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§ 1. Introduction

At first the Markov processes with infinite particlo systems wore proposed as
models for the temporal evolution of such sysiems®. Then sevcral conorete models
were disoussed™**1), Tn this paper a gencra! model whioh includes most of the
known models is proposed. It rcay he regarded simultaneously as an exifension and
generalization for the prcbability model of the multivariate linear Master equation
for non-eqeilibrium systems™,

In general, people agree with the reversibility of Markov processes whioh depiots
the defailed balance (or Gibbs state) in statistical mechanics, where the reversible
measure is just the defailed balance state. Therefore these are quile important
problems: When does a reversible measure exist? When does only one exist? How
does one gel the construction of all reversible measures?

For disorete state spaces, there are a lot of investigations in [6]. Hou and Chen
have established an absiract field, they discovered that potentiality describes the
essential charaoter of reversibility, and they solved potentiality and reversibilify for
Markov chains by using the field. There are also a lot of investigations for the
reversibility of the Markov processes with infinite particle systems, but the known
resulis are so limited even for the spin-fiip processes or the exclusion processes (See
[10]). Recently, Ding and Chen™ use the method of the field fo investigate
reversibility for the spin-flip processes with the nearest-neighbour speed functions,
and give a necessary and sufficient condition for the existence and uniqueness of the
reversible measures. |

In §2 we first exiend the field to abstraot sfate spaces, then we discuss a
localization of a field with produoct state spaces. In § 3 we introduce both the concept
of the speed functions with finite range and the cencept of quasi-reversibility. We
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show that quasi-reversibility is an extension of reversibility. In § 4 we investigate
the relation between potentiality and quasireversibility for the speed functions with
finile range, and prove that quas1-rever51b111ty implies potentiality, and under(4.3)
and (4.10) we prove that g c¥9(v"), where & ig the closed convex hull in weak
topology of all measures constructed by a specification ¥, and ¥(¥") is the set of
all Gibbs states for #". We also prove thal each element of % (7") is a quasi-reversible
measure. We give a construction of all quasi-reversible measures, and from this' we
obtain a necessary and sufficient condition for existence and uniqueness of the quasi-
reversible measures.
We are glad o thank Liu Xiu-fang for her discussion with us,

§ 2. Extension of field theory

Hou and Chen have established an abstraoct field theory for ccuniabls state
spaces. In this section, we will extend the theory to ary state spaces and give sorne
of its local properties.

Let X be a non-empty set, T be an index se¥, and funclion a(., +, ), TX X x X
—R& (—~o0, +o0) satisfy the following two hypotieses,

(1) Vo, z€X, oz, VIET, 0.(i, m, 1) =0;

(2) Ve, z€X, Y& €T, a(t v, z)=0a(t, E x) =0,

ar v

t~ ~
by @z, if a(t, @, ) >0, 7 is called reachable from = at time ¢, and we write » L x,

if there is a number of 2@, «-«) 2™ in X such that Lowh g5 b ambE And
L) & (z, 2, +-, o™, z) is called a path from « to z at time ¢.
Let o7 (t) = {a(t, @, 7). 2, € X}, tET. The set of all paths of <7 (t) is denoted

by £ (t). It is clear that w—>w<=)x—i>a: 2o F T g

Define
®3) o(, 2, 7)~log at, z, 3) —log a(t, 7, @), if &> 7
@ 9 (L®) = [, o, o*), if Lt) = (2229, P, -, 249=F) € L),

@(t) 2 {p(t,@,7), x,2€ X} where p(f,,7) is undefined when z is not reachable
directly at time . Then (X, Z(?), £ (t), D(t)) (simply, &/ (t)) is called a field
and @(L(t)) is called the work done by .27(¢) along L(t), /(%) is called a potential
field (or .27 () has a potential), if there is a real-valued function V' (., ), TX X —>
R such that

() Vo, 2€ X, a7, 0, o, )=V (&, 5) -V, ).

Then V(@) ={V({, «); 2€ X}, t€T is called a potential funotion of the
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potential field o7 (). We say that &7 (¢) is independent of the path if for any eclosed
path L(®) (. e., 2@ =2V o(L(t))=0.
For and fixed ¢€ T, we define a relation “~” as follows:

~

(6) Vo, z2€EX, o L S L 20T r=21.
It is an equivalence relation. Thus, we may divide X into equivalent classes
{X;(®).1€D@®)}. For each 1€ D(t), we choose 4,=4,(t) € X,(¢t) at will; for each
z€ X(3), £% 4, we also choose arbitrarily a path L(t, 4, 2) & (4, Y, -, 2, z),

and put
a(t, 4, ©) 2a(t, 4, eP)a(t, 2P, e®)-a(t, 2™, z),
® {3(6, w, 4)=a(t, z, 2®)a(t, 2P, % V).-.a(t, oV, 4),
Finally, o7 (%) is called weakly symmetrizable, if there is a family of real-valued
funotions U (#) & {u(t, 2). € X}, t&T such that
(8) VtET, Vo€ X, u(t, o) >0;
(9) VIET, Vo, 7€ X, u(t, 2)a(t, o, z) =u(t, Da(t, 7, ©),
Then U () is called a symmetrizing funetion of 7(t).
(10) Theorem. The following four stale:nents are aquivaient:
(I) Z(t) is a potentisl jield;
(II) /(t) is nath-vndependent:
A1) «2(t) 4s weakly symvmetrizable;
V) Vi€, YIED(®), Va, € X,(t).
(11) &, 4, 2)a(t, o, )4, z, &) =a(t, 4, x)a(t, z, 2)a(t, x, 4). When one
o) the statements holds, A(+, +). Tx X—>R,
1, r=24,
12) 2 ¢, 2) ={__—___Zg ;‘:’ ;3 , w4, € X,(1),
48 a weakly symmetrizing function, and log A(s, +) 4s a potential of 7 (%).

teT, z€ X

Furthermore, if N (-, +) is another weakly symmetrizing function, then there is an
04(t) >0 for each 1€ D(t) such that
N, o) =a(OAE, 2), Ve€Xi(d),
Finally, o/ (t) is a potential field if and only if Z(t) restricted on X,(t) is a
potential field for every 1€ D(t).
Proof (I)=(IL). Let V' (-, +) be a potential function of 27 (¢), L(t) = (z=2?,
g®, o, g™ 2D =2) be an arbitrary closed path, then

o(L(®) = Do, a®, s*+V) = 3 [V (3, s%V) ~V (2, 59)] =0,
k=0 k=0
t ~
(ID=>(IV). Vt€T, YIED®), Yo, 5€ X, (11) is trivial if & 4> 7. Suppose z—>
z. For an arbitrary but fixed path L(t, 4, ¢) from 4, to = and a path L(¢, 4, )
from 4 o z, it follows, on account of (II), that
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¢(L(t1 Al: E))+¢(t, o, 2;):=¢(L(‘t: Ab ;)).
So by (3), (4) and (7),
1 é(t; Al: z) o a(t) f’ z) . é(tl z, 4{) =0,
og[a(t, z, 4) a(t, z,2) a(t, 4, a:)]
hence (11) holds.

(IV)=>(1II). Since a(t, ©, z) =a(f, , ) =0 when « and z do not belong to the
same X;(2), A(-, +) is a weakly symmetrizing function of .27(¢) from (11) and (12).

({I)=(I). Let u(+, +) be a weakly symmetrizing function. We take V' (1, 2) &
logu(t, ), t€T, € X. Then (5) follows from (9).

This proves the main part of the theorem, and it is very easy to check the truth
of the other assertions

In the rest of this section we want to disouss the localization of a field with
produot state spaces.

Let 8 be an arbitriry set, & be the set of all subsets of S, ; be the set of all
finite subsets of §. Let ¥, be a non-empty set for every v € S. Write X =- £[B Y., ard

let (HBY w F@), L@), D(t)) be a field which is called & product field. Sizaply, we
ue
will eall .o/ (¢) a produot field. .&7(t) is called a tield with locsl character, if

(13) VIET, 2> 5=> {u€ S, a(x) £ z(u)} 7,
Lot A€, 2€ TI Y., &) rosirioted on I Yy x {z} is denoted by 75 (%) &
ne8A4 ucd

(a(t, =, 7).2, 2€ [I1Y.x{e}). Similarly we have .#%(¢) and @3 (t). We will call
LEA
the field ([] ¥, % {2}, &4(t), L5 (1), 5(8)) (simply, (275 (%)) a local field of .27 (2),
ucA

A produet field is called a local potential field, if VAE .Y, Vz& “el;sI\A Y, and 275 (3)
is a potential field.

(14) Theorem. A product field o/ (t) with local character is a potential field ¢f
and only if 4t is a local potential field.

Proof Let V' (+, ») be a potential of .&7(?), then V' (-, +) restricted on Tx (JI ¥,

ueAd

X {z}) is a potential of .&7%(t), and Z(¢) is a local potential field. Conversely, it is
enough to show that 7(#) is path-independent. Let L(¢) = (z=2, 2@, «.., 2™,

g™V =z) € £ (t) be a olosed path, then A2 C) {u€S; a®(u) %a**V(u)} €% from

k=0

(18). We write 22244 (i. e., the projection of « on q\ Y,), then L(%) is also a path
uweNA

of 7% (t). Since the work done by the field .27(?) alone L(?) is the same as the work
done by .«75(¢) alone L(2), and &75(t) is a potential field, so ¢(L(t))=0. The
assertion is proved.

From this theorem, the potential problem of such /() reduces to one about
oountable state spaces when every ¥ is countable, and we can use[4].
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§ 3. Reversibility and Quasi-Reversibility

In this seotion, we will disouss the relation between the reversibility of the
transition funotion semigroup and the reversibiliiy of iis generator. Then we will
propose a guite general stochastioc model for cerfain physical systems. The model
includes spin-flip processes, exclusion processes and others. We will introduce a
concept of quasi-reversibility for a semigroup generator, and shown that quasi-
reversibilily which is easily deseribed is an extension of reversibility, and that they
are equivalent under some conditions.

Chen" has proved that the reversibility of a stationary Markov process with
stationary fransition function P(1, z, A) (>0, s€EH, AE€&, & inoludes all
singletons {#}) is equivalent to that

(W) V1, 9€b8, [ fPigdu— | gPifdp,

where b& is the sel of all bounded &-measurable funetions, u is a stationary
measure, and

@ Pf @ = [ P, o d)Fia.

When (1) holds, we say that P(Z, #, A) is reversible with respet to u, and u is
a reversible neasare with respeot o P(2, #, A). Perhaps, what we can know first is
noither Markov processes nor their transition funotions, but their generators.
Therefore we will first disouss the relation belween the reversibility of P(¢, z, 4)

and that of its generator.
Let (#, &) be the metrio measurable space and & ils Borel o-field. b & is a

Banach space with supremum norm| « 1.“5” and “s-im” denote strong convergence
and strong limit respeotively. We define the generator Q of {P,, =0} as follows:

2 @) e{fe be, fi;:i-ige bé”},

@ 1
of as-lim L(P.f-f), FED(@).

We will say that Q is reversible with respeot to probability measure w if

@ V5, 9€9(0) [fagdu=[g0fdn.

(6) Proposition.

(i) If a (contraction) semigroup {P.1=>0} on b& is reversible with respect to
probability measure w, then so is its generator.

(i) Suppose that a linear operator Q on b& satisfies the conditions of the Hille-
Yosida theorem (for dissipative case), then it generates unique coniraction semigroup
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{P;.t=0}. If Q is reversible with respect to probability measwre w, then so is {Py; i=>0}.
Proof (i), (8), strong convergence and dominated convergence theorem imply
@).
(ii). From Hille-Yosida theorem, we obfain
(6) Vf€bS, Pif = s-lim(I-(t/m)2)"f,

and for every A>0, and every f, g€ b& there are f, g€ 2(Q) such that f=
(I—-A2)7Yf and g= (I —AQ)*g. It follows from
(4) that

Jra-10)2g0u~ [ 1U-22) 71 Gau~ [ L7251 o

= {9 -22)"*fdp,
By induction, it follows that
j FI=20) "‘gd,w=j g(I—2Q2)fdu, Vf, gEBE, V2.0, Va1,

Taking A= %’- and lebting n—» oo, We obtain (1) from (&).

(7) Remark. An analogue of propositior (8) is also true if b8 is replaced by
a proper subspace of b& (for exz:nple, the following &).

(8) In our model & is deserilbed with some speed functions. Now we introduce
several notatiims which will be used throughout the rest of this paper.

Let § be a countable set, so be ¥, for every u€S. But | Y| >2, Vu& S. We write
X éug P, in particular X = X (S). The projection of z on X (4) is denoted by

z4. We write o, instead of #, for every u€S. We topologize X by giving Y, the
disorete topology and X the resulting product topology. Fo(A4) is the Borel o—field
on X (A4), it is also the produot o—field on X (4). We write F(4) 2. Fo(4) x X
(8\4) which is a sub-o—field of F 2.%,(S).

Let #(A4) be the set of all bounded # (A)-measurable functions, Z2Z(S),
and ¥ and ¥ be the same as in § 2. For each integer N, lot y={4€ 7, |4| =N},
where | 4| is the number of members of 4. We denote by .o7= ALGJ’;@ (A) the set of

bounded continuous oylinder functionson X, and by % =% (X) the set of all
bounded continous funotions on X. Olearly &/ Fc%. We denote by #(X) the
sot of all probability measures on (X, & ). For every A€.Y, u€ #(X), wa denotes
the projeotion of u on (X (4), Fo(A)), i. e.
pa(F) 2u(Fx X (8\4)), VFEF(4),

Finally, we write o=y X w54 for every A€ .%;, y€ X (A). From now on, N is fixed.

(9) Definition. We call ¢(-, +, *); ¥ x X (4) X X—>R*=[0, ) to bs a speed
function, if
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(10) Vye X(4), ¢4, y, +) is F—measurable;

(11) Va2€ X, ¢(4, y, ) =0 if there is a u€ A such that wy=yu. If c(-, «, *)
also satisfies

(12) Co-zero,c(4, y, o) =0&¢(4, 24, %) =0, then we set

18) ¢ (o, 7 ={c(/1, 7, m.), 3AE Ly, IYE X (A) such that So=1;

0, otherwise,
and as in § 2 define a field Q= {q(x, z).2, £E€ X} which is called a speed function field.
Clearly the field has local character propertyfand from Theorem (2.14) we obtain.

(14) Proposition. A speed function field has a potential if and only if is a local
poteniial field.

(15) Definition. A speed function field Q is said to be with finite range, if its speed
Sfunction satisfies

(16) YAE Fy, 3dD4, A€, such that Vy€ X (A), (4, =, +) is F(d)-
measurable.

The minimal A satisfying (16) is denoted by 1 (.4). Oloarly every speed function
with finite range is continuous. For every 2, € X from (18), we have ¢(4, y,) =
¢(4, y, z) whenever z3=23. So we often use ¢(.i, y, z3) instead of ¢(4, y, ©), and
the cast of ¢(z, 7) oza be treated similarly.

(17) Pedinition. Tei Q Ye a speed function field with finite range. If there is
pEX(X) such that

(18) VAE Y, Vo€ X (A), pala)>0;

(19) VAE Sy, VADr(A), ye X (A), o€ X (A), and we have

. MZ(%)C(A, ?/; w) =[.l,2{()y1$)0(/1, wA; glm)}
1. e.

pi(@)q (e, 42) =pi(ie)¢(e, o),
them we say that Q 48 quasi-reversible with respect to 1, and u 48 a gquasi-reversible
measure for Q.
(20) Definition. Let @ be a speed function field satisfying
(21) VA€ Sy, V2EX, yeg(}A)c(A, Y, ) <c(4),

(22) Yu€S, 3 o(d)<eo,
uelCoy

We define a linear operator Q, 2 (Q)—>% as follows,
23) 0f @) 2 T 3 o4, 9, ) 4f @),

Aegy YEX(A
where 2 (2) Do/, and 44 f (2) 2 f (ho) —f (z).
The closure 2 of Q is called reversible if there is u € #(X) such that (18) and
(24) Vf, 9€2 @), [fRgin~ | gBfdy
hold. Then p is said 1o be a reversible measure for & (or Q, or o(-, +, +)).
Remark. When 2 is a core for 2 (i. e., £ restrioted on 2 and Q have the same
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olosed extension), we can use 2 instead of 2 (2) in (24). In particular, we can use
2 (Q) instead of 2 (2) and Q instead of Q. For reversibility there is condition (18)
in addition to (4). From now on, reversibility for speed funofion usually means
Definition (20).

(25) Theorem. Let Q be a speed function field with finite range. If Q is reversible
with respect to w, then Q i quasi-reversible with respect to w.

Proof Let A€y, Ao r(A); 2€ X(A), y€ X (4), Vu€EA, 24%Ys. Taking
F=Iaxxad, 9=Lyaxxen, for every o€ {42} x X (S\Z) we have

Qf (w) = Ag;” we;(]m e(d’, w, @) Umxzann () —Inxzan(@)]

=c(4, 24, ) L oywxondd (zax ZTpa),
henoce

[ srdu-| o(4, 24, 2)ulde) =o(4, 24, W) uaCi),

WIXXENL)
Using %z instead of z in the preceding discussion, we obfain

Ifﬂgd;wc(/l, y, 2)wi(z),

So reversibility for @ implies quasi-reversibility for &.

§ 4. Poteniiality and Quasi-reversibility

In this section, we will discuss the relation between pofentiality and quasi-
reversibility for ¢,

(1) Theorem. Let @ be a speed function field with finite range. If Q is quasi-
reversible, then it has & potential.

Proof Let w is a quasi-reversible measure for Q. We want fo prove that Theorem

(2.10) (iv) holds. Since field @ is independent of t, we can use—, ~, D and X;
t

instead of —£>, ~, D(%) and X,(¢) respectively,

From § 2, it is olear that ¢(z, ) =0 whenever #+>z, and in this case (2.11)
holds. It suffices to prove that (2.11) holds when a—>%. Therefore, by Definition
(3.9), we may suppose ¢(z, z)>0. Then there are AC Py, y€ X (A) such that
Yy ¥z, for each u€ A4 and z="%=. Hence ¢(z, ©) =c¢(4, y, ) . From quasi-reversibility
we have

@) ni(en) (@, 2)=p1E)e(, 2), VAor(4),

In § 2 we have taken and fixed the pathes L(4;, z) = (4=2®, P, «--, o™,
#™V—g) and L(4, 7)=(4=22, 2P, ..., 7™ Z+D_2) Using the preceding
discussion for each segment (z™ —»z®*V called a segment of the path L(4, z)), we
oan always take a de % such that (2) and the following equations all hold:

1.2 (z(i")) Q(ﬁ(‘), z(‘+1)) =d ($%+1)) q (w(H-I); w(”) ’ i= 0: 11 e, n,
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pi(@P) g (@D, THD) =y (@YY g (@D, 7Y,  §=0, 1,

pi((4)0)¢(4, 2)=pi(en)q(s, 4),

pi((4) DG4, 2) =pi1E2)e(z, 4).
From this and (2), we obtfain A

7(4, gz, 2§, 4)=¢(4, 2)q(z, 1) (z, 4).
This is Theorem (2.10) (iv), hence @ has a polential,
Uniil now, our hypotheses for the speed functions are (3.10), (3.11), (8.12),

(3.16), (3.21) and (3.22). Conditions (3.10) and (8.11) are certainly necessary.
Condition (8.12) is also necessary for potentiality. In order to make the olosure of

LX) -, m.
Hence

Q2 be a semigroup generator, Conditions (3.21) and (3.22) are necessary, oo (See
the example in [10; II, § 1.1]). Therefore, the essential condition for the speed
funotions is (3.16).

In order to discuss the converse of (4.1), we have to use another hypothesis for
the speed funotions.

(8) Hypothesis. For every A€ ., there is a A€ .%;, A A such that for every
@, 7€ X, whenever {u. wu%;“}c,/l, thsro are 2%, =1, 2, «.., m such that z2z9—>
gV > oo wp Mg ID A g and {u, 2$ A eV} 4. Clearly, if A satisfies the above
condition, then every 4 .4 satisfies (8) t00. So there are minimal sets satisfying
(38). But the minirnal suts may be not unique, so we choose arbitrary one of them and
wiite it a8 §(1). It is clear that 8(4) D 4.

4) Remark. If there is Ao € S y_y such that |¥4|>2 for each u € 4,, then (8)
may hold. For example, (3) is true when the condition “y& X (d4), |4|=N, Yu€
A4, yutz=c(d, y, ) >0 holds.

However, (8) does not certainly hold when |Y,|=2(u€S). For example, we
take ¥ ,={0, 1}, N =2; for every {u, v} <8, y€ X ({u, v}) we suppose c({u, ¢}, v,
) >0 whenever y,# ., ¥»*2,, By taking 2= (0, 0, 0) Xz, z=(1, 1,1) Xz, z€ X (S\
{1, ua, ug}), we have zz, so (3) does not hold. But later we will discuss this case
again in another way.

(6) Remark. Let @ be a speed function field, which satisfies (8), with finite
range, then for every A€.%;, s € X, w€ X (A), w#w,, there is certainly a path
L(®, ¢V, -, g™D) from ¢P=g 10 ™V =wXwg, such that {uE€S, al’ *F}
cd(4), 0<i<n. Put

_ n
q(x(o), w(n+1)> é'_l]l: q(a:(”, w(c+1))‘

®

_ n
q(m(n+1)’ w(O)) ég q(w(l+1)’ Q(i))

and A= | ) r(A). Since @ has finite range, q(&, wXzgs) and q(w X g4, ©) are
Acd(A
{4=N

F (Z) —~meagurable, i, e.
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o {VmEX, Yw€ X (4), q(z, wXons) =q (@1, wXTi-a),
q(wX a4, ©) =q(WX R4, ©75).

In addition, if @ has a potential, then it is clear by path-independence thai

(&) YwE X (), Ma)-L&0X00) _(yxzs),

q(wX am,, @)
(9) Corollary. Let @ be a speed function field which satisfies(8)and be quasi-revers-

sble, then we have

10) VA€, X AMwXagna) <oo,

weX(4)
Proof Unsing the notation in Remark (5), from (2) we obtain
i @) g (@, 24D) = uz (@) ¢ (@D, o®), 0<i<n.
Bo, for every wE X (A) we have
pi (@) g (@, wXzaa) =pi(wXena) g WXz, 2),

hence from Theorems (1), (2) and (8) we obtain

S Mwxoss) =A@) 3 L@ WX _j oy 3 pa0EzG)
wEX(4) we X (A) q(w X T\ 4, x) WEX (4) WX \’xz)
= (2) pi(X (4) Xomna) <00
wile7) \

(11) Lemma. Let Q be a speed function field, which has a potential and satisfies
(3) and (10), with finite raige. For every A& Sy we put
12) f4(z) =i @)\ [W;Z Mwxana)], s€X,

T
Then {f*. A%} ha: the following properties,

(18) Ve€X, f4(2)>0;

(14) VAES, VWEXE\M), I fGxy)=1;

(15) VAcAE S, Ya€ X, fi(a)=f4 <"’)w§m FA(w X zs4)3

(16) VA€, 34€.%,, Aor(A) such that f is F (A)-measurable.

Proof First, we note thab f4 is independent of the selection of 4, and L(4, ) (See
§ 2). In faot, if we choose another 4; and L'(4, ), and define A’(z) in the same
way, then from potentiality for @ and Theorem (2.10) there is an ;>0 such that
A(2) =a) (o) for every € X, So from (3) we obtain

VAES;, YVwE X (A), a~w X g 4,

hence A(2) and A’'(2) define the same f4.

Next, (18) and (14) are trivial. For every Ac A€ %, and every s € X, we have

g M Ma 5 Mwxeed

> AlwXza3) ;%A) Aw X Tgya) wéTa) we;a) Aw X x0,7)

weEX(A)
=f4(z) X fA(wxzsa),
weX(V)

s0 (15) holds,
Finally we will prove (16). We use the notation and result in Remark (5) to
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prove that f4 is & (A)—measurable for every A€ 4, i. e.

(17) Vz€ X(S\A), f4(2) =f(wax2),

For fixed #€ X there is an {€ D such that € X;. Since f4 is independent of the
selection of 4;, we can suppose &= 4, without loss of generalily, ie. A(z) =A(4) =1.
Let 23X 2€ Xp. From path-independence, (7) and (8), we obtfain
g (v, wXasaX2)
g(wX @, X2, dy)
q(dy, w3%2) . g(@aX2, WXBR4X2)
g@axz, 4y) qwXonaXz, t3X2)

}h(w X ThaX Z) =

D(zz x2) L8 WX Do)
q(w X w4, @)
@BA(@aX2)A(wX 204).

hence

Filoaxz) = > Kxiﬁszg\a X 2) - > A.(lw ;Q‘s\d) =f (g,)‘
wEX WwE T
thus the proof is terminated.
(18) Corollary. VAE .Y, FC 6 (X),
Now, we disouss bow 10 co nstrugh thra quagi-reversible meagures for Q.
(19) Definiiion. Ths family ¥ = {f4, A€ Sy} of the functions satisfying (18)—
(15) s said to b a specificateon. u € P(X) is called a Gibbs state with specification ¥,

gf

(20) VA€, Vye X(4), u({y} x X (S\4) | F (8\4)) =f4(yx (*)sra), p—a. 0.
The set of all G1ibbs states with specification ¥~ is dented by G (V).

For every z€ X (S\4), F € %, we define

@1) pan(® 2 3 fyx2),

where F'(2) 2 {y€ X (A).yxzEF}, and lot F,(AE€.F;) be the closed convex
hull of all w,,,, 2€ X (S\4). Finelly, let

(22) Ga{u€P(X), FAnE S, An 8, Tun€ ., such that pum—> u}

where um 5 w means that u,, is weakly convergent fo u,

(23) Proposition. Let Q be a spesd fumetion field, which satisfies (8) and (10),
with finite range, then ¥ = {f4, A€ %} defined by (12) i3 a specification, every f4 is a
continuous function on X and

(24) G<9(7).

Proof Lemma (11) and Corollary (18) imply the first assertion, It is olear that
wE F(¥") is equivalent to the following

(26) VAES, VEX(4), VFEFoS\A), p(hxF) =| F1@x2)una (@2).
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hence it remains only to prove that (25) holds for
(26) F={y} x X (8\4), 424, A€ 7, € X(A\4).

Let w €%, then there are A,€ ), An}S and un€Z,, such that wy—> p. In
order to prove that u€ ¥(¥"), we first prove that (25) holds for F in (26) and

@7) 1=PamsndnDA, 2a€ X (S\An).

From (21) and (15) we obtain that the right hand side of (25)

FA@X2) (haren s @) = | FA@XD) (e ma (@)

J WX X(B\Z) WIXX A\ X (Em)

= > f“(yxylxyx.z,,.) Zf""(wxylxyxzm)

v eX(Am\3)

- > fA»(yxylxy><z,,.>—u,1,,.z,<{y><y1}xX(S\Z».

VeEX(AmD)
Furthermore (25) holds for F in (26) and the convex linear combination v, of

Woay, s, (Ap is fixed). Because f4(y X +) is a bounded continuous function on X (S\4),
50 (25) holds also for F in (26) and p=p,€ %,,, ane hence for u € ¥, Thus %s bave
proved that n€ G(¥"),

(28) Proposition. Let @ be a speed function field whick saticfes (3) 2wt (10), with
finite range. If G(¥") ¢, then Q is quasi-recersidls and every uw€ g(’//) is a quasi-
reversible measure for Q,

Proof It suffices o preve that every w& (%) is a quasi-reversible measuare
for Q.

First, we want to vrovs (8.18). Take A€, y€ X (4), from (16), there is a
Aor(4), A¢ S such that f4 is F (A)-measurable. We may assume A+ A without
loss of generality. For every 4,24, applying (25) to F= {w} x X (S\4,), wEX
(4:\4), we obtain

(29) pa(yxw)=F4(yxwxz)pwapa(w), w€ X (45\4), where z is an arbitrary
but fixed element in X (§\4;). Since A;\A#@ and pan4 is a probability measure,
there is a w€ X (4;\A) such that g, (w)>0, hence u, (yxw)>0 from (13),
Taking the summation for w in (29) over X (A4;\4), we obtain w,(y) >0.

Next, we wanl to prove (3.19). 4 remains as above, From (29) we have, for
everyd, o4, 4,€.,, x€ X (4,), y€ X (A4), that

A :
o A5, e,
Hence, by the potentiality for @ and Theorem (2.10), € is weakly symmetrizable
and A(+) is its symmetrizing function. Therefore, we have
VA€ &, 4304, Vo€ X (4,),
MA.(‘U) - c(4, 24, 42)
paGe) (4, y, o) °
whenever ¢(4, y, #)>0. For every 4,€.%;, A 4:2r(4), «€ X (A4,), by the above
equality (taking A,= A there), we obtain
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s(exw c(4, o4, Yoxw
4, (@) - we%\m)’b‘l( ) - weX(zA\Ax) ( e )
RN 2 wi(hwxw) 2 ¢4, y, sxw)
weX(A\4y) weX@\4)
_cld, z4, 42)
o, gy "€ XD

whenever ¢(4, y, #)>0. Hence (3.19) follows from the last two equations. The
proof is terminated,

From Propositions (238) and (28) we know how to construct some quasi-reversi-
ble measures for @ from a specification ¥". But we do not know until now whether
these are all such measures, We will construct all quasi-reversible measures for @ in
another way, and give the necessary and sufficient conditions for the existence and
uniquensoss of quasi-reversible measures.

(80) Definition. Lst Q be a speed function field, which satisfies (2), with finite
range. For every A€ %5, we will call 842 ( AHﬂﬁr(A)) \A the brundory of A.

Aca(

It is olear that A=_4a84 from Remark (5).
We define ¢(+, +) according to Remaxrk (B). We chocse an arbitrary but fixed
0c X, then from (7) we have
Vy€E X (4, %84, V26 ¥ (54d), Vwe X (S\(4Uad)),
F(Cuixexw, yXzxw)=q@s1%Xz2, yX2),
GluxzxXw, 64 Xz2Xw) =qyXz, 0,%2),
{81) Proposition. Let Q be a speed function field, which has a potential and
satisfies (8), with finite range, and lot A€ Y, Ap=Ap-1U0Ap3, Apt Adpy, m>1,
| do| =N and A48, If the equations

82 o, = q(0an X, Opm X2XW) (0t € X (DA,
(82) @, wexzm,,.) OO IRT) Tmit,w, mM>1, 2€ X ( 1)

have a positive solution T, ,(m>1, 2€ X (04,,_1)) and
33) mma 3 At yxD) 5 o
JEGms 4’ XY, 040 X%)

where 4 (z, )\ (e, z) =1 when ©=12 a8 a convention, and for every y€ X (An-1),
2€ X (04p-1), we define

(84) pm(yxz) 225! ZEZA;;, X;/:...f : 3 z,
then {in}m>1 determines a unique quasi-reversible measure for @, such that each ., is
the projection of u on X (Ay).

Proof Olearly, w, defined in (84) is a positive probability measure on X (A,).

m,y

We want to prove that
1° {ttnm}m»1 are consistent, From the polentiality for @ and (3) we have
Vy€ X (Ap-1), V2€ X (04p-1), YVWE X (04n),
g0, xw, yxzxw) =q(@4,. Xw, 04, X2xw)q(O04,., %2, yX2),
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qlyxzxw, 6,, Xw)=q@,, X2xXw, 0, ¥Xw)qlyXz, 6,4, ,%2).
so form (8) and the fact that gz, . satisfies (82), by simple caloulation, it is not
difficult to obtain
Zmi1=ZLm, m=>1,
From this equation, (84), (85), and the fact that z,,, satisfies (82), we oblain

464, Xw, yxzXw) Fmitw

X2XW) =Zp} =
weX%Am) s (Y )=Zn weXPam qyXzXw, 8,4, Xw)

=271 g(aAm_;xz: yxz) z
q(yXz, 0,4, ,%2)

2° Let Zoa |) F(4n), then o, is a field and o(slo)=.F, by Kolmogorov

m=1

m,:=/‘m(y XZ).

consistency theroem, there is a unique measure on %, denoted by u, such thal pm
is the projection of w on X (4,,).

8° u is a quasi-reversible measure for Q.

For every A€ %y, A>r (4), since A, 78, there is an m=>1 such that 4,24,
Apy12d. Let y€ X (A), 2€ X (Aps1). Olearly, (3.19) holis when ¢(A, y.x)=c(4,
y, #3) =0. Thus we may assume that 0, X, ~ &->4». From (34) and the path-
independence, we obtain

Hmiz(®) _ _q__(_GAm X By @)/ G640 X Boa0r YXBppiia)
pmi1(52) (@, 90> @osn) I QWX O sty Ot X Dos,)
o U YXBppra, @) _ o3, @3)
7@, YXBsapira) q(zz, 4oz)

hence - -

Mms1(2) (@3, 423) = Pmsz (42) g o3, 23).
Taking the summation for ,,,,1 over X (Apnss\A), we obtain (3.19). Therefore w
is a quasi-reversible measure for Q.

(36) Theorem. Let Q be a speed function fleld with finite range, satisfing (3).
Suppose that there are An,C€.%; such that Ap= Ap 1U0d4p1, ApFAdpa, m >1,
| do| =N and A, /8. Then

(i) Ewery quasi-reversible measure w for @ can beobtained in the same manner as in
Proposition (81);

(it) If there are two positive solutions {&l),, m=>1, 2€ X (0Am-1)} of (82) satisfy-
¢ng (33), i=1,2 then the two quasi-reversible measures obtained in the preceding manner
are the sams if and only if there is an a>>0 such that

87 2P =az®,, m>1, 2€ X (8d4pn-1);

(iii) A necessary and sufficient condition of the ewistence of a quasi-reversible
measure for Q is that there exists a positive solution of (32) satisfying (83); @ necessacy
and sufficient condition of the existence of & unique quasi-reversible measure for @ is tha
there is a unique linear-independent positive solution of (82) satisfying (83).

Proof
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1° Let w be an arbitrary quasi-reversible measure for @, w.(m>1) be the
projection of uw on X (A4,). Then from (3.19) and (7), we have
Fims (0 4s X2X W) = i1 (0.4, X w)G (04, X W, 04, ,%2Xw)/q(0 4,
XzXw, 0,, Xw),
Vm=>1, V2€ X (04,_1), YWE X (04,,).
Taking the summation for w over X (84,,), we obtain
) B O e T e O30,
hence Tp,.2im (04,,%2), m>1, 26 X (0A4,,-1) is a positive solution of equalions
(82). It is easy 1o check (83).
Next, from (8), (3.19) and (7), we have
l:m (yxz)= /IM(QA..-x X2)q (04, %2, yx2)\q(yxz, G4,,%2)
for every y€ X (A,-1) and 2€ X (04,—y). Taking ;,,,,, instead of m,. in (83) and
(84), we obtain

/;m (04"._‘ X z) =

Za=1, I-"m==/:m;
80 p is the same as the measure obtainod from Froposition (31).

2° Let {al). m=>1, 2€ X (64p,-1)}, ¢==1. 2 be two positive solutions of (32)
satisying (83), We define Z%’, u{’i=-1, 2z, m>1 as in Proposition (31),

If «f), cabisty (87), then ZP =aZP from (83), hence ul’=uP from (84), so
they astermine the same quasi-reversible measure for @ from Proposition (31).
Gornversely, if @) (=1, 2) determine the same quasi-reversible measure u for @,
then puP=uP, m>1 since u® and u® are the projection of u on X (A4,), In
particular, from (84), we have

(Z2) 7w =i’ (O ams X 2) =3 (O 4es X 2) = (Z30) “in)s
for every 2€ X (04,,-1) . Moreover, wo know from the proof of Proposition (31) that
Z$ are independent of m, so (87) holds,

Now we can conclude that there is an injective mapping between the set of all
quagi-reversible measures for @ and the set of all equivalent classes of linear-
independent positive solutions of equations (82) satisfying (83). This completes the
proof,
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