generalized. Suppose that the field @ restrieted on X,
is symmetrizable’®, i. e., @ 2 {¢(=, z), », zEX,} hasa potentlal and
2,04, 2)/4(, Az)<+°°

and

Put

N !I(Az, z) ¢4, 2"
<w) ( Az) [wEXI é(;:, A‘) ] ’

then {logu;(z). #€ X} is a potential for Q.

(51) Proposition. If Q; is symmetrizable, then

(52) REP(X), p(4) & 2 @), AeF

8 @ reversible measure Conversely, if wC % and w(X;) >0, then Q is symmetrizable.
Proof Since wu,(z) (€ X;) is a symmeirizing distribution for @, from (52) we

have

Ic (, v, Df (@ pd2) = 3 e(w, v, 2)f (2)u(@)
=¢§‘ 0<u; Y, (4, (x)f<z) J 27] ((u,v)w) = s§; O(U, v, w)f((u’”)m) M,(w)

= fotw, o, 2f (wom)n(an)
for every fE € (X), so u€ Z follows from Lemma (42).

Conversely, since X, is countable, ©(X;)>0 implies that there is an =€ X,
assume that z= 4, without loss of generality, such that u(4;)>0. But from Lemma
(42) and the monotone class theorem, we obtain

c(u, v, B)p(@) =6(%, v, @,0®) 1 ((u,0%)
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for every u, v€ S, € X,;, hence 4~z for every #€ X,;. Therefore u(z)>0(z€ X,)
and Q has a potential. Furthermore @, is symmetrizable from the fact u(X,;) <1,
The proposition can be improved also. we can construct a reversible measure,
even if @ has a potential but it is not symmetrizable.
(63) Lemma. If Q, has a potential, then
Q) 2 {g(yx (D) ma, YX (D) s\0): ¥, YE Xui(4)}
s symmetrizable, where X ;(A) = {y € X (4), ug} Yu =u2 (4) o}, AE S,

€A
Proof By the hypothesis, there is {v(2), #€ X} such that v(2) >0, Va€ X, and
v(@)q(z, 2) =v(2)q(z, o), , € X,
In particular, taking z=yXx (4)g4 and Z=u% (A4 Tot y, JEX (A, we know
that @;(4) has a potential and
7YX (D) aa) = 0@ X (4)s\a) [;e;,:m'” Yx(Daa)]™

is a symmetrizable distribution for @;(A).

Now we set
w1, 4(Y) 27 (@YX (D) sa), Y€ Xi(A),

i, a(F) 2, 4 (F((4)sa) N Xu(A)), FEZ,

Clearly w4 € #(X). Taking 4,1 S such that uy, 4, =5 wi(m—>o0), we have
(54) Proposition. € Z and (X)) =1,
where X, is the closure of X;in X.

Proof From Lemma (53), it is clear that

o, 3, @) Lf (uom) ~F @ ,4.(80) =0, FEF(X)

when 4,5 {u, v}, Sine 6(x, 2, *) [f (w00 ()= F ()1 € €(X), i, s, —>pu1, from Lemma
(42) we obtain 1, € Z#, and
m(X2) =>lim sup i, 4, (X)) >]in: sup am, 4, (Xi(4)) =1,

(85) Theorem. If %.+0, then Q has a potential and K, =P.(X) N G.(7).
Proof From the hypothesis and Lemma (44), we know that for every A€ .%;
there is an N, such that u(N,) =0 and
(45)’ e(u, v, yxas)p({y} x X (8\4) | (8\ 4)) (w)
=0(u, v, w0y XTsa) {0y} X X (S\4) | £(8\ 4)) (=)
for every N4, y€ X (4), {u, v} <=A. Moreover, for each k€ {0, 1, ---, | 4|} and
Y€ X (A4), there is an &P ¢ N, such that u({yo} X X (8\4) |.Z(S\4)) (z4*) >0,
because u € P, (X). So from (45)’, we have
n({y} X X (S\4) | (8\4)) (aP) >0, y€ X (4).
So from this and (45)’, we know that (we write 4% = (¢4®) )
c(u, v, yX24Ne(v, W, @wo¥X24?)e(w, U, @,aY X24P)
=c(u, w, yX2“4P)e(w, v, wwyX24?)e(v, U, @ uyXz?)

NN

SN TS
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for y € X3 (4) and u, », w€ A. This equality implies(19), because | ) | J X,(d)
A

€Z7 O<k<] Al
X {#4*®} is dense in X and ¢(w, v, -) EZ (X). Then @ has a potential from
Theorem (18), and %, =P (X)) N B=P.(X) N %,(¥ ,)follows from Theorem (48).
(56) Remarke. Using these proofs, we can easily prove that Z+#@=>Q has a
potential™ for the spin-flip processes. In fact, that @ has a potential implies that
R=G (V)= G+ @. Conversely, if Z+@, then we obtain
o(u, yX () u({y} x X (S\4) | F(5\4))
=c(u, WX (Dn)p({y} X X (S\4) | F(8\4)). p-a. e.
This implies that there is an #4 such that
p({y} x X (S\ A5 1.7 8\ 4)) () >0, Yy X {4),
s0 (13) holde, and a voten:ial.
Finally, wo discusy the relation between reversibility and quasi-reversibility.
(87) Yheorem. Suppose that ¢(u, v, +) has a finite range. r({u, v}) is the same as
(8.15)in [1]. For every AE.Y;, we put 3/12(\/1“&6)/1')"({% v})) (See definition(4.30)in

[1]). Also suppose that there are {An} . such that Ap=Ap 1U0An 1, Aps Ay,
mz=1, A 8. Then u€ R, if and only if w is @ quasi-reversible measure for ¢(u, v, +),

Proof From Theorem (3.25) in [1], positive reversibility implies quasi-
reversibility. (But it is more simple if we use (43) and the proof of Theorem (3.25)
in [1] to check the condition for quasi-reversibility.)

Conversely, suppose that u is a quasi-reversible measure for ¢(u, v, +), then we
have
(58) c(u, v, Pua(y) =c, v, wny)pslwny), y€X (1)
for every u, v€ S and AD7r{u, v} (here we use c¢(u, v, y) instead of ¢(u, v, yXz),
2€ X (S\4) arbitrarily),

Take m>1, u, v€ Ap_1, YE X (Ap-1) and fF=Iyxxwa, then r({u, v})d,,
and

few, o, D @uam | 0, v, y X W) im(d(y X )

WIXX (Ap\Am~1)

= 3 o v, yxw)un(yxw),
WEX (94 m=1)

where pm2 wy,. Similarly, we have

fo, o, DF (moddn@) = 31 o(u, 3, woyXw)unwoy X ),

wWE X (94m-1)
so the equation in (43) holds from (58).Note that for every 4 € .7, there isan m>1
such that A< A,,_;. By the preceding proof, it is easy to show that the equation in
(48) holds for f=1I yxx@a, YEX(A), u, vEA, uskv. Henoce (43) holds (See the
last part of the proof of Lemma (44)). Therefore u€ %, and u€ £, (X) implies
S X,
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