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Preface

First, let us explain the precise meaning of the compressed title. The word “eigen-
values” means the first nontrivial Neumann or Dirichlet eigenvalues, or the principal
eigenvalues. The word “inequalities” means the Poincaré inequalities, the logarith-
mic Sobolev inequalities, the Nash inequalities, and so on. Actually, the first eigen-
values can be described by some Poincaré inequalities, and so the second topic has
a wider range than the first one. Next, for a Markov process, corresponding to its
operator, each inequality describes a type of ergodicity. Thus, study of the inequal-
ities and their relations provides a way to develop the ergodic theory for Markov
processes. Due to these facts, from a probabilistic point of view, the book can also
be regarded as a study of “ergodic convergence rates of Markov processes,” which
could serve as an alternative title of the book. However, this book is aimed at a
larger class of readers, not only probabilists.

The importance of these topics should be obvious. On the one hand, the first
eigenvalue is the leading term in the spectrum, which plays an important role in
almost every branch of mathematics. On the other hand, the ergodic convergence
rates constitute a recent research area in the theory of Markov processes. This study
has a very wide range of applications. In particular, it provides a tool to describe
the phase transitions and the effectiveness of random algorithms, which are now a
very fashionable research area.

This book surveys, in a popular way, the main progress made in the field by
our group. It consists of ten chapters plus two appendixes. The first chapter is
an overview of the second to the eighth ones. Mainly, we study several different
inequalities or different types of convergence by using three mathematical tools: a
probabilistic tool, the coupling methods (Chapters 2 and 3); a generalized Cheeger’s
method originating in Riemannian geometry (Chapter 4); and an approach coming
from potential theory and harmonic analysis (Chapters 6 and 7). The explicit criteria
for different types of convergence and the explicit estimates of the convergence rates
(or the optimal constants in the inequalities) in dimension one are given in Chapters
5 and 6; some generalizations are given in Chapter 7. The proofs of a diagram of
nine types of ergodicity (Theorem 1.9) are presented in Chapter 8. Very often, we
deal with one-dimensional elliptic operators or tridiagonal matrices (which can be



vi

infinite) in detail, but we also handle general differential and integral operators. To
avoid heavy technical details, some proofs are split among several locations in the
text. This also provides different views of the same problem at different levels. The
topics of the last two chapters (9 and 10) are different but closely related. Chapter 9
surveys the study of a class of interacting particle systems (from which a large part of
the problems studied in this book are motivated), and illustrates some applications.
In the last chapter, one can see an interesting application of the first eigenvalue, its
eigenfunctions, and an ergodic theorem to stochastic models of economics. Some
related open problems are included in each chapter. Moreover, an effort is made
to make each chapter, except the first one, more or less self-contained. Thus, once
one has read about the program in Chapter 1, one may freely go on to the other
chapters. The main exception is Chapter 3, which depends heavily on Chapter 2.
As usual, a quick way to get an impression about what is done in the book is to look
at the summaries given at the beginning of each chapter.

One should not be disappointed if one cannot find an answer in the book for
one’s own model. The complete solutions to our problems have only recently been
obtained in dimension one. Nevertheless, it is hoped that the three methods studied
in the book will be helpful. Each method has its own advantages and disadvantages.
In principle, the coupling method can produce sharper estimates than the other
two methods, but additional work is required to figure out a suitable coupling and,
more seriously, a good distance. The Cheeger and capacitary methods work in a
very general setup and are powerful qualitatively, but they leave the estimation of
isoperimetric constants to the reader. The last task is usually quite hard in higher-
dimensional situations.

This book serves as an introduction to a developing field. We emphasize the
ideas through simple examples rather than technical proofs, and most of them are
only sketched. It is hoped that the book will be readable by nonspecialists. In the
past ten years or more, the author has tried rather hard to make acceptable lectures;
the present book is based on these lecture notes: Chen(1994b; 1997a; 1998a; 1999c;
2001a; 2002b; 2002c; 2003b; 2004a; 2004) see Chen (2001c)]. Having presented
eleven lectures in Japan in 2002, the author understood that it would be worthwhile
to publish a short book, and then the job was started.

Since each topic discussed in the book has a long history and contains a great
number of publications, it is impossible to collect a complete list of references. We
emphasize the recent progress and related references. It is hoped that the bibliogra-
phy is still rich enough that the reader can discover a large number of contributors
in the field and more related references.

Beijing, The People’s Republic of China Mu-Fa Chen, October 2004
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Chapter 1

An Overview of the Book

This chapter is an overview of the book, especially of the first eight chapters. It
consists of four sections. In the first section, we explain what eigenvalues we are
interested in and show the difficulties in studying the first (nontrivial) eigenvalue
through elementary examples. The second section presents some new (dual) vari-
ational formulas and explicit bounds for the first eigenvalue of the Laplacian on
Riemannian manifolds or Jacobi matrices (Markov chains), and explains the main
idea of the proof, which is a probabilistic approach: the coupling methods. In the
third section, we introduce some recent lower bounds of several basic inequalities,
based on a generalization of Cheeger’s approach which comes from Riemannian ge-
ometry. In the last section, a diagram of nine different types of ergodicity and a
table of explicit criteria for them are presented. The criteria are motivated by the
weighted Hardy inequality, which comes from harmonic analysis.

1.1 Introduction

Let me now explain what eigenvalue we are talking about.

Definition. The first (nontrivial) eigenvalue

Consider a tridiagonal matrix (or in probabilistic language, a birth—death process
with state space £ = {0,1,2,...} and Q-matrix)

—bg bo 0 0
a1 —(a1—|—b1) b1 0o ...
Q = (qu) - 0 as —(CL2 + bg) bo ... |>
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where ap, br > 0. Since the sum of each row equals 0, we have Q1 =0 =0 -1,
where 1 is the vector having elements 1 everywhere and 0 is the zero vector. This
means that the Q-matrix has an eigenvalue 0 with eigenvector 1. Next, consider
the finite case FE, = {0,1,...,n}. Then, the eigenvalues of —@Q are discrete: 0 =
Ao < A1 < - < A,. We are interested in the first (nontrivial) eigenvalue A\; =
A1 — Ao =: gap (Q) (also called the spectral gap of Q). In the infinite case, A\ :=
inf{{Spectrum of (—@Q)} \ {0}} can be 0. Certainly, one can consider a self-adjoint
elliptic operator in R? or the Laplacian A on manifolds or an infinite-dimensional
operator as in the study of interacting particle systems.

Since the spectral theory is of central importance in many branches of math-
ematics and the first nontrivial eigenvalue is the leading term of the spectrum, it
should not be surprising that the study of \; has a very wide range of applications.

Difficulties

To get a concrete feeling about the difficulties of the topic, let us look at the following
examples with finite state spaces.

When E = {0,1}, it is trivial that Ay = a1 + bg. Everyone is happy to see
this result, since if either a; or by increases, so does A;. If we go one more step,
E = {0,1,2}, then we have four parameters, by, b; and aj,as. In this case, \; =
21 [al + ag + bg + by — \/(al —ag + by — b1)? +4aiby ] It is disappointing to see
this result, since parameters effect on A; is not clear at all. When E = {0,1,2,3},
we have six parameters: bg, b1, b2, a1, a2, a3. The solution is expressed by the three
quantities B, C, and D:

D C 21/3 (3B — D?)
)\1 - 5 - + ’
3 3.21/3 3C

where the quantities D, B, and C are not too complicated:

D = a1+ as + az + by + by + ba,
B = a3 by + as (a3+bo)+a3b1+b0b1+b0b2+blbg+a1 (a2+a3+bz),

1/3
C = (A+ \/4(33 —D2)? +A2> .
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However, in the last expression, another quantity, A, is involved. What, then, is A?

A= —-2d}—2a3 —2a3 4+ 3aiby + 3azbi — 203 + 3a2by — 12 az boby + 303D,
+3 a3 b2+ 3bg bt — 2b3 — 6 a3bs + 6 azbobs+ 3 baby+ 6 azbiby — 12 boby by
+ 3b2 by — 6asb3+ 3bg ba+ 3b1b3 — 2b3 + 3a? (as + az— 2bg— 2 by + by)
+3a3 [az + by — 2 (by + by)]
+ 3as [a3 + b — 27 — by by — 2b3 — az(4by — 2b1 + ba) + 2bg (b1 + ba)]
+3a1 [a3 +a3 —2b5 —boby — 2b7 — az(daz — 2bg + by — 2by)
+2bg by + 2by1 by + b3 + 2az(bo + by + ba)],

computed using Mathematica. One should be shocked, at least I was, to see this
result, since the roles of the parameters are completely hidden! Of course, everyone
understands that it is impossible to compute A1 explicitly when the size of the matrix
is greater than five!

Now, how about the estimation of A\;? To see this, let us consider the pertur-
bation of the eigenvalues and eigenfunctions. We consider the infinite state space
E =1{0,1,2,...}. Denote by g and Degree(g), respectively, the eigenfunction of A\
and the degree of g when ¢ is polynomial. Three examples of the perturbation of \;
and Degree(g) are listed in Table 1.1.

Table 1.1 Three examples of the perturbation of A; and Degree(qg)

b; (i > 0) ai (i >1) A1 | Degree(g)

i+c(c>0) 2i 1 1
i+1 2i + 3 2 2
i+1 2i+ (4+v2) 3 3

The first line is the well-known linear model, for which A\; = 1, independent of the
constant ¢ > 0, and ¢ is linear. Next, keeping the same birth rate, b; = 7 + 1, the
perturbation of the death rate a; from 2i to 2i + 3 (respectively, 2i + 4 4 /2 ) leads
to the change of A\; from one to two (respectively, three). More surprisingly, the
eigenfunction ¢ is changed from linear to quadratic (respectively, cubic). For the
intermediate values of a; between 2i, 2i + 3, and 2i +4+ /2, \; is unknown, since g
is nonpolynomial. As seen from these examples, the first eigenvalue is very sensitive.
Hence, in general, it is very hard to estimate \;.

Hopefully, we have presented enough examples to show the extreme difficulties
of the topic. Very fortunately, at last, we are able to present a complete solution to
this problem in the present context. Please be patient; the result will be given only
later.
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For a long period, we did not know how to proceed. So we visited several branches
of mathematics. Finally, we found that the topic was well studied in Riemannian
geometry.

1.2 New variational formula for the first
eigenvalue

A story of estimating )\, in geometry

Here is a short story about the study of A\; in geometry.

Consider the Laplacian A on a connected compact Riemannian manifold (M, g),
where ¢ is the Riemannian metric. The spectrum of A is discrete: -+ < =Xy <
—A1 < —X¢g = 0 (may be repeated). Estimating these eigenvalues A\ (especially
A1) is an important chapter in modern geometry. As far as we know, five books,
excluding books on general spectral theory, have been devoted to this topic: I.
Chavel(1984), P.H. Bérard(1986), R. Schoen and S.T. Yau(1988), P. Li(1993), and
C.Y. Ma(1993). About 2000 references are collected in the second quoted book.
Thus, it is impossible for us to introduce an overview of what has been done in
geometry. Instead, we would like to show the reader ten of the most beautiful lower
bounds. For a manifold M, denote its dimension, diameter, and the lower bound of
Ricci curvature by d, D, and K (Ricciy; > Kg), respectively. The simplest example
is the unit sphere S% in R4*!, for which D = 7 and K = d — 1. We are interested
in estimating A\; in terms of these three geometric quantities. It is relatively easy
to obtain an upper bound by applying a test function f € C'(M) to the classical
variational formula

Al—lnf{/ |V f||?dz: feCH(M /fdx—O / dex—l} (1.0)

where “dz” is the Riemannian volume element. To obtain the lower bound, however,
is much harder. In Table 1.2, we list ten of the strongest lower bounds that have
been derived in the past, using various sophisticated methods.

Table 1.2 Ten lower bounds of \;
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Author(s) Lower bound
A. Lichnerowicz(1958) % K, K>0 (1.1)
P.H. Bérard, G. Besson, d{ (;r/z cos?~1tdt }2/d K=d-1>0 (12)
& S. Gallot(1985) foD/2 cosd-1tdt)
2
P.Li & S.T. Yau(1980) 27;)2, K>0 (1.3)
J.Q. Zhong & w2
H.C. Yang(1984) p K20 (1.4)
n? K
D.G. Yang(1999) et K>0 (1.5)
1
P.Li & S.T. Yau (1980 , K <0 (1.6
A980) s = Ty exp [1 + VI 1607] (16)
2
K.R. Cai(1991) % +K, K<O0 (1.7)
71’2
D. Zhao(1999) 73 T052K, K<O0. (1.8)
H.C. Yang(1990) & ™ .
F. Jia%§991)) pa€ T Hd=5 K<O (1.9)
H.C. Yang(1990) & ™
F. Jia%£991)) ope¢ o 2sdsd K<O (1.10)

In Table 1.2, the two parameters « and o are defined as

a=2"'D\/|K|(d—1) and o =2"'D/|K|((d—1)V2).

The first estimate is due to A. Lichnerowicz 46 years ago. It is very good, since
it is indeed sharp for the unit sphere in two or more dimensions. After 27 years, this
result was improved by three French mathematicians, given in (1.2). The problem
here is that these two estimates become trivial for zero curvature, the unit circle
for instance. It is well known that the zero curvature case is harder than that of
positive curvature. The first progress was made by Li and Yau (1.3) and improved
by Zhong and Yang (1.4), by removing the factor two from (1.3). For the nonexpert,
one may think that this is not essential. However, it is regarded as a deep result in
geometry, since it is sharp for the unit circle. The fifth estimate is a mixture of the
first and the fourth sharp estimates.

We now go to the case of negative curvature. The first result (1.6) is again due
to Li and Yau in the same paper quoted above. Combining the two results (1.3)
and (1.6), it should be clear that the negative case is much harder than the positive
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one. Li and Yau’s results are improved step by step by many geometers as listed in
Table 1.2.

Among these estimates, seven [(1.1), (1.2), (1.4), (1.5), (1.7)—(1.9)], shown in
boldface, are sharp. The first two are sharp for the unit sphere in two or higher
dimensions but fail for the unit circle; the fourth, the fifth, and the seventh to ninth
are all sharp for the unit circle. The above authors include several famous geometers,
and several of the results received awards. As seen from the table, the picture is now
very complete, due to the efforts of geometers in the past 46 years or more. For such
a well-developed field, what can we do now? Our original starting point was to learn
from the geometers and to study their methods, especially recent developments. It
is surprising that we actually went to the opposite direction, that is, studying the
first eigenvalue by using a probabilistic method. At last, we discovered a general
formula for A;.

New variational formula

Before stating our new variational formula, we introduce two notations:

C(r)=cosh?™! liwd_TKl]’ re(0,D); F={feC[0,D]: f>0o0n (0,D)},

where cosh”"x = (coshx)”. Here, we have used all three quantities: the dimension
d, the diameter D, and the lower bound K of Ricci curvature. Note that C(r) is
always real for any K € R.

Theorem 1.1 (General formula [Chen and F.Y. Wang,1997a]).

A1 > sup inf - 4f(g)
rez re0.D) [FC(s)~tds [;7 C(u) f(u)du

=: &. (1.11)

The variational formula (1.11) has its essential value in estimating the lower
bound. It is a dual of the classical variational formula (1.0) in the sense that “inf”
in (1.0) is replaced by “sup” in (1.11). The classical formula goes back to Lord
S.J.W. Rayleigh (1877) or E. Fischer(1905). Noticing that there are no common
points in the two formulas (1.0) and (1.11), this explains the reason why such a
formula never appeared before. Certainly, the new formula can produce many new
lower bounds. For instance, the one corresponding to the trivial function f = 1 is still
nontrivial in geometry. It also has a nice probabilistic meaning: the convergence rate
of strong ergodicity (cf. Section 5.6). Clearly, in order to obtain a better estimate,
one needs to be more careful in choosing the test functions. Applying the general

formula (1.11) to the elementary test functions sin(ar) and cosh*™%(ar) sin(fr) with
a=2"1/|K|/(d—1) and = 7/(2D), we obtain the following corollary.
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Corollary 1.2 (Chen and F.Y. Wang,1997a).

dK D [ K 1!

> —d1—cos? | =4/ —— 1, K=>O0. 1.12

A1 d—l{ cos [2 d—l]} : d>1, 0 (1.12)
2 2D?2K 14D | =K

)\1 2 ﬁ 1-— 7‘(‘4 cosh [E ﬁ], d > 1, K < 0. (113)

Applying the formula (1.11) to some very complicated test functions, we can
prove, assisted by a computer, the following result.

Corollary 1.3 (Chen, E. Scacciatelli, and L. Ya0,2002).
M > 7?/D* + K/2, K €R. (1.14)

Surprisingly, these two corollaries improve all the estimates (1.1)—(1.10). Es-
timate (1.12) improves (1.1) and (1.2), estimate (1.13) improves (1.9) and (1.10),
and estimate (1.14) improves (1.4), (1.5), (1.7), and (1.8). Moreover, the linear
approximation in (1.14) is optimal in the sense that the coefficient 1/2 of K is exact.

A test function is indeed a mimic eigenfunction of Ay, so it should be chosen
appropriately in order to obtain good estimates. A question arises naturally: does
there exist a single representative test function such that we can avoid the task
of choosing a different test function each time? The answer is seemingly negative,
since we have already seen that the eigenvalue and the eigenfunction are both very
sensitive. Surprisingly, the answer is affirmative. The representative test function,
though very tricky to find, has a rather simple form: f(r ( fo 1dS) (v=0).
This is motivated by a study of the weighted Hardy 1nequahty, a povverful tool in
harmonic analysis [cf. B. Muckenhoupt(1972), B. Opic and A. Kufner(1990)]. The
lower and the upper bounds of &7, given in (1.15) below, correspond to v = 1/2 and
~v = 1, respectively.

Corollary 1.4 (Chen,2000c). For the lower bound &; of A1 given in Theorem 1.1, we
have
4671 =6 > 671, (1.15)

where

(oo ) oom). o ]

Theorem 1.1 and its corollaries are also valid for manifolds with a convex boun-
dary endowed with the Neumann boundary condition. In this case, the estimates
(1.1)—(1.10) are conjectured by the geometers to be correct. However, as far as we
know, only Lichnerowicz’s estimate (1.1) was proven by J.F.Escobar in 1990. The
others in (1.2)—(1.10) and furthermore in (1.12)—(1.15) are all new in geometry.
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Sketch of the main proof (Chen and F.Y. Wang,1993b)

Here we adopt the language of analysis and restrict ourselves to the Euclidean case.
The geometric case will be explained in detail in the next chapter. Our main tool is
the coupling methods. Given a self-adjoint second-order elliptic operator L in R?,

+
|'M

2

VQJ

L= Z aij (@ 8@8333

X a—xi,

1,7=1
an elliptic (usually degenerate) operator L on the product space R? x R? is called
a coupling of L if it satisfies the following marginality condition (Chen and S.F.
Li,1989):

Lf(z,y)=Lf(x) (respectively, Lf(z,y)=Lf(y)),  f€Ci(RY), = #y,

where on the left-hand side, f is regarded as a bivariate function.
Denote by {Pt}t>0 the semlgroup determined by L: P, = e'’. Corresponding to

a coupling operator L we have {Pt}t>0 The coupling simply means that

Pif(2,y) = Pif(x) (vespectively, P f(x,y) = Prf(y)) (1.20)

for all f € CZ(R?) and all (z,y) (¥ # y), where on the left-hand side, f is again
regarded as a bivariate function. With this preparation in mind, we can now start
our proof.

Step 1. Let g be an eigenfunction of —L corresponding to A\;. That is, —Lg = A\ g.
By the standard differential equation (the forward Kolmogorov equation) of the
semigroup, we have

%Ptg( )= PiLg(x) = =\ Pig(x).

Solving this ordinary differential equation in P;g(x) for fixed g and x, we obtain

Pig(x) = g(x)e M. (1.21)

This expression is very nice, since the eigenvalue, its eigenfunction, and the semi-
group are all combined in a simple formula. However, it is useless at the moment,
since none of these three things are explicitly known.

Step 2. Consider the case of a compact space. Then g is Lipschitz with respect to
the distance p. Denote by c, the Lipschitz constant. Now the main condition we
need is the following:

Pip(x,y) < p(z,y)e™". (1.22)

This condition is more or less equivalent to

Lp(z,y) < —ap(z,y), = #y (1.23)
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(cf. Lemma A.6 in Appendix A). Setting g1 (z,y) = g(x) and gz2(x,y) = g(y), we
obtain

e M g(x) — g(y)| = |Pg(x) — Pg(y)| (by (1.21))
= |Pig1(z,y) — Poga(z,y)|  (by (1.20))
= |Pi(g1 — g2)(2,9)| < Pilgr — gal(z,v)
< cglgtp(x, y) (Lipschitz property)

< egp(z,y)e ™ (by (1.22)).

Since g is not a constant, there exist x # y such that g(z) # g(y). Letting t — oo,
we must have \; > . U

The proof is unbelievably straightforward. A good point in the proof is the use
of the eigenfunction so that we can achieve sharp estimates. On the other hand,
it is crucial that we do not need too much knowledge about the eigenfunction, for
otherwise, there is no hope that things will work out in such a general setting, since
the eigenvalue and its eigenfunction are either known or unknown simultaneously.
Aside from the Lipschitz property of g with respect to the distance, which can be
avoided by using a localizing procedure for the noncompact case, the key to the
proof is clearly condition (1.23). For this, one needs not only a good coupling but
also a good choice of the distance. It is a long journey to solving these two problems.
The details will be explained in the next two chapters.

Our proof is universal in the sense that it works for general Markov processes.
We also obtain variational formulas for noncompact manifolds, elliptic operators
in R? (Chen and F.Y. Wang,1997b), and Markov chains (Chen,1996). It is more
difficult to derive the variational formulas for the elliptic operators and Markov
chains due to the presence of infinite parameters in these cases. In contrast, there
are only three parameters (d, D, and K) in the geometric case. In fact, with the
coupling methods at hand, the formula (1.11) is a particular consequence of our
general formula (which is complete in dimension one) for elliptic operators. The
general formulas have recently been extended to the Dirichlet eigenvalues by Chen,
Y.H. Zhang, and X.L. Zhao(2003).

To conclude this section, we return to the matrix case introduced at the beginning
of the chapter.

Tridiagonal matrices (birth—death processes)

To answer the question just posed, we need some notation. Define
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Assume that the process is nonexplosive:

k
i Z and moreover Z = Z,uz- < o0. (1.24)

k=0 Db i—0

Then the process is ergodic (positive recurrent). The corresponding Dirichlet form
is

= Zmbz‘(fiﬂ — fi)?, P(D) = {f € L*(n) : D(f) < oc}.

Here and in what follows, only the diagonal elements D(f) are written, but the non-
diagonal elements can be computed from the diagonal ones using the quadrilateral
role. We then have the classical variational formula

A =inf {D(f):7(f)=0,7(f*) =1},
where 7(f) = [ fdr. Define

W ={w:w,; =0, w is strictly increasing},

= {w : wy = 0, there exists k : 1 <k < oo such that w; = wing

w is strictly increasing in [0, k], and w € L?(r) if k = oo},

1
Ii(w) = > pjw;.
(w) ,uzb (wz—{—l - wz) Mjwj

Note that # is simply a modification of #'. Hence, only the two notations # and
I(w) are essential here.

Theorem 1.5 (Chen(1996; 2000c; 2001b)). Let w = w — w(w). For ergodic birth—
death processes (i.e., (1.24) holds), we have

(1) Dual variational formulas:

inf sup I;(w)"' = A\ = sup inf I;(w)"!
weW =0 wew 120

(2) Explicit bounds and an approximation procedure: Two explicit sequences {7, }
and {7, } are constructed such that

Zstza bt > >t > (40)7H

where § =sup > (uib;) 1> py.
i1 j<ie1 j>i
(3) Explicit criterion: Ay > 0 iff § < oo.
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Here the word “dual” means that the upper and lower bounds in part (1) of the
theorem are interchangeable if one exchanges “sup” and “inf.” Certainly, with
slight modifications, this result is also valid for finite matrices; refer to Chen(1999a).
Starting from the examples given in Section 1.1, could you have expected such a
short and complete answer?

Theorem 1.1 and the second formula in Theorem 1.5 (1) will be proved in Chapter
3, for which the coupling tool is prepared in Chapter 2. An analytic proof of the
second formula in Theorem 1.5 (1) is also presented in Chapter 3. Further results
are presented in Chapters 5 and 6.

1.3 Basic inequalities and new forms of
Cheeger’s constants

Basic inequalities

We now go to a more general setup. Let (E,&,m) be a probability space satisfying
{(z,x) :x € E} € & x &. Denote by LP(m) the usual real LP-space with norm || - ||,
Write || || = [ - [l2.

For a given Dirichlet form (D, Z(D)), the classical variational formula for the
first eigenvalue A1 can be rewritten in the form (1.25) below with optimal constant
C = )\1_1. From this point of view, it is natural to study other inequalities. Here are
two additional basic inequalities, (1.26) and (1.27):

Poincaré inequality : Var(f) < CD(f), f e L3(n), (1.25)
Logarithmic Sobolev inequality :/f2 log r dr < CD(f)
111 ’ (1.26)
f e L),
Nash inequality : Var(f) < CD(F)V?||f|I7, f e L3(x), (1.27)

where Var(f) = n(f?) — n(f)?, n(f) = [ fdm, p € (1,00), and 1/p+ 1/q = 1. The

last two inequalities are due to L. Gross(1976) and J. Nash(1958), respectively.
Our main object is a symmetric (not necessarily Dirichlet) form (D, Z(D)) on

L?(7), corresponding to an integral operator (or symmetric kernel) on (E, &):

Dif) =3 [ Jaranl) - @,

2(D) = {f € L*(x) : D(f) < oo},

(1.28)

where J is a nonnegative, symmetric measure having no charge on the diagonal set
{(z,z) : x € E}. A typical example in our mind is the reversible jump process with
g-pair (¢(z), q(z,dy)) and reversible measure 7. Then J(dz,dy) = 7(dx)q(x, dy).
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For the remainder of this section, we restrict our discussion to the symmetric
form of (1.28).

Status of the research

An important topic in this research area is to study under what conditions on the
symmetric measure J the above inequalities (1.25)—(1.27) hold. In contrast with
the probabilistic method used in Section 1.2, here we adopt a generalization of
Cheeger’s method(1970), which comes from Riemannian geometry. Naturally, we
define Ay := inf{D(f) : n(f) = 0, ||f|| = 1}. For bounded jump processes, the
fundamental known result is the following. Write A y = min{x,y} and similarly,
xVy=max{z,y}.

k?Z
Theorem 1.6 (G.F. Lawler and A.D. Sokal,1988). Ay > —,  where

' o 2M’
Jam(d@)a(@ A () < oo,

k =
r(A)e(,1) w(A)AT(A°) vEE

In the past years, the theorem has appeared in six books:Chen (1992a), A.J.Sinclair
(1993), F.R.K.Chung (1997), L.Saloff-Coste (1997), Y.Colin de Verdiere (1998), D.G.
Aldous, and J.A. Fill(2004). From the titles of the books, one can see a wide
range of the applications. However, this result fails for an unbounded operator (i.e.,
sup, q(z) = o0). It was a challenging open problem for ten years (until 1998) to
handle the unbounded case.

As for the logarithmic Sobolev inequality, there have been a large number of
publications in the past twenty years for differential operators. For a survey, see
D.Bakry (1992), L.Gross (1993), or A. Guionnet and B. Zegarlinski(2003). Still,
there are very limited results for integral operators.

New results

Since the symmetric measure can be very unbounded, we choose a symmetric, non-
negative function r(z,y) such that

J(dz, dy)

Je) (dfl?, dy) = I{r(x,y)a>0} W;

a >0,

satisfies JU) (dz, E)/m(dz) < 1, 7-a.s. For convenience, we use the convention J(©) =
J. Corresponding to the three inequalities above, we introduce some new forms of
Cheeger’s constants, listed in Table 1.3. Now our main result can be easily stated
as follows.

Theorem 1.7. k(1/2) > 0 = the corresponding inequality holds.
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In short, we use J(/2) and J to handle an unbounded J. The use of the
first two kernels comes from the Schwarz inequality. The result is proven in four
papers quoted in Table 1.3. In these papers, some estimates, which can be sharp or
qualitatively sharp, for the upper or lower bounds are also presented.

Table 1.3 New forms of Cheeger’s constants

Inequality Constant k(@)

) , ) J(Oé)(A « AC)
Poincaré inf
(A)e(0,1) T(A) A m(A°)
(a) c
Log. Sobolev |lim  inf JH(A X A°)
r—0m(A)e(0,r] m(A)4/logle + m(A)~1]
J()(A x A°) + dm(A)

Log. Sobolev lim inf (Chen,2000Db)
6—com(A)>0 7(A)\/1 — logm(A)

J(@ (A x A°)
Nash inf
- "(4)€(0,1) [m(A) A m(Ac)](2a—3)/(24-2)

(Chen and F.Y. Wang,1998)

(F.Y. Wang,2001)

(Chen,1999Db)

A presentation of Cheeger’s technique is the aim of Chapter 4 where the closely
related first Dirichlet eigenvalue is also studied.

1.4 A new picture of ergodic theory and
explicit criteria

Importance of the inequalities

Let (P;)i>0 be the semigroup determined by a Dirichlet form (D, Z(D)). Then,
various applications of the inequalities are based on the following results.

Theorem 1.8 (T.M.Liggett (1989), L.Gross (1976), andChen (1999b)).

(1) Poincaré inequality <= L?-exponential convergence:
| Py f — m(f)||*= Var(P,f) < Var(f) exp[—2A11].

(2) Logarithmic Sobolev inequality = exponential convergence in entropy:
Ent(P;f) < Ent(f)exp[—20t], where Ent(f) = n(flog f) — 7 (f)log||f|1 and
2/0 is the optimal constant C' in (1.26).

(3) Nash inequality <= Var(P,f) < C||f||3/t9 1.

In the context of diffusions, one can replace “=—=" by “<=" in part (2). There-
fore, the above inequalities describe some type of L?-ergodicity for the semigroup
(P;)t>0. These inequalities have become powerful tools in the study of infinite-
dimensional mathematics (phase transitions, for instance) and the effectiveness of
random algorithms.
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Three traditional types of ergodicity

The following three types of ergodicity are well known for Markov processes:

Ordinary ergodicity : lim ||p(z,-) — 7||var = 0,

t— 00
Exponential ergodicity : pe(z,-) — 7| var < C(x)e " for some « > 0,
Strong ergodicity : lim sup ||p¢(z, ) — 7||var = 0

t—oo 4

— lim e’ sup ||ps(z, ) — 7||var = 0 for some 5> 0,
t—o00 T

where p;(z,dy) is the transition function of the Markov process and || - ||yar is the
total variation norm. They obey the following implications:

Strong ergodicity = Exponential ergodicity = Ordinary ergodicity.

It is natural to ask the following question: does there exist any relation between the
above inequalities and the three traditional types of ergodicity?

A new picture of ergodic theory

Theorem 1.9 (Chen (1999c¢), et al). Let (F, &) be a measurable space with count-
ably generated &. Then, for a Markov process with state space (E, &), reversible and
having transition probability densities with respect to a probability measure, we have the
diagram shown in Figure 1.1.

/

Logarithmic Sobolev inequality L'-exponential convergence

Y I

Exponential convergence in entropy m-a.s. Strong ergodicity

Y 4
Poincaré inequality <—— m-a.s. Exp. ergodicity

4

L?-algebraic convergence

Y
Ordinary ergodicity

Nash inequality

Figure 1.1 Diagram of nine types of ergodicity

In Figure 1.1, L?-algebraic convergence means that Var(P.f) < CV(f)t1=2 (t> 0)
holds for some V' having the properties that V' is homogeneous of degree two in the
sense that

Vief 4+d) =2V (f)
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for any constants ¢ and d, and V(f) < oo for all functions f with finite support.
We will come back to this topic in Section 7.6. As usual, L? (p > 1)-exponential
convergence means that

1Pf = 7(Plly < If —7(Pllpe™  t>0, feLP(m), p>1,

for some € >0. When p=1, a constant C'>1 is added to the right-hand side.

The diagram is complete in the following sense. Each single implication cannot
be replaced by a double one. Moreover, strongly ergodic convergence and the log-
arithmic Sobolev inequality (respectively, exponential convergence in entropy) are
not comparable. With the exception of the equivalences, all the implications in
the diagram are suitable for more general Markov processes. Clearly, the diagram
extends the ergodic theory of Markov processes.

The application of the diagram is obvious. For instance, from the well-known
criteria for exponential ergodicity, one obtains immediately some criteria (which
are indeed new) for the Poincaré inequality. On the other hand, by using the es-
timates obtained from the study of the Poincaré inequality, one may estimate the
exponentially ergodic convergence rate (for which knowledge is still very limited).

The diagram was presented inChen (1999c¢), stated mainly for Markov chain-
s. Recently, the equivalence of L!-exponential convergence and strong ergodicity
was proved by Y.H. Mao(2002¢). A counterexample of diffusion which shows that
strongly ergodic convergence does not imply exponential convergence in entropy is
constructed by F.Y.Wang (2002). For L?-algebraic convergence, refer to T.M.Liggett
(1991), J.D.Deuschel (1994), Chen and Y.Z. Wang(2003), and references therein.

Detailed proofs of the diagram with some additional results are presented in
Chapter 8.

Explicit criteria for several types of ergodicity

As an application of the diagram in Figure 1.1, we obtain a criterion for the expo-
nential ergodicity of birth—death processes, as listed in Table 1.4. To achieve this,
we use the equivalence of exponential ergodicity and Poincaré inequality, as well
as the explicit criterion for the Poincaré inequality given in part (3) of Theorem
1.5. This solves a long—standing open problem in the study of Markov chains [cf.
W.J.Anderson (1991, Section 6.6),?, Section 4.4].

Next, it is natural to look for some criteria for other types of ergodicity. To
do so, we consider only the one-dimensional case. Here we focus on birth—death
processes, since one-dimensional diffusion processes are in parallel. A criterion for
strong ergodicity was obtained recently by H.J. Zhang, X. Lin and Z.T. Hou(2000),
and extended by Y.H.Zhang (2001), using a different approach, to a larger class of
Markov chains. The criteria for the logarithmic Sobolev and Nash inequalities and
the discrete spectrum (the continuous spectrum is empty and all eigenvalues have
finite multiplicity) were obtained by S.G. Bobkov and F. Gotze(1999a; 1999b), and
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Y.H.Mao (2004, 2002a,b), respectively, based on the weighted Hardy inequality [see
also L.Miclo (1999a,b), F.Y.Wang (2000a,b), F.Z. Gong and F.Y. Wang(2002)]. It
is understood now that the results can also be deduced from generalizations of the
variational formulas discussed in this chapter [cf.Chen (2002a, 2003a,b) and Chapter
6]. Finally, we summarize these results in Theorem 1.10 and Table 1.4. The first
three criteria in the table are classical, but all the others are very recent. The
table is arranged in such an order that the property in each line is stronger than
the property in the previous line. The only exception is that even though strong
ergodicity is often stronger than the logarithmic Sobolev inequality, they are not
comparable in general, as mentioned in Section 1.3.
Recall the sequence (yi,) defined above (1.24) and set u[i, k] =3, 1j-

Table 1.4 Ten criteria for birth—death processes

Property Criterion
1
Uniqueness Z A 1[0,n] =00 (%)
n>0 HnOn
1
Recurrence Z = 0
S0 Hnbn
Ergodicity (%) & pu[0,00) < oo
E ial ici 1
zig)c;l{entla ergodicity (%) & sup p[n, o) Z < o
-exp. convergence n>1 = 15b;
IxnN—
1
Discrete spectrum (%) & lim pln,o0) Z =0
e o<in—1 il
IIN
1
Log. Sobolev inequality | (*) & sup u[n, oo)log[u[n, o0) ] Z <0
Jj<n—1

Strong ergodicity
()& )

L'-exp. convergence

o) 3 <o

n>1 jgn—luj

n>0
1
Nash inequality (%) & sup p[n, oo)d=2/(a=1) Z <00
n>1 P L

Theorem 1.10 (Chen,2001a). For birth—death processes with birth rates b;(i > 0)

and death rates a;(i > 1), ten criteria are listed in Table 1.4, in which the notation
“(x) & ---" means that one requires the uniqueness condition in the first line plus the

condition ... 1

In the original paper, for the Nash inequality there is an extra condition which is removed by

the following paper: continued in the next page
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The proofs of the criteria will be started in Chapter 5 and continued in Chapter
6. In Chapter 5, both the coupling method and an analytic method are used to
prove the criteria for exponential or strong ergodicity. In Chapter 6, most of the
remaining criteria are proved in terms of a generalization of the second variational
formula stated in Theorem 1.5 (1) to some Orlicz spaces. Further generalization to
the higher-dimensional case in terms of capacity is left to Chapter 7.

A large part of the author’s original research papers are collected inChen (2001c¢).

Summary

In conclusion, we have discussed in the chapter three levels of problems, three meth-
ods, and mainly four results. According to the range of problems, the principal
eigenvalues, the basic inequalities, and the ergodic theory, each has a wider range
than the previous one. We have used the coupling method from probability theory,
Cheeger’s approach from Riemannian geometry, and the weighted Hardy inequal-
ity from harmonic analysis. Finally, we have presented some variational formulas
for the exponentially ergodic rates, new forms of Cheeger’s constants, a comparison
diagram, and a table of explicit criteria for several types of ergodicity.

Wang, J. (2009), Criteria for functional inequalities for ergodic birth-death processes, [Acta
Math. Sin. 2012, 28:2, 357-370]






Chapter 2

Optimal Markovian
Couplings

This chapter introduces our first mathematical tool, the coupling methods, in the
study of the topics in the book, and they will be used many times in the subsequent
chapters. We introduce couplings, Markovian couplings (Section 2.1), and opti-
mal Markovian couplings (Sections 2.2 and 2.3), mainly for time-continuous Markov
processes. The study emphasizes analysis of the coupling operators rather than the
processes. Some constructions of optimal Markovian couplings for Markov chains
and diffusions are presented, which are often unexpected. Two general results of
applications to the estimation of the first eigenvalue are proved in Section 2.4. Fur-
thermore, some typical applications of the methods are illustrated through simple
examples.

2.1 Couplings and Markovian couplings

Let us recall the simple definition of couplings.

Definition 2.1. Let pj be a probability on a measurable space (Fy, &%), k=1,2. A
probability measure iz on the product measurable space (Fy x Fsy, & X &) is called a
coupling of py and 4 if the following marginality condition holds:

,l](Al X E2> = :ul(Al)a Al € gla (M)
,[L(El X A2> = ,LL2(A2), Ay € &5.

Example 2.2 (Independent coupling fiy). fig = i1 X 5. Thatis, fig is the inde-
pendent product of iy and ps.
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This trivial coupling has already a nontrivial application. Let pur = p on R,
k =1,2. We say that u satisfies the FKG inequality if

‘[ngdu>/Rfdu /Rgdu, fig€e A, (2.1)

where .# is the set of bounded monotone functions on R. Here is a one-line proof
based on the independent coupling:

/ / fio(d, dy) [ () — F()llg(x) — g(w)] >0,  foge 4.

We mention that a criterion of FKG inequality for higher-dimensional measures
on R? (more precisely, for diffusions) was obtained by Chen and F.Y. Wang(1993a).
However, a criterion is still unknown for Markov chains.

Open Problem 2.3. What is the criterion of FKG inequality for Markov jump
processes?

We will explain the meaning of the problem carefully at the end of this section
and explain the term “Markov jump processes” soon. The next example is nontrivial.

Example 2.4 (Basic coupling ji). Let Fx, = E, k = 1,2. Denote by A the diagonals
in £: A ={(z,x):x € E}. Take

(g — pio) T (day) (py — pao) ~ (day)
(py — pg) T(E)

where ™ is the Jordan—Hahn decomposition of a signed measure v and v; A vy =
v, — (vy —vy) 7.
1 1~ V2

fin(dwy, dwg) = (g A po)(dzy ) Ia + Ine,

+

Note that one may ignore Iac in the above formula, since (p; — p5)" and (p; —
o)~ have different supports.

Actually, the basic coupling is optimal in the following sense. Let p be the
discrete distance: p(x,y)=1 if x # y, and = 0 if x = y. Then a simple computation
shows that

1
fn(p) = §Hu1 — phalvar-

Thus, by Dobrushin’s theorem (see Theorem 2.23 below), we have

where i varies over all couplings of ;1; and p,. In other words, fiy(p) is a p-optimal
coupling. This indicates an optimality for couplings that we are going to study in
this chapter.
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Similarly, we can define a coupling process of two stochastic processes in terms
of their distributions at each time ¢ for fixed initial points. Of course, for given
marginal Markov processes, the resulting coupled process may not be Markovian.
Non-Markovian couplings are useful, especially in the time-discrete situation. How-
ever, in the time-continuous case, they are often not practical. Hence, we now
restrict ourselves to the Markovian couplings.

Definition 2.5. Given two Markov processes with semigroups Pj(t) or transition
probabilities Py (t,xk,:) on (Eg,8%), k = 1, 2, a Markovian coupling is a Markov
process with semigroup Ig(t) or transition probability ]B(t; Ty, To; ") on the product space
(Ey1 x Ey, & X &) having the marginality

~

P(t;xl,xQ;Al X EQ): Pl(t,xl,Al),

N (MP)
P(t;xl,xz;El X AQ):PQ(t,SUQ,AQ), t >0,z € Ek,Ak € gk;,k =1,2.
Equivalently,
P(t)f(x , o) = Pi(t)f(z,),
(0)f(@1.02) = Plt)f (@) )

ﬁ(t)f($17x2) - PQ(t)f(x2)7 t = 07 Tk € Ek:v f € bgk’a k= 1727

where & is the set of all bounded &-measurable functions. Here, on the left-hand side,
f is regarded as a bivariate function.

We now consider Markov jump processes. For this, we need some notation. Let
(F,&) be a measurable space such that {(z,z) : = € F} € & x & and {z} € &
for all x € E. It is well known that for a given sub-Markovian transition function
Pt,z,A)(t >0,z € E,A € &), if it satisfies the jump condition

lim P(t,z,{z}) =1, x e E, (2.2)
t—0
then the limits
1—P(t P(t,z, A
q(z) := lim 2 {2}) and ¢(z,A) :=lim (2, A\ iz} (2.3)
t—0 t t—0 t

exist for all x € E and A € &%, where

R = {A €& : limsup [1 — P(t,z,{z})] = 0}.

t—0 ,cA
Moreover, for each A € Z, q(-), q(-,A) € &, for each x € E, q(x,-) is a finite
measure on (£, %), and 0 < q(z,A) < g(x) <occforallz € Fand A € Z. The pair

(q(x), q(x,A)) (x € E, A € Z) is called a g-pair (also called the transition intensity
or transition rate). The g-pair is said to be totally stable if q(z) < oo for all x € E.
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Then ¢(z,-) can be uniquely extended to the whole space & as a finite measure.
Next, the g-pair (g(z),q(z, A)) is called conservative if q(z, E) = g(x) < oo for all
x € E (Note that the conservativity here is different from the one often used in the
context of diffusions). Because of the above facts, we often call the sub-Markovian
transition P(t,z, A) satisfying (2.3) a jump process or a q-process. Finally, a g-pair
is called regular if it is not only totally stable and conservative but also determines
uniquely a jump process (nonexplosive).

When E is countable, conventionally we use the matrix @ = (¢;; : 4,5 € E)
(called a Q-matriz) and P(t) = (p;;(t) 14,5 € E),

p;j (t) ’t:O = Qij,

instead of the ¢-pair and the jump process, respectively. Here ¢;; = —¢q;, i € E. We
also call P(t) = (pi;(t)) a Markov chain (which is used throughout this book only
for a discrete state space) or a QQ-process.

In practice, what we know in advance is the g¢-pair (¢(z),q(z,dy)) but not
P(t,z,dy). Hence, our real interest goes in the opposite direction. How does a
g-pair determine the properties of P(t,x,dy)? A large part of the book (Chen,?) is
devoted to the theory of jump processes. Here, we would like to mention that the
theory now has a very nice application to quantum physics that was missed in the
quoted book. Refer to the survey article by A.A. Konstantinov, U.P. Maslov, and
A.M. Chebotarev(1990) and references within.

Clearly, there is a one-to-one correspondence between a g-pair and the operator
Q:

Of (x) = /E 0@, ) () - f@)] - lo(@) — q(@. B)f(x),  feub.

Because of this correspondence, we will use both according to our convenience. Cor-
responding to a coupled Markov jump process, we have a g-pair (G(x, z5), §(x, To;
dy,,dy,)) as follows:

1 — P(t;zq, w95 {21} X {25})
t—0 t ’

o P(t;:cl,:vz;A)’ <x17x2)¢[16%7,

t—0 t

R = {[1 €& X & lim  sup [1 —15(75;561,502;{(5017372)})] - 0}'

t—0 (:131,:132)614

Concerning the total stability and conservativity of the ¢-pair of a coupling (or
coupled) process, we have the following result.

Theorem 2.6. The following assertions hold:

(1) A (equivalently, any) Markovian coupling is a jump process iff so are their marginal-
S.



2.1 Couplings and Markovian couplings 23

(2) A (equivalently, any) coupling g-pair is totally stable iff so are the marginals.

(3) [Y. H. Zhang,1994]. A (equivalently, any) coupling g-pair is conservative iff so are
the marginals.

Proof of parts (1) and (2). To obtain a feeling for the proof, we prove here the
easier part of the theorem. This proof is taken from Chen(1994b).

(a) First, we consider the jump condition. Let Py(t,x),dys) and P(t;z,, x5
dy,,dy,) be the marginal and coupled Markov processes, respectively. By the
marginality for processes, we have

P(t;zy, z9;{z1 } X {25})
> P(t§$1a$2§ {5’71} X E2) - P(t§$1a$2§E1 X (E2 \ {xQ}))
> Ptz 3 {1} X Ba) — 1+ P(t; 21,295 B1 X {5})

Pl(tvxlv {ml}) -1+ P2(t7 L2 {332})
If both of the marginals are jump processes, then lim, ., P(t; 3y, 1q; {zq } x{25}) > 1.
Thus, a Markovian coupling P(¢) must be a jump process.

Conversely, since

~ ~

P(t;ry, zo5{my} X {23}) < P21, 095 {z1} X E2) = Pi(t, 21, {z1}),

if P(t) is a jump process, then lim, ., Pi(t,zq,{z,}) > 1, and so P;(?) is also a jump
process. Symmetrically, so is Pa(t).

(b) Next, we consider the equivalence of total stability. Assume that all the pro-
cesses concerned are jump processes. Denote by (¢, (x), q,(zk,dys)) the marginal
g-pairs on (FEy, %), where

Ky, = {A € & 1%im sup [1 — Py(t,z, {z})] = 0}, k=1, 2.

—0zecA

Denote by (§(xy,25), §(xy, 2; dy,, dy,)) a coupling g-pair on (Ey X Ey, %). We need
to show that §(Z) < oo for all & € Fy x Es iff qy(x1) V g5(x5) < oo for all z; € Ey
and z, € Ey. Clearly, it suffices to show that

q1(21) V qa(73) < G(21,75) < q1(21) + ga(5).

Note that we cannot use either the conservativity or uniqueness of the processes
at this step. But the last assertion follows from (a) and the first part of (2.3)
immediately. [J

Due to Theorem 2.6, from now on, assume that all coupling operators considered
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below are conservative. Then we have

~

1 — P(t: .
q(wy,25) = lim ( ’xl’%t’ {21} % {372})’

N ~ ) ﬁt;az,a:;fl
Q(x1a$2;A):th_T>% ( 1t 2 4)

. (z,my) EAEE X E.
Note that in the second line, the original set R is replaced by &1 X &5. Define

0 f (i) = /E G, dy)f ) — F@)], f €vbio

Similarly, we can define 5. Corresponding to a coupling process ]B(t), we also have

an operator 2. Now, since the marginal ¢-pairs and the coupling g¢-pairs are all
conservative, it is not difficult to prove that (MP) implies the following:

§f<x17x2) :Qlf(xl)a febgla

~ (MO)
Qf($1,$2) = QQf(IL’Q), fe p6s, T € By, k=1, 2.

Again, on the left-hand side, f is regarded as a bivariate function. Refer toChen
(1986a) or?, Chapter 5. Here, “MO” means the marginality for operators.

Definition 2.7. Any operator Q satisfying (MO) is called a coupling operator.

Do there exist any coupling operators?

Examples of coupling operators for jump processes

The simplest example to answer the above question is the following.

Example 2.8 (Independent coupling (~20).

Qof($17$2) - [Qlf('7x2>]<x1) + [Q2f(m17 )](x2)7 r, € B, k=1, 2.

This coupling is trivial, but it does show that a coupling operator always exists.

To simplify our notation, in what follows, instead of writing down a coupling
operator, we will use tables. For instance, a conservative g-pair can be expressed as
follows:

x—dy\ {z} at rate q(x,dy).

In particular, in the discrete case, a conservative ()-matrix can be expressed as

=] F at rate qij-
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Example 2.9 (Classical coupling SNIC) Take £y = F5 = E and let Q1 = Q5 = Q. If
Xy # T4, then take

(Y1, x5) atrate g(xy,dy;)
(1, y5) atrate q(xy,dys,).

(x17 $2) —
_>

Otherwise,
(z, ) = (y, y) atrate q(z,dy).

Each coupling has its own character. The classical coupling means that the
marginals evolve independently until they meet. Then they move together. A nice
way to interpret this coupling is to use a Chinese idiom: fall in love at first sight.
That is, a boy and a girl had independent paths of their lives before the first time
they met each other. Once they meet, they are in love at once and will have the
same path of their lives forever. When the marginal ()-matrices are the same, all
couplings considered below will have the property listed in the last line, and hence
we will omit the last line in what follows.

Example 2.10 (Basic coupling ). For z,, z, € E, take

— (y,y) atrate [qi(21,) A ga(zy,-)](dy)
> (yy, @) atrate [qi(zy,-) — ga(zy )[(dyu
— (21, y5) atrate [ga(zs,7) — qi(zy,-)] " (dys).

The basic coupling means that the components jump to the same place at the
greatest possible rate. This explains where the term ¢;(x;, dy;) A ¢2(z5, dy,) comes
from, which is the biggest one to guarantee the marginality. This term is the key of
the coupling. Note that whenever we have a term A A B, we should have the other
two terms (A — B)T and (B — A)T automatically, again, due to the marginality.
Thus, in what follows, we will write down the term A A B only for simplicity.

(21, @5)

Example 2.11 (Synchronous coupling method Qm) Assume that E is an addition
group. Take

(@1, @) = (@1 +y, 2, +y)  atrate  qu(ay, 2y +dy) Aga(wp, 5 + dy).

The word “marching” is a Chinese name, which is the command to soldiers
to start marching. Thus, this coupling means that at each step, the components
maintain the same length of jumps at the biggest possible rate.

In the time-discrete case, the classical coupling and the basic coupling are due
to W. Doeblin(1938) (which was the first paper to study the convergence rate by
coupling) and L.N. Wasserstein(1969), respectively. The coupling of marching sol-
diers is due to Chen(1986b). The original purpose of the last coupling is mainly to
preserve the order.
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Let us now consider a birth—death process with regular Q)-matrix:
Qiiv1 =bi, 12> 0; Qii—1=a;, =1
Then for two copies of the process starting from i1 and io, respectively, we have the

following two examples taken from (Chen, 1990).

Example 2.12 (Modified coupllng of marching soldiers Qcm) Take
Q —QC if |11 —iz] <1 and Qcm—ﬂm if |11 —ia]| > 2.

Example 2.13 (Coupling by inner reflection ﬁw) Again, take ﬁir = ﬁc if |14 —i2| <
1. For is > 11 + 2, take

(i1, 12) — (21 + 1, 10 — 1) at rate bil N ai,
— (21 — ]., Z2) at rate a;
— (i1, 12+ 1) at rate  b;

(DN

1

By exchanging 71 and 75, we can get the expression of ﬁir for the case that i1 > 1.

This coupling lets the components move to the closed place (not necessarily the
same place as required by the basic coupling) at the biggest possible rate.
_ From these examples one sees that there are many choices of a coupling operator
Q). Indeed, there are infinitely many choices! Thus, in order to use the coupling tech-
nique, a basic problem we should study is the regularity (nonexplosive problem) of
coupling operators, for which, fortunately, we have a complete answer [Chen(1986a)
or?, Chapter 5]. The following result can be regarded as a fundamental theorem for
couplings of jump processes.

Theorem 2.14 (Chen,1986a).

(1) If a coupling operator is nonexplosive, then so are its marginals.
(2) If the marginals are both nonexplosive, then so is every coupling operator.
(3) In the nonexplosive case, (MP) and (MO) are equivalent.

Clearly, Theorem 2.14 simplifies greatly our study of couplings for general jump
processes, since the marginality (MP) of a coupling process is reduced to the rather
simpler marginality (MO) of the corresponding operators. The hard but most im-
portant part of the theorem is the second assertion, since there are infinitely many
coupling operators having no unified expression.

Markovian couplings for diffusions

We now turn to study the couplings for diffusion processes in R? with second-order
differential operator

d 52 d 9

Z aiy (@ 8@8:):] i Z bil2) Ox;

1, j=1
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For simplicity, we write L ~ (a(x),b(x)). Given two diffusions with operators
Lk ~ (ak(x),bk(;c)), k= 1, 2,

respectively, an elliptic (may be degenerate) operator L on the product space R% x R?
is called a coupling of L1 and Ls if it satisfies the following marginality:

Lf(z,y) = Lif(x)  (respectively, Lf(z,y) = Laf(y)),
fECiRY, x#y.

Again, on the left-hand side, f is regarded as a bivariate function. From this, it is
clear that the coefficients of any coupling operator L should be of the form

ar(x)  cfx, y)) (bl (3?)>
a x7 — « 5 b SU, — 9
e = (G5 (229 = by (y)
where the matrix c(x,y)* is the conjugate of ¢(z,y). This condition and the non-
negative definite property of a(z,y) constitute the marginality in the context of

diffusions. Obviously, the only freedom is the choice of ¢(z,y).
As an analogue of jump processes, we have the following examples.

(MO)

Example 2.15 (Classical coupling). c(x,y) =0 for all z # y.

Example 2.16 (Coupling of marching soldiers [Chen and S.F.Li1989]). Let ay(x) =
op(x)or(x)*, k=1, 2. Take c(x,y) = o,(z)o5(y)*.

The two choices given in the next example are due to T. Lindvall and L.C.G.
Rogers(1986), Chen and S.F. Li(1989), respectively.

Example 2.17 (Coupling by reflection). Let L1=Ls and a(z)=0(z)o(x)*. We have
two choices:

=o(x)|o(y)" — M eto x
c(x,y) = o(x)|o(y) 2‘0@)_1@’2 , deto(y) #0, #,

c(a,y) = o(x)[I - 20u*|o(y)", = #y,
where © = (z — y)/|x — y|.

This coupling was generalized to Riemannian manifolds by W.S. Kendall(1986)
and M. Cranston(1991).

In the case that x = y, the first and the third couplings here are defined to be
the same as the second one.

In probabilistic language, suppose that the original process is given by the s-
tochastic differential equation

dX, = V20 (X,)dB, + b(X,)dt,
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where (B;) is a Brownian motion. We want to construct a new process (X/),
dX] = V20 (X¢)dB, + ' (X;)dt,

on the same probability space, having the same distribution as that of (X;). Then,
what we need is only to choose a suitable Brownian motion (Bj}). Corresponding to
the above three examples, we have

(1) Classical coupling: Bj is a new Brownian motion, independent of B.

(2) Coupling of marching soldiers: B, = By.

(3) Coupling by reflection: B; = [I —2uu*]|(X;, X{) B¢, where @ is given in Example
2.17.

It is important to remark that in the constructions, we need only consider the
time ¢t < T', where T is the coupling time,

T =inf{t >0: X, = X/},

since Xy = X/ for all ¢ > T. This avoids the degeneration of the coupling operators.
Before moving further, let us mention a conjecture:

Conjecture 2.18. The fundamental theorem (Theorem 2.14) holds for diffusions.
The following facts strongly support the conjecture.

(a) A well known sufficient condition says that the operator Ly (k = 1,2) is well
posed if there exists a function ¢y such that lim|,|_,o ¢r(z) = 00 and Lyps <
cpy for some constant c. Then the conclusion holds for all coupling operators,
simply taking

P(x1,39) = @1(x1) + P2(22).

(b) Let 7,1 be the first time of leaving the cube with side length n of the kth
process (k = 1,2) and let 7,, be the first time of leaving the product cube of
coupled process. Then we have

Tn,1 Vv Tn,2 < 7-n < Tn,1 + Tn,2-
Moreover, a process, the kth one for instance, is well posed iff

lim Pg[r,r <t/ =0.

n— oo

Having studied the Markovian couplings for Markov jump processes and diffu-
sions, it is natural to study the Lévy processes.

Open Problem 2.19. What should be the representation of Markovian coupling op-
erators for Lévy processes?
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2.2 Optimality with respect to distances

Since there are infinitely many Markovian couplings, we asked ourselves several times
in the past years, does there exist an optimal one? Now another question arises:
What is the optimality we are talking about? We now explain how we obtained
a reasonable notion for optimal Markovian couplings. The first time we touched
this problem was in Chen and S.F. Li(1989). It was proved there for Brownian
motion that coupling by reflection is optimal with respect to the total variation, and
moreover, for different probability metrics, the effective couplings can be different.
The second time, in Chen(1990), it was proved that for birth—death processes, we
have an order as follows:

Qir = W = Qo = Qo = Qi

where A = B means that A is better than B in some sense. However, only in 1992
it did become clear to the author how to optimize couplings.

To explain our optimal couplings, we need more preparation. As was mentioned
several times in previous publications [Chen(1989a; 1989b; ?) and Chen and S. F.
Li(1989)], it should be helpful to keep in mind the relation between couplings and
the probability metrics. It will be clear soon that this is actually one of the key
ideas of the study. As far as we know, there are more than 16 different probability
distances, including the total variation and the Lévy—Prohorov distance for weak
convergence. But we often are concerned with another distance. We now explain
our understanding of how to introduce this distance.

As we know, in probability theory, we usually consider the types of convergence
for real random variables on a probability space shown in Figure 2.1.

convergence in LP

J

a.s. convergence ———>  convergence in P ——— vague convergence

AN
N
N
N
N weak convergence

Figure 2.1 Typical types of convergence in probability theory

LP-convergence, a.s. convergence, and convergence in [P all depend on the reference
frame, our probability space (£2,.%,P). But vague (weak) convergence does not. By
a result of Skorohod [cf. N. Ikeda and S. Watanabe(1988, p.9 Theorem 2.7)], if P,
converges weakly to P, then we can choose a suitable reference frame (€2, %, P) such
that &, ~ P,, £ ~ P, and &, — £ a.s., where £ ~ P means that £ has distribution
P. Thus, all the types of convergence listed in Figure 2.1 are intrinsically the same,
except LP-convergence. In other words, if we want to find another intrinsic metric
on the space of all probabilities, we should consider an analogue of LP-convergence.
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Let &1, &: (Q, 7, P) — (E, p,&). The usual LP-metric is defined by

I — Eall, = {E[p(€1,&2)7] .

Suppose that & ~ P;, i = 1,2, and (&1,&) ~ P. Then

_ 1/p
& — &, = { / p(scl,@)pP(dxl,dxz)} .

Certainly, Pisa coupling of P; and P». However, if we ignore our reference frame
(Q, Z,P), then there are many choices of P for given P; and P»,. Thus, the intrinsic
metric should be defined as follows:

N 1/p
Wyrr, Py = int] [ oo Planan)} L pz
P

where P varies over all couplings of P; and Ps.

Definition 2.20. The metric defined above is called the W,-distance or pth Wasser-
stein distance. Briefly, we write W = Wj.

From the probabilistic point of view, the WW,-metrics have an intrinsic property
that makes them more suitable for certain applications. For example, if (E, p) is the
Euclidean space for P, obtained from P; by a translation, then W,(P;, P») is just
the length of the translation vector.

In general, it is quite hard to compute the W,-distance exactly. Here are the
main known results.

Theorem 2.21 (S.S. Vallender,1973). Let P, be a probability on the real line with
distribution function Fj(x), k = 1,2. Then

+0o0
W(Pl,Pg):/ Py () — Fy(z)|da.

— 00

Theorem 2.22 (D.C. Dowson and B.V. Landau(1982), C.R. Givens and
R.M. Shortt(1984), I. Olkin and R. Pukelsheim(1982)). Let P, be the normal distri-
bution on (R%, Z(R%)) (d > 1) with mean value my, and covariance matrix My, k = 1, 2.

Then
Wo (P, Py) = Uml — mg\z + Trace M7 + Trace Mo

— 2 Trace(\/Mlng/Ml )1/2] 1/2,

where Trace M denotes the trace of M.
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Theorem 2.23 (R.L. Dobrushin,1970). (1) For bounded p, W is equivalent to the
Lévy-Prohorov distance.

(2) For discrete distance p, W = || - ||var/2-

Fortunately, in most cases, what we need is only certain estimates of an upper
bound. Clearly, any coupling provides an upper bound of W (P, P;). Thus, it is
very natural to introduce the following notion.

Definition 2.24. A coupling P of P, and P, is called p-optimal if

[ plara)Pday, day) = WPy, Fo).

Now, it is natural to define the optimal coupling for time-discrete Markov pro-
cesses without restriction to the Markovian class. In the special case of p being
the discrete metric (or equivalently, restricted to the total variation), it is just the
mazimal coupling, introduced by D. Griffeath(1978). However, the maximal cou-
plings constructed in the quoted paper are usually non-Markovian. Even though
the maximal couplings as well as other non-Markovian couplings now constitute
an important part of the theory and have been widely studied in the literature
(cf. T.Lindvall(1992), J.G. Propp and D.B. Wilson(1996), H. Thorrison(2000), and
references therein), they are difficult to handle, especially when we come to the
time-continuous situation. Moreover, it will be clear soon that in the context of dif-
fusions, in dealing with the optimal Markovian coupling in terms of their operators,
the discrete metric will lose its meaning. Thus, our optimal Markovian couplings are
essentially different from the maximal ones. It should also be pointed out that the
sharp estimates introduced in Chapter 1 were obtained from the exponential rate
in the W-metric with respect to some much more refined metric p rather than the
discrete one. Replacing P, and P with Py (t) and P(t), respectively, and then going
to the operators, it is not difficult to arrive at the following notion [cf. Chen(1994b;
1994a) for details].

Definition 2.25. A coupling operator Q is called p-optimal if

Qp(xy,2y) = inf ﬁp($1,$2) for all 'y # xy,
Q

where Q varies over all coupling operators.
To see that the notion is useful, let us introduce one more coupling.

Example 2.26 (Coupling by reflection ﬁr) Given a birth—death process with birth
rates b; and death rates a;, this coupling evolves in the following way. If is = i1 + 1,
then

— (7,1 — 1,19 + 1) at rate ai;, N big
— (i1 +1,42) at rate by,

= (i1,i2 — 1) at rate  a;

(1, 12)

9
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If i2 2 il + 2, then

(il, 7,2) — (21 — 1,10 + 1) at rate  a;; A big
— (ip+1,i5—1) atrate by Aay,.

By symmetry, we can write down the rates for the other case that i1 > 5.

Intuitively, the reflection in the outside direction is quite strange, since it sepa-
rates the components by distance 2 but not by 1. For this reason, even though the
coupling came to our attention years ago, we never believed that it could be better
than the coupling by inner reflection. But the next result changed our mind.

Theorem 2.27 (Chen,1994a). For birth—death processes, the coupling by reflection is
p-optimal for any translation-invariant metric p on Z having the property that

up = p(0,k+1)—p(0,k), k=0
IS nonincreasing in k.

To see that the optimal coupling depends heavily on the metric p, note that the
above metric p can be rewritten as

p(i,j) = >
k<li—j|

for some positive nonincreasing sequence (ug). In this way, for any positive sequence
(uk ), we can introduce another metric as follows:

S

k<i k<j

ﬁ('L,j) -

Because (uy > 0) is arbitrary, this class of metrics is still quite large. Now, among
the couplings listed above, which are p-optimal?

Theorem 2.28 (Chen,1994a). For birth—death processes, every coupling mentioned
above except the trivial (independent) one is p-optimal.

This result is again quite surprising, far from our probabilistic intuition. Thus,
our optimality does produce some unexpected results.
We are now ready to study the optimal couplings for diffusion processes.

Definition 2.29. Given p € C2(R? x R?\ {(x, ) : € R?}), a coupling operator L
is called p-optimal if B B
Lp(z,y) = i%f Lp(z,y),  x#y,

where L varies over all coupling operators.
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For the underlying Euclidean distance |-| in R?, we introduce a family of distances
as follows:

p(z,y) = f(lz —yl), where f(0) =0, f* >0, and f” <0. (2.4)

In order to make p a distance, the first two conditions of f are necessary and the third
condition guarantees the triangle inequality. For this class of distance, as mentioned
in the paper quoted below, the existence of p-optimal coupling for diffusion is not a
serious problem. Here we introduce only some explicit constructions.

Theorem 2.30 (Chen,1994a). Let p(z,y) = f(|Jz — y|) for some fe C?*(R,;R,)
satisfying (2.4). Then the p-optimal solution ¢(x,y) is given as follows:

(1) If d =1, then ¢(z,y) = —\/a1(z)az(y), and moreover,

1

Li(lz —y) = = (Vai(2) + Vas(y) ) f"(|z — y|)

(l’ _ y)(bl(x) - b2<y>)f/(‘$ . y\)

2
_|_
|z — 9|

Next, suppose that ax = o7 (k = 1, 2) is nondegenerate and write
c(z,y) = oy (z)H (z,y)05(y).
(2) If f7(r) < 0 for all 7 > 0, then H(z,y) = U(7) " [U)U(7)*]"*, where

=yl (Jz—yl)

T T i)

U(y) = o (@)(I —yuu")oy(y).

(3) If f(r) =1, then H(x,y) is a solution to the equation

U)H = (U1)U (1)),

In particular, if ax(x) = @ (x)o? for some positive function ¢, (k = 1, 2), where o is
independent of  and det o > 0, then

(4) H(xz,y) =1 —20 tau*c™1/|o~ ul? if p(x,y) = |z — y|. Moreover,

1
2| — y|

Lf(jz—yl) = {(Ver@) = Vealy) ) Traceo? — fouf?

+2(z —y, bi(z) - bz(y)>}
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(5) H is the same as in the last assertion if p(x,y) = |z — y| is replaced by p(z,y) =
f(lo=1(z —y)|). Furthermore,

To(e.y) = » (Vor@) + V@) ) £ (o @ - )

=3
+{@d- 1)@ - Vi)’

+2(0 7 @ —y), 0 (@) — b)) )

fjo~ 1z - )))
* 2otz —y)|

2.3 Optimality with respect to closed functions

As an extension of the optimal couplings with respect to distances, we can consider
the optimal couplings with respect to a more general, nonnegative, closed (=lower
semicontinuous) function .

Definition 2.31. Given a metric space (E,p, &), let ¢ be a nonnegative, closed
function on (E, p,&). A coupling is called a ¢-optimal (Markovian) coupling if in the
definitions given in the last section, the distance function p is replaced by ¢.

Here are some typical examples of .

Example 2.32. (1) s a distance of the form fop for some f having the properties
f(0)=0, f/>0,and f” <0.
(2) o is the discrete distance: ¢(z,y) = 1 iff © # y; otherwise, p(x,y) = 0.

(3) Let E be endowed with a measurable semiorder “<" and set F' = {(x,y) : * < y}.

Then F'is a closed set. Take ¢ = Ipe.
Before moving further, let us recall the definition of stochastic comparability.

Definition 2.33. Let .# be the set of bounded monotone functions f:
z=<y= f(z) < fy).

(1) We write p1; < g if pq (f) < po(f) forall f e 4.

(2) Let P, and P, be transition probabilities. We write P; < Py if Pi(f)(zq) <
Py(f)(z5) forall zy < x4y and f € 4.

(3) Let Pyi(t) and P (t) be transition semigroups. We write Py (t) < Po(t) if Pi(t)(f)(x,) <
Py(t)(f)(zy) forallt >0, z; < x4, and f € 4.

Here is a famous result about stochastic comparability.

Theorem 2.34 (V. Strassen,1965). For a Polish space, 1y < pq iff there exists a
coupling measure fi such that i(F¢) = 0.
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Usually, in practice, it is not easy to compare two measures directly. For this rea-
son, one introduces stochastic comparability for processes. First, one constructs two
processes with stationary distributions p; and p,. Then the stochastic comparabil-
ity of the two measures can be reduced to that of the processes. The advantage for
the latter comparison comes from the intuition of the stochastic dynamics. One can
even see the answer from the coefficients of the operators. See Examples 2.44-2.46
below.

A general result for p-optimal coupling is the following.

Theorem 2.35 (S.Y. Zhang,2000a). Let (F,p, &) be Polish and ¢ > 0 be a closed
function.

(1) Given Py(xy,dy), k = 1,2, there exists a transition probability P(z,, z4; dy,, dy,)
such that Po(zy,2,) = infse, ., P12 (2, 2,), where for fixed (z, ),
P@1:%2) varies over all couplings of Pi(zy,dy,) and Ps(z,, dy,).

(2) Given operators €, of regular jump processes, k = 1,2, there exists a coupling

operator £ of jump process such that Q¢ = infg Qgp, where Q varies over all
coupling operators of €27 and (5.

According to Theorem 2.35 (1), Strassen’s theorem can be restated as follows:
the Ipe-optimal Markovian coupling satisfies fi(F¢) = 0. This shows that Theorem
2.35(1) is an extension of Strassen’s theorem. Even though the proof of Theorem
2.35 is quite technical, the main root is still clear. Consider first finite state spaces.
Then the conclusion follows from an existence theorem of linear programming re-
garding the marginality as a constraint. Next, pass to the general Polish space by
using a tightness argument (a generalized Prohorov theorem) plus an approximation
of ¢ by bounded Lipschitz functions.

Concerning stochastic comparability, we have the following result.

Theorem 2.36 (Chen(?, Chapter 5), Zhang(2000b)). For jump processes on a Po-
lish space, under a mild assumption, Pi(t) < Py(t) iff

lp(x;) < Q2lp(xy),
for all x;y < x5 and B with Ip € /.

Here we mention an additional result, which provides us the optimal solutions
within the class of order-preserving couplings.

Theorem 2.37 (T. Lindvall,1999). Again, let A denote the diagonals.

(1) Let gy < pig. Then

1
(gg JAY) = Sl = pallvar
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(2) Let P; and P, be transition probabilities that satisfy P, < P». Then

. 1
_inf P(zy, 295 A%) = 5 |[Pa(2y, ) = Pa(2a, ) lvar
P(z,,xq; F°)=0

for all x; < 5.

In fact, the left-hand sides of the formulas in Theorem 2.37 can be replaced,
respectively, by the Ipc-optimal coupling given in Theorem 2.35 (1).

For order-preserving Markovian coupling for diffusions, refer to F.Y. Wang and
M.P. Xu(1997).

Open Problem 2.38. Let p € C%(R??\ A). Prove the existence of p-optimal Marko-
vian couplings for diffusions under some reasonable hypotheses.

Open Problem 2.39. Construct (p-optimal Markovian couplings.

2.4 Applications of coupling methods

It should be helpful for readers, especially newcomers, to see some applications of
couplings. Of course, the applications discussed below cannot be complete, and
additional applications will be presented in Chapters 3, 5, and 9. One may refer
to T.M. Liggett(1985), T. Lindvall(1992), and H. Thorrison(2000) for much more
information. The coupling method is now a powerful tool in statistics, called “copu-
las” (cf. R.B.Nelssen (1999)). It is also an active research topic in PDE and related
fields, named “optimal transportation” (cf. S.T. Rachev and L. Ruschendorf(1998),
L. Ambrosio et al.(2003), C.Villani (2003)).

Spectral gap; exponential L?-convergence

We introduce two general results, due to Chen and F.Y. Wang(1993b) [see also
Chen(19944a)], on the estimation of the first nontrivial eigenvalue (spectral gap) by
couplings.

Definition 2.40. Let L be an operator of a Markov process (X;);>9. We say that
a function f is in the weak domain of L, denoted by Z,,(L), if f satisfies the forward
Kolmogorov equation

t
E” f(X,) = f(x) + / E*Lf(X.)ds,
or equivalently, if t
F(Xy) — / LF(X.)ds
0

is a P*-martingale with respect to the natural flow of o-algebras {.#; },>0, where .%, =
o{Xs:s <t}
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Definition 2.41. We say that ¢ is an eigenfuction of L corresponding to X in the weak
sense if g satisfies the eigenequation Lg = —\g pointwise.

Note that the eigenfunction defined above may not belong to L?(r), where 7 is
the stationary distribution of (X;);>0. In the reversible case, all of the eigenvalues
are nonnegative and all of the eigenfunctions are real.

The next two results remain true in the irreversible case (where A\ and g are often
complex), provided A is replaced by |A|.

Theorem 2.42. Let (E, p) be a metric space and let {X;};>¢ be a reversible Markov
process with operator L. Denote by g the eigenfunction corresponding to A # 0 in the
weak sense. Next, let (X;,Y;) be a coupled process, starting from (x,y), with coupling

operator L, and let v : E x E — [0, 00) satisfy v(z,y) = 0 iff x = y. Suppose that

Lvy(z,y) < —ay(x,y) for all x # y and some constant o > 0,
g is Lipschitz with respect to «v in the sense that

-1
Cyy =sup Y(y,z) g(y) — g(z)] < 0.
yF#T

Then we have A > «a.

Proof. Without loss of generality, assume that a > 0. Otherwise, the conclusion is
trivial. By conditions (2), (3) and Lemma A.6, we have

E=Yy(Xy,Yy) < y(x,y)e t>0.

Next, by condition (1) and the definition of g,

o) = [ La(X)ds = o) + 2 [ g(X)as

is a P*-martingale with respect to the natural flow of o-algebras {.#;}:>0. In par-
ticular,

o) =& o) 2 [ a5

Because of the coupling property,

E* [g(Xt) + )\/Otg(XS)ds] — E»v [g(Xt) + )\/Otg(XS)dsl.
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Thus, we obtain

o)~ ) = B[00 — 903+ 4 [ la(X) —g(stds].

Therefore

9(z) — g(y)] < E™Y|g(X;) — g(Y2)| + AE™Y /0 19(Xs) — g(Y5)|ds

tAT
< 0 BV 0 B [ (Vo)
0

¢
< ey (T y)e™ ™ + hey 7y (x, y)/o e~ “ds.

Noting that g is not a constant, since A # 0, we have ¢, # 0. Dividing both sides
by v(z,y) and choosing a sequence (x,,y,) such that

19(yn) = 9(@n) /Y (Yn, Tn) = ¢4,

we obtain
t
1<e ™+ A/ e ds = e + A(l — e_o‘t)/a
0

for all t. This implies that A > « as required. [

One may compare this probabilistic proof with the analytic one sketched in
Section 1.2. N

When 7 is a distance, E*'Y~y(X;, Y;) is nothing but the Wasserstein metric W =
W1 with respect to v of the distributions at time ¢. The above proof shows that
W1 can be used to study the Poincaré inequality (i.e., A\1). Noting that Wy is
stronger than W for a fixed underframe distance p, it is natural to study the stronger
logarithmic Sobolev inequality in terms of W5 with respect to the Euclidean distance,
for instance. To deal with the inequalities themselves, it is helpful but not necessary
to go to the dynamics, since they are mainly concerned with measures. Next, it was
discovered in the 1990s that in many cases, for two given probability densities, the
optimal coupling for W5 exists uniquely, and the mass of the coupling measure is
concentrated on the set {(x,T(z)) : x € R}. Moreover, the optimal transport T
can be expressed by T' = VWV for some convex function ¥ that solves a nonlinear
Monge—-Ampere equation. It turns out that this transportation solution provides a
new way to prove a class of logarithmic Sobolev (or even more general) inequalities in
R?. This explains roughly the interaction between probability distances (couplings)
and PDE. Considerable progress has been made recently in this field, as shown in
the last two books mentioned in the first paragraph of this section.

Condition (3) in Theorem 2.42 is essential. The other conditions can often be
relaxed or avoided by using a localizing procedure. Define the coupling time T =
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inf{t > 0 : X; = Y;}. The next, weaker, result is useful. It has a different meaning,

as will be explained in Section 5.6. Indeed, the condition “sup,_, EZYT < 0o” used
in the next theorem is closely related to the strong ergodicity of the process rather
than A\; > 0.

Theorem 2.43. Let {X;}:>0, L, A, and g be the same as in the last theorem. Suppose
that

(1) 9€ Pu(L),
(2) SUP 3£y lg(x) — g(y)| < oo,

Then for every coupling P™Y we have \ > (supx;éy Ef”’yT)_l.

Proof. Set f(x,y) = g(x) — ¢g(y). By the martingale formulation as in the last
proof, we have

. _ INT
f(z,y) = Em’yf<XtAT, Y%/\T) — Exy/ Lf(Xs, Ys)ds
0

_ _ tAT
— E"Y f(Xonr, Yinr) + AE™ / f (X, X.)ds.
0

Hence
N B tAT
9(2) — g()] < B2 g(Xonr) — g(Yenr)| + AESY /O 9(X,) — g(Y.)|ds.

Assume sup,_, E*¥T < oo, and so P*¥[T < oo] = 1. Letting t 1 0o, we obtain

_ T
9(x) — g(y)| < AE / 9(X.) — g(¥3) |as.
Choose z,, and y,, such that

lim |g(zn) — g(yn)| = sup |g(z) — g(y)|.

n— oo T,y

Without loss of generality, assume that sup, , |g9(x) — g(y)| = 1. Then

1< A lim E%% (7).

n— o0

Therefore 1 < Asup,_, E*vT. [0

For the remainder of this section, we emphasize the main ideas by using some
simple examples. In particular, from now on, the metric is taken to be p(x,y) =
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|x —y|. That is, f(r) = r. In view of Theorem 2.30, this metric may not be optimal,
since f” = 0. Thus, in practice, additional work is often needed to figure out an
effective metric p. The details will be discussed in the next chapter. Additional
discrete examples are included in Appendix B.

To conclude this subsection, let us consider the Ornstein—Uhlenbeck process in
R?. By Theorem 2.30 (4), we have Lp(z,y) < —p(z,y), and so

Emvyp(XhY;) < p($7y)e_t' (25)

By using Theorem 2.42 with the help of a localizing procedure, this gives us Ay > 1,
which is indeed exact!

Ergodicity

Coupling methods are often used to study the ergodicity of Markov processes. For
instance, for an Ornstein—Uhlenbeck process, from (2.5), it follows that

W(P(t,z,),7) < C(z)e ", t >0, (2.6)

where 7 is the stationary distribution of the process. The estimate (2.6) simply
means that the process is exponentially ergodic with respect to W.

Recall that T' = inf{t > 0 : X; = Y;}. Starting from time 7', we can adopt the
coupling of marching soldiers so that the two components will move together. Then
we have

”P(ta €, ) - P(ta Y, ')”Var < Qﬁxny[Xtiyt] - 2]15%1/[]7 > t] (27)

Thus, if P*¥[T > t] — 0 as t — oo, then the existence of a stationary distribution
plus (2.7) gives us the ergodicity with respect to the total variation. See T. Lind-
vall(1992) for details and references on this topic. Actually, for Brownian motion,
as pointed out in Chen and S.F. Li(1989), coupling by reflection provides a sharp
estimate for the total variation. We will come back to this topic in Chapter 5.

Gradient estimate

Recall that for every suitable function f, we have

~ ~ tAT
f(@) = fly) =E"Y[f(Xiar) — f(Yinr)] — E“‘yy/o [Lf(X,) — Lf(Ys)]ds.
Thus, if f is L-harmonic, i.e., Lf = 0, then we have

f@) = fy) =E"Y[f(Xinr) — f(Virr)]-

Hence B
(@) = F(y)] < 2| flloc PPYT > t].
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Letting t — 0o, we obtain

f(@) = f()] < 21f oo PPY(T = o0].

Now, if f is bounded and Iﬁ“”y[T = oo] = 0, then f =constant. Otherwise, if
P*¥ [T = oo] < constant- p(z,y), then we get

IV flloo < constant - || f|| o,

which is the gradient estimate we are looking for [cf. M. Cranston(1991; 1992) and
F.Y. Wang(1994a; 1994b)]. For Brownian motion in R%, the optimal coupling gives
us P74 [T < o] = 1, and so f = constant. We have thus proved a well-known result:
every bounded harmonic function should be constant.

Comparison results

The stochastic order occupies a crucial position in the study of probability theory,
since the usual order relation is a fundamental structure in mathematics.

The coupling method provides a natural way to study the order-preserving prop-
erty (i.e., stochastic comparability). Refer to Chen(?, Chapter 5) for a study on
jump processes. Here is an example for diffusions.

Example 2.44. Consider two diffusions in R with
a1(x) = az(x) = a(x), b1(x) < by(x). (2.8)
Then we have Py (t) < Py(t).

The conclusion was proved in N. Tkeda and S. Watanabe (1988, Section 6.1), using
stochastic differential equations. The same proof with a slight modification works if
we adopt the coupling of marching soldiers.

A criterion for order preservation for multidimensional diffusion processes was
presented in Chen and F.Y. Wang(1993a), from which we see that condition (2.8) is
not only sufficient but also necessary. A related topic, the preservation of positive
correlations for diffusions, was also solved in the same paper, as mentioned at the
beginning of this chapter.

To illustrate an application of the study, let us introduce a simple example.

Example 2.45. Let ;) be the Poisson measure on Z_ with parameter A:

AR

A _
,u(k;)—ge : k> 0.

Then we have p* < p* whenever A < \.
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In some publications, one proves such a result by constructing a coupling measure
i such that i{(z,y) : = < y} = 1. Of course, such a proof is lengthy. So we now
introduce a very short proof based on the coupling argument.

Consider a birth—death process with rate

_ AR
a(k)=1,  bk) = RO

Denote by P*(t) the corresponding process. It should be clear that
PMt) < PY'(t) whenever A<\

[cf. Chen(?, Theorem 5.26; Theorem 5.41 in the 2°¢ edition)]. Then, by the ergodic
theorem,

T as AT,

A : A : A Y
po(f) = lim PA(8)f < lim P () f = p* (f)
for all f € .#. Clearly, the technique using stochastic processes [goes back to R.
Holley(1974)] provides an intrinsic insight into order preservation for probability
measures.

We now return to the FKG inequality mentioned at the beginning of this chap-
ter. Clearly, the inequality is meaningful in the higher-dimensional space R? with
respect to the ordinary partial ordering. The inequality for a Markov semigroup
P(t) becomes

P(t)(fg) = Pt)fP(t)g, t=0, f,ge .
The study of the FKG inequality in terms of semigroups is exactly the same as above.
Choose a Markov process having the given measure as a stationary distribution.
Then, study the inequality for the dynamics. Finally, passing to the limit as t — oo,
we return to (2.1).

An aspect of the applications of coupling methods is to compare a rather com-
plicated process with a simpler one. To provide an impression, we introduce an
example that was used by Chen and Y.G. Lu(1990) in the study of large deviations
for Markov chains.

Example 2.46. Consider a single birth )-matrix ) = (g;;), which means that

Qi i+1 >0 and ¢;; =0 forall j>1i+1,
and a birth—death Q—_matrix @ = ((_7”) with @71-,@-_1 = Zj<i qij - If (_71'7@'_,_1 > qii+1 for all
i > 0. Then P(t) < P(t).

The conclusion can be easily deduced by the following coupling:

(7:17 Zg) — (Zl — ]{3, i2 — 1) at rate iy ii—k A Qisio—Fk
— (i1 — k, i2) at rate (i i~k — Qigyio—k) "
— (i1, 12 — 1) at rate  (Qiyip—k — Giy,ir—k) "
— (Z1 + 1, ig + 1) at rate Qi i1 +1 A (ji272‘2_|_1
— (il + 1? iZ) at rate (Qi1,’i1+1 - (jiz,i2+1)+
— (i1, 2+ 1) at rate  (@ip,is+1 — Gin,i+1) "
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where we have used the convention ¢;;= 0 if j < 0.Refer to?, Theorem 8.24 for
details. This example illustrates the flexibility in the application of couplings.

The details of this chapter, except for diffusions, are included in Chapter 5 of
the second edition of?.

Finally, we mention that the coupling methods are also powerful for time-inhomo-
geneous Markov processes, not touched on in this book. In fact, the fundamental
theorem 2.14 is valid for Markov jump processes valued in Polish spaces [cf. J.L..Zheng
(1993)]. For estimation of convergence rate, refer to A.I.Zeifman (1995), B.L. Granov-
sky and A.I. Zeifman(1997).






Chapter 3

New Variational Formulas for
the First Eigenvalue

This chapter is devoted to the proofs of the main variational formulas introduced in
Section 1.2. Two quick proofs for the discrete case are given in Section 3.2. Then,
three sections are used to explain the ideas in detail for the proof in the geometric
case. In Section 3.6, we compare the coupling methods with other techniques. The
last two sections are more technical. In Section 3.7 we show that the new variational
formulas are indeed complete in dimension one. The results for the first Dirichlet
eigenvalue are similar and are presented in Section 3.8 for the discrete case.
Let us begin with some background on this topic.

3.1 Background

As mentioned in the first chapter, since the spectral theory is central to many branch-
es of mathematics and the first nontrivial eigenvalue is the leading term of the spec-
trum, it should not be surprising that the study of Ay has a very wide range of
applications. Here we mention two fashionable applications only.

Phase transitions

In the study of interacting particle systems, a physical model is described by a
Markov process with semigroup {P;};>0 (depending on temperature 1/8) having
stationary distribution 7. Let L?(7) be the usual real L?-space with norm || - ||.

Figure 3.1 shows that at higher temperatures (small ), the corresponding semi-
group {P;};>0 is exponentially ergodic in the L*-sense:

1Pof = a (O < ILf =7 (f)lle™™,
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where 7(f) = ffd7r, with the largest rate A1, and when the temperature goes to
the critical value 1/3,., the rate will go to zero. This provides a way to des- cribe
the phase transitions, and this is now an active research field. Further remarks are

A

B = 1/temperature

A >0

0 B,

Figure 3.1 The first eigenvalue and phase transitions

given at the end of Chapter 9. The next application we would like to mention is to
Monte Carlo Markov chains.

Monte Carlo Markov chains (MCMCO)

Consider a function with several local minima. The usual algorithms go at each step
to a place that decreases the value of the function. The problem is that one may
fall into a local trap (Figure 3.2).

MCMC

Local trap

Figure 3.2 The first eigenvalue and random algorithm

The MCMC algorithm avoids this by allowing the possibility of visiting other
places, not only toward a local minimum. The random algorithm consists of two
steps.

e Construct a distribution according to the local minima, staying at a lower
place with higher probability, in terms of the Gibbs principle.
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e Construct a Markov chain with the stationary distribution given above, and
with a fast convergence rate (i.e., A1).

The idea is a great one, since it reduces some NP problems to the P problems
in computer science. The effectiveness of a random algorithm is determined by
A1 of the Markov chain. Refer to M.R. Jerrum and A.J. Sinclair(1989), and A.J.
Sinclair(1993) for further information.

Here is a practical example, called the traveling salesman problem: find the
shortest closed path (without loops) among 144 cities in China. For a computer
with speed of computing 100? paths per second, a brute-force search would require

143!

~ 100
109 x 365 x 24 x 60 x 60 0

years for the computation. This is a typical NP problem. However, by using MCMC,
it can be done quickly, as in L.S. Kang et al.(1994). The resulting best path has
length 30,421 kilometers, only about 40 kilometers different from the best known
length: 30,380 kilometers.

3.2 Partial proof in the discrete case

In the section, we introduce a short proof for the lower bound of A; in the discrete
case. Even though the proof is very elementary, it does illustrate a good use of the
Cauchy—Schwarz inequality. Recall that

po =1, i —, i 21

For an infinite matrix, we need the assumption

0o k %)
Z Z and Z = ZM < 0. (3.1)
k=0 i=0 i=0

Let
o= /2, LA(m) = {f 1 w(f?) < oo},

where 7(f) = Y ;2 mifi- The first eigenvalue is defined by the classical variational
formula as follows:

A o=inf {D(f) : 7(f) = 0,7 (f?) = 1}, (3.2)

where D(f) = Y02, mibi(fix1 — fi)?. We are now going to prove the variational
formula for the lower bounds (cf. Theorem 1.5):

A1 2 sup_ 1an( )"t > sup 1nf]( )~ (3.3)
EW =0 wWEW 120
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where e
W ={w:w,; =0, w; 11}, W =A{w:w; 1T, m(w) = 0},

wizwi—ﬂ(w) i >0,

Ii(w) = o) Z,ujw], i>0, we“f/ﬂ\,

/Mb (wz+1 j=it1

and “11” means strictly increasing.

Analytic proof of (3.3)

Clearly, it suffices to prove the first estimate in (3.3), since {w : w € #'} C .

(a) First, we prove that I;(w) > 0 for each w € # and all i > 1. Equivalently,
Z;’;Hl pijw; > 0 for all ¢ > 0. Otherwise, let ¢y satisfy Z;’;ioﬂ pijw; < 0. Then,
since wyj is strictly increasing, it follows that w;, < 0, and furthermore,

oo o i0
0< Z,ujwj Zujwj + Z fjw; < Zujwj < wj, Z,Mj < 0.
7=0 j=0 j=0

Jj=io0+1

This is a contradiction.

(b) For each ¢ > 0, define a bond e; := (i,i+1). Next, for each pair i, j (i < j), let
7i; be the path (only one) consisting of the bonds e;, €;41,...,e;_1. Given w € V/
choose a positive weight function (w(e)) on the bonds, w(e;) = w;11 —w;, and deﬁne
the length of the path 7;; to be |vij|w = Zee%- w(e). Set

J(w)(€)=; > iglwmimg,

AP (5 se

where a(e;) = m;b;. At the same time, we write f(e;) = fir1 — fi.
(c) As a good application of the Cauchy—Schwarz inequality, we have

i-sr= (T @) = (2 2 vam) < (T 28

e€ij e€ij w(e) e€Yij

Thus, for every f with 7(f) = 0 and 7(f?) = 1, we obtain

_ %%:Wj(fi -5’ =3 Wﬂ'( 2 f<e)>2

{i,5} e€Yij

<> 7Tz'7Tj< > J,l;((ez)z)\%j\w

{i,5} ecij
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=Y @ e X Flemm

{3,5}:7vij2e

< D(f) sup J(w)(e),

where {i,j} denotes the unordered pair of i and j. The first equality follows by
expanding the sum on the right-hand side of the equality; the last equality follows
by exchanging the order of the sums. Clearly, the proof in this paragraph works for
general Markov chains on a graph.

Note that for every ¢ > k,

Vkelw = (W1 — wg) + -+ + (W — wp—1) = wp — wg.

If a path yxe (k < £) contains e; = (i,i+ 1), then k € {0,1,...,i} and £ € {i+1,i+
2,...}. Hence, once 7(w) > 0, we have

> Pelwmrme

{k,L}:vrede;

1 o
:E E e (we —wy) = E WkE oWy — E mwkE e

k=0{¢=i+1 k=0 {=i+1 {=i+1
o0
=S - ( > ) S mwn - zw S
l=i+1 k=i+1 l=i+1 l=i+1
oo oo
= Z oWy — ( Z 7Tk> (Zﬂ'eﬂ)g) < Z TeWy, Z} 0.
l=i+1 k=i+1 £=0 l=i+1

Collecting the above two inequalities together whenever 7(w) > 0, we have

1< D(f)supJ(w)(e;) < D(f)su T W
(f)l_;)) (w)(ei) (f)z>gael w(er) Z 3 Wi
J=1+1
= D(f)su T W
(f) i}g Wzb (wH-l - wz Z 7
J=1+1
= D(f)su W
(f) z>18 ,uzb (wz—f—l - wz jzz—l:—l MJ 7

Combining this with (a), it follows that D(f) > inf;>q I;(w)~!. Now, by conditions
7(f) =0, 7(f?) =1, and (3.2), we get A\; > inf;>0 I;(w) 1. Since w € # is arbitrary,
we obtain A\; > sup, _z-infi>o [;(w)~!. That is what we required. O
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Coupling proof of (3.3)

We use the same notation % and I(w) introduced below (3.3).

Fix w € VZ\and define

bi S
gi=Y up, 20,
k<1
p(i,J) = |gi — g4l i,j =0

From part (a) in the last proof, it follows that u; > 0 for all i« > 0. Hence g is strictly
increasing, and so p is a distance.

Next, we adopt the classical coupling. Because of the symmetry p;b; = 110,41 (i >
0), we have

Qepl(i i+ 1) = [Qp(- i+ 1)](6) + [Qp(i, )](i + 1)
= [Q2(gi+1 — 90)] (1) + [2(ge — 9)](1 + 1)
=Qg(i +1) — Qg(q)
= biy1Uit1 — Gip1u; — byug + a;u;q

2[ 1 > Mjwj_% > ujwj]

Hitl 55 Hi S
[ E Hijw; — , E :Mng]
]>Z+1 z—l;uz—l >
= —Wi1 + W;

(Wi —wi)bipi 2 jzit1 HiWi
> jzit1 HiWj bipui
= ) i+ 1)

<[ _ . .
< [ég%[k(w) }p(z,z—i—l), 1>1
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On the other hand, since Ej pijw; = 0, we have

~

Qep(0,1) = Qg(1) — Qg(0) = bruy — aguy — bouy

Collecting these two estimates together, we obtain
Qcp(iaj) = Qcp(ivi + 1) T+t Qcp(j - 17])
< —[inf L) plirg), i<

This proves the key condition (1.23), from which the conclusion (3.3) follows by a
localizing procedure. Refer to Theorem 2.42. []

Clearly, the key point in the last proof is the choice of the distance p, which is
not obvious at all. We will explain this point in detail in Section 3.4. Actually, the
two equalities in (3.3) all hold and so we have complete variational formulas for the
lower bound of the first eigenvalue. Since the proof is more technical, we would like
to delay it to Section 3.7.

In the next three sections, we explain the ideas of the proof in the geometric case
for the variational formula (1.11).

3.3 The three steps of the proof in
the geometric case

In this section, we explain the three steps to prove the variational formula (1.11).

Choosing a coupling

Let (B;) be the standard Brownian motion (BM) in R? and let (X;) be the solution
to the stochastic differential equation (SDE):

dX, =V2dB,,  z,==. (3.4)

The process corresponds to the operator A (half of it corresponds to the BM).
Certainly, we can define a process (Y;) in the same way but with different starting
point:

dY, =v2dB,, yo=uy. (3.5)
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Now, because the processes (X;) and (Y;) are defined on the same probability space,
we obtain a coupling, that is, the coupling of marching soldiers (X, Y;). However,
in what follows, we will use another process (Y;), which is defined by

AV = V2 H(X;,Y;)dB:,  yo =, (3.6)

where H(x,y) = I — 2(x — y)(z — y)*/|x — y|?>. Note that H(z,y) has no meaning
when = = y, so the process (Y;) given in (3.6) is meaningful only up to the coupling
time

T:=inf{t >0: X; =Y;}.

Starting from the time T, we define Y; = X;. We have thus constructed a process
(Y;). Clearly, this (Y;) strongly depends on (X;). Of course, the solutions of (3.5)
and (3.6) are different, but they do have the same distribution, due to the invariance
of orthogonal transform of BM and the fact that H(z,y) is a reflection matrix. The
last couple (X%, Y:) is the coupling by reflection discussed in the last chapter.
Intuitively, the construction of (Y;) can be completed in two steps: Let y # x.

e Transport X; from z to y in parallel along the line (x,y).

e Make the mirror reflection of the transported image of X; in the hyperplane
that is perpendicular to the line (z,y) at y.

Then, the mirror image gives us the process (Y3).

For the diffusion (X;) on manifold M with generator A, a process (Y;) can be
constructed in a similar way. Roughly speaking, one simply replaces the phrase “the
line (x,y)” in the above construction by “the unique shortest geodesic v between z
and y.” Certainly, there are some technical details and geometric difficulty (the cut-
locus for instance) in the construction; refer to W.S.Kendall (1986) and M.Cranston
(1992). An account of this coupling is now contained in E.P.Hsu (2002).

The appearance of the coupling by reflection is a crucial step in the development
of the coupling theory. For a long period, one knew mainly the classical coupling; it
is successful (i.e., P[T' < oo] = 1) for BM in R? iff d = 1 [cf. Chen and S.F. Li(1989)].
Thus, one may have an impression that a process having a successful coupling ought
to be recurrent. But the coupling by reflection shows that the success can be much
weaker than the recurrence, since this coupling is successful in any dimension [cf. T.
Lindvall and L.C.G. Rogers(1986), Chen and S.F. Li(1989)]. The key point is that
the strong dependence of (Y;) on (X;) enables us to reduce the higher-dimensional
case to dimension one.

Computing the distance

Throughout this chapter, we consider a connected, complete Riemannian manifold
M with Ricc > K for some K € R. In most cases, we consider compact M only.
Denote by p the Riemannian distance on M. For the distance of the coupled process
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(X¢,Y3), the following formula was proved by W.S.Kendall (1986) and M.Cranston
(1992):

dp(Xt,Yt)_2\det+[ Z VoW 2 — (R(W*', U)U, W%)]d

Xt =2
—dL, t<T, (3.7)
where W* i = 2,...,d, are Jacobi fields along the unique shortest geodesic v between
X; and Y;, U is the unit tangent vector to -, the integral in [---] is along =, (By)

is a BM in R, and (L) is an increasing process with support contained in {t >
0: (X, Y:) € C}, C := {(z,y) : = is the cutlocus of y}. When (X;,Y;) € C, the
coefficient of dt is taken to be O.

The formula is a finer version of the deterministic situation. The second term
on the right-hand side of (3.7) is more or less familiar, and comes from the second
variation of arc length. The first and the last terms are new in the stochastic case.
Since the measure of the cutlocus equals zero, the last term is not essential. Next,
because the mean of the first term is zero, it will be ignored once we take the
expectation, as we will see soon in the next step. However, the condition “t < T”
is crucial to avoid the singularity at ¢ = T'. This is the main place for which the
present proof is probabilistic.

To estimate p(X¢,Y:), we need only to deal with the second term on the right-
hand side of (3.7). By comparing M with a manifold with constant sectional curva-
ture, M. Cranston(1992) proved that when K < 0, this term is controlled by

K
2\/—K(d — 1) tanh <pt d_1> pr = p(X0, Y2). (3.8)

It was then proved by Chen and F.Y. Wang(1993b) that the same conclusion remains
true when K > 0, in which case, (3.8) can be rewritten as

1 K

Set

r)=2y/—K(d—-1) tanh( dKl >
Then we obtain
dp; < 2v2dBy + v(p)dt — dLy < 2vV2dB;, +v(p)dt,  t<T.  (3.9)

Equivalently,

tAT tAT
PinT — Po S 2\/5/ dB, +/ V(ps)ds.
0 0
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Taking the expectation, we get

tAT
E*Ypiap < po +EPY / V(ps)ds. (3.10)
0

In order to get an exponential rate, we need the condition
v(r) < —ar for some a > 0. (3.11)

When K > 0, since tanf > 6 on [0, 7/2], we have o = K. Under (3.11), we have

B tAT " tAT N t
E%"y/ v(ps)ds < —aE"”’y/ psds = —aEx’y/ psaTds
0 0 0
t
= —Oé/ Em’ypsATdsv
0

since p,,p = 0 for all £ > T". Combining this with (3.10), we obtain

~

, —at
E*Ypip < poe™

Equivalently,

at

Ex’ypt < poe_ ’ t

WV
o

(3.12)

This is the key estimate of our method.

Estimating )\,

Let g be an eigenfunction of A\;: —Ag = Aig, g #constant. Then E*g(X;) =
g(x)e1t for all + > 0. This gives us a relation between \;, g, and the process
(X¢). The same relation holds for (Y;). Note that the coupling property gives us

E*¥g(X,) = E*g(X,). By (3.12), we have

e M g(x) — g(y)| = [E"g(Xy) — E¥g(Y2)| = [E™Y [g(X;) — 9(Y2)]|
< L(9)E"Ypy < L(g)poe ™"
= L(g)p(z,y)e” ",  t=0,

where L(g) is the Lipschitz constant of g. This gives us immediately A\; > «, and
hence our proof is complete.

The proof is very much the same as sketched in Section 1.2.

The last step of the proof is rather simple but may not be so easy to discover.
This is indeed a characteristic of various applications of the coupling methods: once
the idea is understood, the proof often becomes quite straightforward.
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3.4 Two difficulties

Roughly speaking, we have explained half of the first version of the paper by Chen
and F.Y. Wang(1993b). The problem is that the above arguments are still not
enough to obtain the sharp estimates listed in Table 1.2. For instance, when K > 0,
we get the lower bound a@ = K only, as mentioned right after (3.11). The best we
can get (when K > 0) is 8/D? rather than the sharp one 72/D? where D is the
diameter of the compact manifold M. Even for the bound 8/D?, we still need to
estimate E#¥T (cf. Theorem 2.43), which we are not going to discuss here.

We now return to analyze the proof discussed in the last section. In the last step,
we need the Lipschitz property of g. The noncompact case can often be reduced
to the compact one [cf.Chen and Wang (1995)] and in the latter case, ¢ is smooth
and hence the Lipschitz property is automatic. Thus, in the whole proof, the key is
the estimate (3.12), for which we require not only a good coupling but also a good
distance. This is not surprising. Since the convergence rate is not a topological
concept, it certainly depends heavily on the choice of a distance. There is no reason
why the underlying Riemannian distance should always be a correct choice.

Optimal Markovian coupling

The first question relates to the effectiveness of the coupling used above. Is there an
optimal choice? This problem is quite hard, as explained in Section 2.2. However,
the goal for optimality becomes clear now, that is, choosing a coupling to make the
rate a as big as possible, or in a slightly wider sense, to make

E%Yp(Xy, )

as small as possible for all ¢ > 0, and for every fixed pair (x,y) and fixed p. Because
we are dealing with Markovian coupling, we can use the language of coupling oper-
ators, studied in the last chapter. Of course, one can translate the discussions here
into stochastic differential equations. Note that under a mild assumption, the last
statement is equivalent to that Lp(x,y) is as small as possible for every pair (x,vy),
x # y. This leads to the definition of p-optimal coupling operator L:

where L varies over all coupling operators (cf. Section 2.2).

Some constructions for the optimal Markovian couplings are presented in the last
chapter. In particular, Theorem 2.30 (4) tells us that the coupling by reflection is
already good enough even for the BM on manifolds. Furthermore, it suggests that
we use f o p instead of the original Riemannian distance p. The construction of a
new distance is the second main difficulty of the study, and this is the content of the
remainder of this section.
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Modification of Riemannian distance
To illustrate the use of the above idea, assume that K > 0 and take p = sin 75.
Since 7 < D, p is a distance. To compute dp;, noting that dp; < 2v/2dB;, apply

It6’s formula plus a comparison argument,

2

_ T s . TPt
dpt\ﬁcos— 2v2dB; — 2 qpz Sngp c8dt, t<T.

The first term is a martingale, denoted by M;. We then obtain

2

™
d th — ﬁptdt, t<T.

Repeating the proof given in the last section, we get

~xy— _ 7'('2
E’ptgpoexp _ﬁt

Thus, we obtain luckily A\; > 72/D?, which is optimal in the case of zero curvature.
By using the sine function again with a slight modification (which comes from some
controlling equations of (3.9) with constant coefficients), we can obtain the other
two optimal lower bounds [i.e., (1.1) and (1.7)], as shown in the final version of
Chen and F.Y. Wang(1993b, Theorem 1.8). Finally, it is interesting to remark that
20/ < sinf < 0 on [0,7/2], and so the distances p and p used above are actually
equivalent. However, the resulting rates are essentially different.

Redesignated distances

Is there any other choice of the distance? The question is again easy to state but
not so easy to answer. Indeed, we did not know for a long time where we should
start from. This problem becomes more serious when one goes to the noncompact
situation. Intuitively, distances cannot be good if with respect to them the eigen-
function g is too far away from being Lipschitz. As usual, we are taught by simple
examples. Consider the diffusion on the half-line [0, c0) with operator

L=ad?/dz? —bd/dx

for some constants a, b > 0 and with the Neumann boundary condition at the
origin. If one adopts the Euclidean distance, then it gives us nothing. So what
distance should we take? Our goal is to look at the eigenfunction of \; = b%/4 in
the weak sense (without loss of generality, set a = 1):

g(x) = (1 — bx/2) exp[bx/2] € L*(r) \ L*(7).
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This suggests that we construct a new distance p from the leading part of g:

p(x,y) = |exp[yz] — exp[yy]|

for suitable v > 0. Surprisingly, it gives us the exact estimate of A\; even though
the eigenfunction g is still not Lipschitz with respect to this distance [cf. Chen and
F.Y. Wang(1995)]. Furthermore, if g is strictly monotone (which is indeed the case
in dimension one but the proof is rather technical, c¢f. Section 3.7 below), we can
always take |g(z) — g(y)| as the distance we require. This provides us a way to
construct and to classify the distances according to different classes of elementary
functions [cf.Chen (1996), Chen and F.Y. Wang(1997b)].

However, there is still a serious difficulty in the construction of the new distance,
since the eigenvalue A\; and its eigenfunctions g are either known or unknown si-
multaneously. To see this, consider another example on the half-line with operator
L = a(z)d?/dz?. A beautiful estimate due to LS. Kac and M.G. Krein(1958), S.
Kotani and S. Watanabe(1982) says that

1(8 /OO du >—1<A <<S /OO du )‘1
—( sup x — < S | Sup T - :
1\50 ), a(u) SR, )

Now, in order to recover this estimate using our method, according to what was
discussed above, we have to know some information about the eigenfunction g. Even
in such a simple situation, it is still hopeless to try to solve g from a(x) explicitly.
What can we do now? Once again, we examine the eigenequation:

> )\19( )

a(@)g’ = ~hg <= ¢(s) = /

— g(z / / Alg . (3.13)

Since we are dealing with the ergodic case, we can regard oo as a Neumann boundary,
and so ¢g'(c0) = 0. What we have done is just to rewrite the differential equation
as the corresponding integral equation. Is the last equation helpful? The answer is
affirmative. We now move step by step as follows:

du (since g'(c0) = 0)

e Regard \;g as a new function f.

e Regard the right-hand side of (3.13) as an approximation of the left-hand side
g.

e Ignore the constant g(0) on the right-hand side, since we are interested in the
difference g(z) — g(y) only.

In other words, these considerations suggest to us to take

Na:):/()xds/:O Zggdu (3.14)
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as an approximation of g (up to a constant) and then to take p(z,y) = |g(z) — g(y)|.
The function f used above is called a test function. A slightly different explanation
of the construction goes as follows. Even though the equation (3.13) cannot be
solved explicitly, as usual we have a successive approximation procedure. Thus, one
may regard (3.14) as the first step of the approximation and go further step by step.
However, the further approximations are not completely necessary, since on the one
hand it becomes too complicated and on the other hand it is not as effective as
modifying the test function f directly.
Next, we consider the general operator on the half-line:

L = a(x)d*/dz? 4 b(z)d/dz.

By standard ODE, it can be reduced to the above simple case. The approximation
function now becomes (cf.Chen and Wang (1997b))

T oo u GC(U) " Uu
g(r):/o e—C(S)dS/ %du, C(r) ::/O %u))du. (3.15)

We have thus obtained a general construction of the mimic eigenfunctions and
furthermore of the required distances. It should be not surprising that the re-
construction of the distances is a powerful tool in many situations. This will be
illustrated in the next section.

Optimizing the distances

Before moving further, let us mention that an optimizing method of the distance
induced from (3.15) as well as some comparison methods is developed in Chen and
F.Y. Wang(1995). In short, the condition “Lp(x,y) < —ap(z,y) [which is equivalent
to (3.12)] holds for all large enough p(z,y)” but not necessarily “for all x # y” is
enough to guarantee a positive lower bound of A;.

3.5 The final step of the proof of the formula

Up to now, we have discussed only the construction of the mimic eigenfunctions g
in the case of a half-line. But how do we go to the whole line and further to R¢
and a manifold M? This seems quite difficult. However, the answer is still rather
simple once the idea has been figured out. As we have seen from Section 3.3, the
coupling methods reduce the higher-dimensional case to computing the distance of
the coupled process, and then the distance itself consists of a process valued in the
half-line [0, 00). We have thus returned to what was treated in the last section.

Recall that
1 /| —-K
v(r) =24/ —K(d—1) tanh (5 y 17’)
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and p; = p(Xy,Y:). From (3.9), it is known that

dp; < 2V2dB; +(p)dt,  t<T. (3.16)
The one-dimensional diffusion operator corresponding to (3.16) with equality is
Ly = 4d?/dz? + y(x)d/dz

on [0, D] with absorbing boundary at 0 and reflecting boundary at D. This is indeed
simpler than what we discussed in the last section (a(x) = 4). Redefine

C(r) = exp E /0 Tv(s)ds].

Then the approximation function defined by (3.15) becomes

/C 1ds/0

up to a constant factor. Now the same proof as given in Section 3.3 and the second
subsection of Section 3.4 implies rather easily the formula (1.11).

To derive Corollary 1.2 from Theorem 1.1, one needs to deal with the double
integral in (1.11). For this, the main tool is the FKG inequality (2.1).

It remains to explain the choice of the test functions used in Corollary 1.2,
f(r) = sin g7 for instance. Recall that the main result obtained by Chen and F.Y.

Wang(1993b) compares \; of the original operator with the first eigenvalue )\é ) of the
one-dimensional operator L; with Dirichlet boundary at 0 and Neumann boundary
at D. Since in general, )\(()1) is not computable explicitly, one uses a constant instead
of the function . In the case of K > 0, since v(r) < 0, it is natural to replace =y by
the constant 0. Then the first eigenfunction for the new operator is f(r) = sin 2+
which is just the test function used in Corollary 1.2 (1).

Similarly, when K < 0, since

=2/ KT a1y T <oy R [ 5 ] =,

it is natural to use the operator Ly = 4d* /dz? 4 ,d/dz, for which the eigenfunction
of the first eigenvalue

K(d—-1
)\(()2) = ——( )

2D7

tanh? 2 —K
2 Vd-1

] sech?0

of Ly has the form f(r)=exp[—,r/8]sinh (v,67/8), where j= \/1—16)\(()2)/78 and
6 is a root of the equation 6§ = 6, tanh 6, which is the (decreasing ) limit of 6,,:

01 =~,D/8, 0, = 0, tanh6,,_1, n > 2.
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This is the test function used in Chen(1994a, Theorem 6.6) to deduce the following
result:
A > AP,

Noting that tanhz ~ 1 as z — 00, 7y ~ 2y/—K(d— 1) and 0 ~ 61 ~ 2\ /—K(d — 1)

as K — —o0o, the leading order of )\(()2) grows as

D | -K
sech?0 = cosh™2 6 ~ cosh!™¢ [5 ﬁ]

when K — —oo. This means that as K — —oo, the leading term of the lower bound
provided by Corollary 1.2 (2) is quite good. Note that as K — —o0, § ~ 1, and so
the above eigenfunction f grows as follows

e[ - T )~ A1 ot [ )

The right-hand side is close to zero for small |K|. The change to the test function
used in Corollary 1.2 is to keep the balance of K =0 and K — —oc.

We have thus completed the proof in the geometric case. Our proof is universal
in the sense that it works for general Markov processes, as shown by Theorems 2.42
and 2.43. We also obtain variational formulas for noncompact manifolds, elliptic
operators in R? [Chen and F.Y. Wang(1997b)], and Markov chains (Chen,1996).
It is more difficult to derive the variational formulas for the elliptic operators and
Markov chains due to the presence of infinite parameters in these cases. In contrast,
there are only three parameters (d, D, and K) in the geometric case. In fact,
formula (1.11) is a particular consequence of our general formula (which is complete
in dimension one) for elliptic operators.

Finally, we mention that the same method is used by Y.Z.Wang (1999) and Y.H.
Mao(2002d; 2002¢) to show that for diffusion on a compact manifold, the rate of
strongly ergodic convergence is bounded below by

4[/0D C(s) 'ds /SD C’(u)du] _1. (3.17)

Note that this lower bound coincides with (1.11) by setting the test function f = 1.
We will come back to this topic in Chapter 5.

3.6 Comments on different methods

First, we would like to make some remarks on the Dirichlet eigenvalue (called the D-
problem for short). Similarly, we have an N-problem (Neumann or closed eigenvalue
problem). It is interesting to note that historically, most of the publications in this
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field are devoted to the D-problem rather than the N-problem. The main reason is
that the D-problem is equivalent to the maximum principle. Let B(p,n) be the ball
centered at p with radius n. It is well known [go back to J. Barta(1937); refer to H.
Berestycki, L. Nirenberg and S.R.S. Varadhan(1994), and references within| that

A1 = sup inf (—Lf)/f, (3.18)
f Bpn)

where f varies over all C?(B(p,n))-functions with floppn) = 0 and f > 0 on
B(p,n). In other words, we have a variational formula for the lower bound for the
D-problem. Note that the maximum principle is a powerful tool in PDE. One should
not be surprised that one can do a lot with the D-problem. However, this formula
does not work for the N-problem. The reason is simply that the eigenfunction g in

Dirichlet: f(0Z2) =0

<= Maximum principle

Neumann: 9f/0n=0, /fdw:().

Surface {f =0} depends on L, ¥

Figure 3.3 Intrinsic difference of the methods

the Neumann case must cross zero and so is Lg, because the mean of g equals zero.
See Figure 3.3. Hence, there is a singularity of (—Lg) /g around the zero point, which
causes serious difficulty when the eigenfunction g is replaced by its perturbation f.
Traditionally, one transfers the N-problem to the D-problem, as will be studied in
the next chapter. This explains why one often thinks that the N-problem is more
difficult than the D-problem. It seems that the N-problem is also more difficult
than the closed problem. For instance, for the Neumann eigenvalue A\; with convex
boundary, the best known lower bound is Lichnerowicz’s estimate obtained by J.F.
Escobar(1990) in the case of K > 0, and up to now we have not seen in the literature
a proof about “\; > 72 / D?” for general K > 0. The known estimates of \; for the
N-problem in the case of K < 0 are all less than the known estimates for the closed
eigenvalue (refer to the books quoted at the beginning of Section 1.2). However,
as we mentioned above, Theorem 1.1 and its corollaries are all suitable for the
Neumann eigenvalue A\; with convex boundary. These discussions also show that
the use of coupling enables us to avoid the singularity, just as mentioned above. The



62 3 New Variational Formulas for the First Eigenvalue

degeneracy of the coupled process appears at time 7' only, and before time T, the
process is quite regular. This is somehow similar to the D-problem, for which the
degeneracy appears at the boundary only. In other words, the coupling method plays
an analogous role in our proof as the maximum principle played for the D-problem.

Geometric proof

We now recall Li-Yau’s method(1980).
Let g be the eigenfunction corresponding to A\;. By using a normalizing proce-
dure, assume that 1 =supg > inf g =: —k. Here is the Li—Yau’s key estimate:

2\
1+ k

That is often called the method of gradient estimation. To improve Li—Yau’s estimate
of A1, a key result is Zhong—Yang’s estimate(1984):

IVO)? < A (1 + acv(9)),

Vyg| < (1—9)(k+g).

where .
0 = arcsin(a linear function of g), e = _ ,
(1+k)(1+4+¢)
(2]26 + sin(20)] /7 — 2sin 6 T T
) 0 € T a5 9 |
cos? 6 27 2
P(0) =1, o="_,
o _in
(7 27

This estimate has been improved step by step by H.C. Yang, F. Jia, D. Zhao, et al.
See also P. Kroger(1992; 1997), D. Bakry and Z.M. Qian(2000). All of the proofs
are based on the maximum principle. From this, it should be clear that Zhong—
Yang’s proof cannot be simple, and is completely different from the probabilistic
proof discussed in Sections 3.3-3.5.

Here is one more comment. As mentioned in the last section, the coupling method
enables us to bound A; in terms of the first mixed eigenvalue )\(()1) of the operator
Ly = 4d?/dr? +~(r)d/dr (with boundary conditions f(0) = 0 and f’(D) = 0). Since
v is odd, y(—7) = —v(r), the first mixed eigenvalue )\él) of Ly on (0, D) coincides
with the first nontrivial Neumann eigenvalue )\gl) of Ly on (—D, D). Hence, )\gl)
bounds Ay from below. This is the main result presented in Theorem 2 and its
remark of P. Kroger(1992), and Theorem 14 of D. Bakry and Z.M. Qian(2000).
Nevertheless, to obtain formula (1.11), as explained in the last two sections, one
more step is required: expressing )\él) as the right-hand side of (1.11) (see also
Theorem 6.1 (2)).

No doubt, our method should be useful for complex manifolds. However, much
work is expected to be done.
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Open Problem 3.1. Study the first eigenvalue for complex manifolds by couplings.

3.7 Proof in the discrete case (continued)

The main purpose of this section is to prove that each sign of the equalities in (3.3)
holds. We use the notation given in Section 3.2 and restate the result as follows.

Theorem 3.2. We have

A = inf [;(w) ! = inf I;(w) . 1
1 51617137 inf I;(w) sup inf (w) (3.19)

To prove these two equalities, we need some properties of the corresponding
eigenfunction, and so the proof is rather technical.

Proposition 3.3. Let A > 0 and g # 0 be a solution to the equation 2g = —\g.
Then gy # 0 and

Tnbn(gni1 — gn) = —)\ngi, n > 0. (3.20)
i=0

Proof. The formula (3.20) follows from

n

A migi =Y miQg(i) = Y [miailgio1 — gi) + wibi(giy1 — 9)]
i=0 i=0 i=0

= Z [ — mia;(gi — gi—1) + Tit10i+1(Giv1 — 9@)]
i=0

= —moa9(90 — 9-1) + Tn+1an+1(gn+1 — gn)
- 7"-nbn(.gn-i-l - gn)
Here the additional term g_; can be ignored, since ay = 0.

If g9 = 0, then by induction and (3.20), it follows that g; = 0. This is a
contradiction. [

Proposition 3.4. Let \; > 0 and let g be a solution to the equation 2g = —\;¢g with
go < 0. Then g; is strictly increasing.

Proof. Since gy < 0, by (3.20), we have g1 > go. If g; were not strictly increasing,
then there would exist an n > 1 such that

9o < g1 << Gn-1<Ygn 2 Gn+1- (3.21)
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We are going to prove that this is impossible.
By (3.20), we have
k
gr < (respectively =) grp+1 <= ngi < (respectively =) 0. (3.22)
i=0
Define g,, = — Z?_o 7igi/mn and §; = gilfi<n] + Gndji=n)- Then, from (3.20)-(3.22),
it follows that
Z Tigi + Tngn = 0, (323)

i<n—1
In = Gn = [Wn—lbn—l(gn - gn—l)]/()‘lﬂ'n) = [an(gn - gn—l)]/)‘l > 0. (3'24)
Define g; = gil{ij<n} + gnl{i>ny- Then we have

Zﬂ_zg?: Z 9, +gnzﬂ-’w
7

1<n—1 izn
Zmﬁi = Z Ti9i T 9n Zm = gn Zm — mngn  (by (3.23)).
7 i<n—1 i=>n i=n
Hence
2
Z mgf— (Z Wigi) Z 7ngZ +gn Z T — <gn Z T —Wn§n> ) (3.25)
1 7 i<n—1 i=>n i=n
Next,

— Z T (gQg) (Z) =\ Z 771’92‘2 + Tnangn (gn - gn—l)

i<n—1

= A1 Z TG + MTngndn (by (3.24)). (3.26)

i<n—1
We now prove that

2
Tngndn < G Zm <gn Zm — Wn§n> . (3.27)

=N =n

By (3.24), g, > 0. Thus, (3.27) is equivalent to

S (Do)

i=n =n

That is,

(Zm_m% <Ym-ml

i=n i=>n
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This clearly holds, since 0 < g, < gn, 0 < Zi>n T — Tndn/gn = Zi>n+1 i + (1 —
In/gn) < 1. We have thus proved (3.27). Collecting (3.25)—(3.27), it follows that

— > mi(999) (4)
A1 < - -
Ei mig; — ( Zz Wigi)
/\1 Zign—l Wigzg + Alwngngn <)\
- 2 1,
Zign—l 7T’ng2 + 972L Zi)n ™ — (gn Ei}n T — ann)

2

which is a contradiction. [

Proposition 3.5. Let A\; > 0 and let g be the function given by Proposition 3.4. Then
g € L(r) and 7(g) = 0.

Proof. By Proposition 3.4, we can define a positive sequence u; = g;+1 — g;, ¢ => 0.
From the eigenequation 2g = —\;g, it follows that

bi’UﬂL' — Q;U;j—1 = —)\191' (ao = O), 1 2 0. (328)

Replacing ¢ with 7 4+ 1, we obtain another equation. Taking the difference of these
two equations, we get

RrL(U) = (ai+1ui - bi+1ui+1 — Q;Uj—1 + blul)/u@ = )\1 > 0, 1 2 0.

By Propositions 3.3 and 3.4, if g; < 0 for all 4, then u,,b,u,, is increasing. Otherwise,
if there is some g;, > 0, then g; > 0 for all ¢ > i¢ and hence p,,b,u,, is strictly decreas-
ing for large n. Therefore, there is a limit ¢ := lim,, o pnbpu, = 0. Set u_; = 0.
By (3.28) and the increasing property of g;, we have u,b,u, = —X\; Z?:o iGi <
-1 ZKn g:<0 Hidi S (—/\190)Z?<n:gi<0 i < —A1goZ < oo. Hence ¢ < oo and
furthermore g € L*(w). Set u_; = 0. By (3.28) and the increasing property of g;,
we have

Pnbntin = =M1 Y pigi < =M1 Y pigi < (—A1go) Z i
1=0

1<n:g;<0 1<n:g; <0
—MgoZ < <.

Hence ¢ < oo and furthermore g € L!(w). Define
w; = ajui—1 — bju; +c/(Z — pg) = Mgi +¢/(Z — py)  (by (3.28)).

Then
(wi+1 - wz)/uz = Rz(u) = )\1 > 0, 1 } 0. (329)
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It follows that wj; is strictly increasing. On the other hand, we have

> mjwi = > piazui_y — pibjug + cpi /(2 = po)]

jit1 jitl

= > [j1bjruj1 — pibjus + cpi/(Z = o))

jitl
= Z [pj—1bj—1uj—1 — pjbjuy] T Z Hj (3.30)

j=i+1 ]>z+1

C
= bipiu; — ¢+ 7= Z I
j=i+1
bi,uiuz 7 ‘ i X bi/ubiuu (= 0
—Ho Gk

In particular, > -, pjw; = poboug € (0,00) and so w € LY (7).
Next, because wy, = —boug + ¢/(Z — ), we see that

Zﬂywj—wo"'zmwy—c/z fto) = 0.

j=>1

This fact plus w; 11 implies that > jsit1 bjw; >0 for all ¢« > 0, as proved in part
(a) of the analytic proof of (3.3) (given in Section 3.2).
Collecting the above facts, we obtain

-E(UO = bipi(wit1 — // 2{: Hjw;

Jj=i+1

c
= b i (u Uz/ [bimui - M']
( ) Z - ,LL() 12 J

SISt

:A41— — ...22;4_1

(Z MO)szzuz 1< <i

>\, >0

(3.31)

Thus, inf;>0 I;(w)™! > A;. Combining this with (3.3), we get inf;>q I;(w) ™1 = A1.
Finally, we claim that ¢ = 0 and so 7(g) = 0 by the definition of w and (3.30).
Otherwise, ¢>0. Because lim,, oo fbnbntt, =c and lim,, Zlgjgn Wi = Z — [ig, We
would have lim; .o I;(w)™! = oo by (3.31). Then, there would exist a k such that
inf;>0 I;(w) ™t = min;¢y I;(w)™ > Ay by (3.31). This is a contradiction.  [J

Having these preparations at hand, the proof of Theorem 3.2 is quite easy.

Proof of Theorem 3.2. Since inf;>o [;(w) ! > 0, by (3.3), the equalities of (3.19)
become trivial when A\ = 0.
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We now assume that A; > 0. By (3.3), we have A\; > sup, _z-infi>o Ii(w)~ L

Combining this with Proposition 3.5 and its proof (by setting w = A1g), we see that
the sign of the last equality holds:

A\ = inf I, (w) "
1 jg%?;o i(w)

One can replace the right-hand side by sup,,c inf;> I;(w) ™!, since I;(w) is invari-
ant under the transform w; — aw; + g for all @« > 0. [

3.8 The first Dirichlet eigenvalue

We now turn to study the first Dirichlet eigenvalue. This is a more traditional topic
than the Neumann one, as explained in Section 3.6, and will be studied subsequently.
Here we consider Markov chains only. The results given in this section are quite
similar to those of the last section.

Fix a point, say 0 € E. Then the first Dirichlet eigenvalue is defined by

Ao = inf{D(f) : f(0) = 0 and «(f?) = 1}.

For each i € FE, choose a path v; from 0 to i (without a loop). Again, choose a
positive weight function {w(e)} on the edges and define |y;[, = >_ . w(e),

Iw)(e) = ———— S |plum

a(e)w(e) 1#0: v;de

Theorem 3.6. We have \¢ > sup,, inf. I(w)(e)? .

Proof.

1= Zm’f? = Zﬂ'i(fi — fo)? = Zﬂi (Z f(e))

1#£0 1#£0 1#0 ec;
\zzzﬂ%mwﬁy@mww@
170 ecy; e

We now consider birth—-death processes. Let F =
Giiv1 = b; >0 (0<i<N—-1),¢i1=a; >0 (1<
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other ¢ # j. Define

IU/():]‘7 Mn:—, 1<n<N,
al...an

N
Z:Z,una 7-‘_n:,un/Za W:{w:w0:07wiTT}a
n=0

N
1
I; = awi, 0<i< N —1, eW.
(U)) bq,,uz(wz+1 . w@) Z M]wj (4 w
J=1+1
For general by > 0, define
by---b,_
ju=1, ji,=—""0  2<n<N,
0/2 o o o a/n
1 N
I;(w) = — piwi, 0<i<N -1, we W,
Clz‘+1/h;+1(’wz‘+1 — wz) =
Jj=1+1
fri:m/ > A 1<E<,
1<iSN
D(f)= > #ibi(fiy1 — fi)* + Fraaft.
1<i<N—1

Even though part (1) below is a particular case of part (2), it is kept for conve-
nience in applications.

Theorem 3.7. (1) If by > 0, then we have

A= sup inf ILj(w)"'.
wew 0<iSN-1

(2) For general by > 0, the conclusion in part (1) remains true if we redefine \g =

inf {D(f): fo=0,7(f>) =1}.

Proof. Until the last step of the proof, assume that by > 0.
(a) Again, let e; be the edge (i,7+1). For each i > 1, there is a path ~; consisting

of eg,e1,...,e;—1. Take w(e;) = w;+1 — w;. Then
N N
g Vil w T = g (wg, — wy) T = g TRWE-
k: vk e k=i+1 k=i+1

2

Now the inequality “Ag > ---” in part (1) follows from Theorem 3.6.
(b) The remainder of the proof is similar to the proof of Theorem 3.2 given in
Section 3.7. However, we still present the details here for completeness. Let Ag > 0
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and g # 0 with go = 0 be a solution to the equation Qg(i) = —Agg;, 1 < i < N.
Here, we adopt the convention that a; = 0 and by = 0. The key to prove the
equality in part (1) is to show the strict monotonicity of (g;). Once this is done,
without less of generality, assume that g; 1. Then we have

1 1
I; = Q= — 3.32
(9) Qit1it1(Git1 — Gi) Z Hids Ao ( )

for all 0 <7 < N — 1, and hence the required assertion follows.
(c) To see that (3.32) holds, first, we show that
n
—Xo Y Tigi = Tnt10ni1(gnt1 — gn) — Tia11, l<n<N. (3.33)
i=1
Here we use the convention ay_; = 0, provided N < oo. The proof is easy:
n n n
—No Y _migi = Y mQg(i) = [mai(gi-1 — gi) + mibi(git1 — 9:)]
i=1 i=1 i=1
n
= Z | = miai(gi — gi—1) + Tir10iy1(giv1 — gi)]
i=1
= Tnt1an+1(gn+1 — gn) — 10191

Let u; = gi+1 —9gi, 0 <7 < N —1. Even though it is not necessary, for specificity
we set uy = 1 when N < oo. By the eigenequation, we have

biu; — aju;—1 = —Aogi, 1 <7< N.
Then
R@(u) = (aH_lui — bi_|_1ui_|_1 — a;U;—1 + bzul)/uz = )\0 > 0, 1 < 1 < N — 1.
By (3.33) and the assumption g; 11, go = 0, it follows that
0 < fin18n41Un = 10191 — Ao Z/Jigi < H10191, l<n<N-1L
i=1
Thus, fty116,11u, is decreasing in n and

0<ci= lim ppy1Gny1Uy < (H0101-
n—N

Note that ¢ = 0 when N < oo. Next, let

N
N
2

w; = a;ui—1 — bju; + ¢/(Z — py) = Xogi + ¢/(Z — pg) > 0, 1
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Then
(wi+1—wi)/u¢:Ri(u):>\o>O, 1< <N -1

This implies that w; 1. Therefore

N N N
D ompwi =Y (paguy1 — pibjug) + ——— Y py
j=it1 j=i+1 Ho ;5
N . N
= Z (Hjajuj—1 — pjr1a;410;) + 7 Z 1
j=i+1 Ho Jj=1+1
. N
= Mit1Qi4+1U; — C+ Z— o Z Hj
J=1+1
c .
= Mit1Qi41U; — I 0<i<N-—-1
Z = o 55

Define additionally w, = 0. Since w; > 0, it is clear that w € #. We have

Ii(w)_l = Hit10it1(Wit1 — / Z 5 W

J=1+1

C
:M+1a¢+1Rz’(U)Uz’/[Mi+1az‘+1ui—r > Mj]
c —1
(Z = po) pis1@ip1u 2 b

a Uu
Hi+1A54+1U; 1< <i

> Ao, 1<i< N -1,
_ c
Io(w)™" = /halwl/ Zﬂng = M1 <)\0u0 71 )/alm%
0
=X+ =——— = o
(Z - Mo)uo

Collecting these two estimates, we get

sup inf L(@)"'>  inf  L(w)"' = X
Bew 0KISN—1 0<i<N—1

Combining this with proof (a), we know that infoc;<cn—_1 Li(w)™t = Ag. When
N < oo, we have ¢ = 0 and so w; = Agg;- Hence (3.32) holds. We now show
that when N = oo, we still have ¢ = 0 and so (3.32) also holds. Otherwise, since
[it1@ir1u; is decreasing in i, we have inf;>1 I;(w) ™! = I (w)~!. From this, we must
have a contradiction with inf;>q I;(w) ™1 = Ao, provided ¢ > 0.
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We have thus completed the proof of (3.32) under the assumption that g; 1.

(d) We now prove the strict monotonicity of the eigenfunction (g;) of A\g. By
(3.33), we have g1 # 0. Otherwise, by induction, we would have g; = 0 for all i > 1.
Thus, we may assume that g; > 0. Suppose that there is an n with 1 <n < N —1
such that

0=90<91 < " <gn-1<9n = gnt1-
Define g; = giljj<pn] + gnl[i>n]- Then we have

N
Somgi= Y mgl+gn > m,
7 1=n

i<n—1

> m@W)(E) =X > TGP + Tnangn(gn — gn-1)-

i<n—1

Note that

AoGn = _Qg(n) = bn(gn - gn—i—l) + an(gn - gn—l) P an(gn - gn—l)-
We have

N
7Tnangn(gn - gn—l) < >\07Tng721 < )\ogi Zm.

Therefore

- Zl Uy (?QE)(l) o )‘0 Zign_l 7Ti91'2 + Tnlngn (gn - gn—l)
) - N
Zz’ Ti9i Zign_1 771’91'2 + g2 Zi:n Uy
which is a contradiction.
(e) As for the second assertion of the theorem, simply note that in the above

proofs (a)—(d), we make no use of m, (recall that go = 0) and by. Moreover, the
original I;(w) is homogeneous in (y;). Actually, when by > 0,

Ao = inf ibi(fir1 — 1i)? if?
o=, > mibi(fin f)/zﬂ-fz

Ao

N

< )\0,

0<i<N—1 0<i<N
= }nf() Z mibi(fiv1 — fi)* + 7T1a1f12] Z mi f7
70 L cicn 1 1<i<N
= }I;,léfo Z pibi(fis1 — fi)? + pyan ff / Z i f?
LI<i<N—1 17 1<
= in% Z fiibi(fixr — fi)° + fnar f7 / Z fii f7
I F1<iKN—1 -0 IsisN

Thus, we are studying the process with Dirichlet form lN?( f) on the state space
{1,2,..., N} and with killing rate a;. No role is played by by. O






Chapter 4

Generalized Cheeger’s
Method

From the previous chapters, we have seen an application of a probabilistic method
to a problem in Riemannian geometry. This chapter goes in the opposite direction.
We use Cheeger’s method, which comes from Riemannian geometry, to study some
probabilistic problems. We begin with a review of Cheeger’s method in geometry
(Section 4.1). We then move to a generalization (Section 4.2) and present our new
results (Section 4.3). In particular, we examine Cheeger’s splitting technique and
prove an existence criterion for the spectral gap (Section 4.4). In Sections 4.5-4.8,
we sketch the proofs of the main theorems. Applications to birth—death processes
are collected in the last section (Section 4.9).

4.1 Cheeger’s method

Let us recall Cheeger’s inequality in geometry.

Again, let M be a connected compact Riemannian manifold. We consider the
first nontrivial eigenvalue \; of the Laplacian A. We will also study the first Dirichlet
eigenvalue, denoted by Ag. Here is the geometric result.

Theorem 4.1 (Cheeger’s inequality,1970). We have
L.
k > )\1 > Zk ’

where Cheeger’s constant k is defined by

, Area(S)
inf )
OM)=S=0My VOl(Ml) VAN VOl(MQ)

M{USUMo=M

k =
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where S varies over all hypersurfaces dividing M into two parts having the same boundary

S.

As usual, Vol(M) and Area(S) denote the Riemannian volume of M and the
area of S, respectively.
The key ideas in establishing this inequality are the following;:

o Splitting technique. A1 = infp[Ao(B) V A\o(B€)]. That is, we split the space
into two parts B and B¢, and then estimate the first eigenvalue A\; in terms of

Ao(B) and A\g(B¢), where A\o(B) is the first (local) Dirichlet eigenvalue, to be
defined later.

e Estimate \o(B) in terms of another Cheeger’s constant

_ Area(OM)
h = mf e —
MycM,oMnoM=p Vol(My)

9

where M varies over all subdomains of M.

The last constant is closely related to the isoperimetric inequality:

Area(0A) - Area(S?71)
Vol(A)(d=1/d = Vol(Bd)(d-1)/d’

where B? and S ! denote the unit ball and unit sphere in R?, respectively. It
is standard that Area(S%') = 27%2/T'(d/2) and Vol(B¢) = Area(S%')/d. The
ratio on the right-hand side is called the isoperimetric constant. It was observed
first by J. Cheeger(1970) that the proof of the classical isoperimetric inequality can
be also used to study the first eigenvalue \;. Certainly, one can replace Lebesgue
measure with others. The isoperimetric inequality with respect to Gaussian measure
was studied by P. Lévy (1919) [seeLévy (1951, Chapter 1V)]| and extended by M.
Gromov(1980; 1999), S.G. Bobkov(1996; 1997), S.G. Bobkov and F. G6tze(1999a),
D. Bakry and M. Ledoux(1996) even in the infinite-dimensional setting. A broad
account of the results relating to this type of inequality in Euclidean space or on
manifolds was presented in I. Chavel(2001). Mainly, these publications concern
differential operators. However, in this chapter, we are going in another direction,
that of studying integral operators.

4.2 A generalization

Let (E, &, ) be a probability space satistying {(z,x) : x € E} € & x &. Denote by
LP(m) the usual real LP-space with norm || - ||,. Write || - || = || - ||2 for simplicity.
In this chapter, we consider mainly a symmetric form (D, 2(D)) (not necessarily a
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Dirichlet form) on L?(7):

Dif) =3 [ Jaranlf) - @,

(D) = {f € L*(r) : D(f) < oo},

(4.1)

where J > 0 is a symmetric measure, having no charge on the diagonal set {(z, ) :
x € E}. A typical example is as follows. For a ¢-pair (¢(z), ¢(z,dy)), reversible with
respect to m (i.e., w(dx)q(x,dy) = w(dy)q(y,dz)), we simply take

J(dz,dy) = 7w(dx)q(x, dy).

More especially, for a @)-matrix @ = (¢;;), reversible with respect to (m; > 0) (i.e.,
miqi; = m;q;; for all 4, j), we take J;; = m;q;; (j # ) as the density of the symmetric
measure J(dx,dy) with respect to the counting measure.

Naturally, define

M=t {D(f) () =0, /]| =1}, w(f) = / fdr.

We call Ay the spectral gap of (D, 2(D)).

For bounded jump processes, the fundamental known result is due to G.F. Lawler
and A.D. Sokal(1988), stated in Theorem 1.6. As mentioned in Section 1.3, the last
result has a very wide range of applications and has been collected in several books.
The main shortcoming is the restriction on bounded operators.

On the other hand, for differential operators, there are many publications on the
logarithmic Sobolev inequality (1.26). Refer to D. Bakry and M. Emery (1985), D.
Bakry(1994), L.Gross (1993), S. Aida and I. Shigekawa(1994), F.Y.Wang (1997), M.
Ledoux(1999; 2000), A. Guionnet and B. Zegarlinski(2003), and references within.
However, the known results for integral operators are still rather limited. Here is a
general result for Markov chains.

Theorem 4.2 (P. Diaconis and L. Saloff-Coste,1996). Let the Q-matrix QQ = (¢;;)

be reversible with respect to (m; > 0) and satisfy  |¢;;| = 1. Define
J

Ent(f) :Zﬂifilogfi—Z%‘fz‘logzﬂz’fm [ =0,

and D(f) = %Z” 7:qi(f; — fi)?. Then the optimal constant o in the logarithmic

Sobolev inequality
2
Ent (fQ) < ;D(f)

satisfies
2(1 — 2m,) Mg

72 Tog[l/me — 1]’

Ty 1= min ;.
7
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This result is very good, since it can be sharp. Clearly, it works only for a finite
state space.
For the Nash inequality (1.27), our knowledge is more or less at the same level.

4.3 New results

To avoid unboundedness, our goal is to use a renormalizing procedure. Choose a
nonnegative symmetric function r such that

JN(dx, E) /7(dz) < 1, T-a.e., (4.2)
where
J(dz, dy)
r(z,y)>

Then, corresponding to each inequality, define a new Cheeger’s constant, as listed in
Table 1.3. Finally, one of our main results can be stated as follows (Theorem 1.7).

T (dx,dy) = Ipaa)es0) o€ 0,1], JO .= J.

Theorem 4.3. If £(1/2) > 0, then the corresponding inequality holds.

Even though the result is very simple to state, its proof is completed in four
papers: Chen and F.Y. Wang(1998), Chen(1999b; 2000b), and F.Y. Wang(2001).
Of course, many more results were proved in these papers. For instance, here is a
lower estimate of Aq.

Theorem 4.4.
1(1/2)2

12 .
141 — kM3

Surprisingly, this estimate can be sharp, which is rather unusual in using Cheeger’s
approach.

The proof of Theorem 4.4 is delayed to Section 4.5. In parallel, the lower esti-
mates for the logarithmic Sobolev and the Nash inequalities are presented in Sections
4.6 and 4.8, respectively. Some upper estimates are given in Section 4.7.

The main advantage of Cheeger’s approach is that it works in a very general
setting. Here is an example.

A

(4.3)

Corollary 4.5. Let (E, &, ) be a probability space and let j(x,y) > 0 be a symmetric
function satisfying j(x,z) = 0 and

ie)= [ dwynay) <o, weB
E
Then, for the symmetric form generated by J(dz,dy) = j(x,y)n(dz)n(dy), we have

1 ' 2
g j(z,y) _

A o> - : :
L 78 wy () Vi(y)
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Proof. Note that

() — in b i, y) m(da)mw
= Lo (dz)m(dy)

r(A)e(0,1/2] w(A) z) VvV j(y)]«
> inf &) inf  7(A°)
a#y [j(z) V j(y)]* =(A)e0,1/2]
) .
NN (CY)

2 ey [j(z) Vily)l™
The conclusion now follows immediately from (4.3). O

The generalized Cheeger’s approach and the isoperimetric method have also been
applied to the LP-setup for jump processes by F. Wang and Y.H. Zhang(2003), Y.H.
Mao(2001a; 2001b), to diffusions by F.Y. Wang(2000a; 2004b), and to the weaker
Poincaré inequalities (which will be discussed in Chapter 7) by M. Rockner and F.Y.
Wang(2001).

4.4 Splitting technique and existence criterion

Recall the definitions
A =inf{D(f): f € 2(D),n(f) =0,7(f?) =1},
No(A) = f{D(f) : f € D(D), flac = 0,7(f2) = 1}.

As mentioned in the last section, the reduction of the Neumann case to the Dirichlet
one is based on Cheeger’s splitting technique. Here is the result proved by G.F.
Lawler and A.D. Sokal(1988) for bounded operators:

A= inf{Mo(B) V Ao(B°)}.

However, we are unable to extend this result to unbounded symmetric forms. In-
stead, a weaker version is as follows:

A1 = inf Ao(B).
P2 oretoasn )

More precisely, we have the following result.

Theorem 4.6 (Chen and F.Y. Wang(1998), Chen(2000c)). For the symmetric form
(4.1) or general Dirichlet form (D, 2(D)), we have

. , [ o(A) Ao(A9)
f o M(A) <M< inf ,
w0 S A Tr(Al)Iel(O,l)mm{W(AC) (A)

2 inf Ao(A). 4.4
W(A)IGI%O,1/2] 0( ) ( )

N
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Proof. (a) Let f € 2(D) be such that f|4c =0 and 7(f?) = 1. Then

n(2) —7(f)? = 1= w(f12)* 2 1 - n(f*)7(A)
=1 m(A) = m(4°).

Hence
N D _ D)
m(f?) —n(f)? = w(A°)
which implies that A\; < Ag( ( ) Furthermore,
: . [ Ao(A)  Ao(A°)
< f :
Al w(Al)rel(O,l)mln{ﬂ(Ac) (A)
. . [ Ao(A)  Ao(A°)
= f
w(A)ler%0,1/2] i { w(Ac)’ 7(A)

< inf Ao(A A°
rar 1 20 (AT (A)

<2 inf  A(A).

7T(A)1€I}O,l/2] 0( )

This part of the proof works for general D(f).
(b) Next, for € > 0, choose f. such that w(f.) = 0, 7(f2) = 1, and Ay +& > D(f.).

Choose ¢, such that 7(f. < c¢.) < 1/2 and w(f. > ¢.) < 1/2. Set fF=(f. —c.)%,
and define BX = {fF > 0}. Recall that

D(J) =5 [ Idr.aylf) - )P

We have
)\1—|—5>D(f5):D(fg—C€)
—5 [ @ ap[ |12 0) - £ @)] + 15w - £ @]
Therefore,
A +e> %/ J(dz,dy) (f )2 %/ dx,dy)(f (y)—f;(az))2
> Xo(BY)m ((f >2>+A< >w<<f€>2>
> inf B)ﬂ'(( ) (fe )2)

7(B)€(0,1/2]

= (1+c? f  N(B
( +C€)W(B)1€I}0,l/2] o(B)

> inf  A(B)
W(B)IEH(O,I/Q] 0( )
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Because ¢ is arbitrary, the proof is done for the symmetric form (4.1).
(c) Finally, for the general Dirichlet form, since

D) =limo; [ wdoPmdlfo) - @), (4.5

the proof needs a little modification only. [

Theorem 4.6 presents a traditional way of studying A;, that is, estimating A;
in terms of the Dirichlet eigenvalue \g. The latter one is usually easier to handle.
As an illustration, here we consider jump processes. Let (q(x),q(z,-)) be a totally
stable ¢-pair, ¢(z, E') < q(x) < oo for all x € F, and symmetrizable with respect to
a measure [

/ q(x, B)u(dx) :/ q(x, A)pu(dz), A Beé&.
A

B

Equivalently, the corresponding operator €2,

Of () = /E 1@, dy)f () — F(@)] — () (@),

where r(x) = q(z) — q(z, E) for x € E, is symmetric in L?(u). Set E,, = {x € E :
q(x) < n}. Define

D)= [ waate i) = F@F + [ n@ayr@ (e

and ||f|| = D(f) + [IfI|*. Next, set
Py = {f € L*(p) : f vanishes out of some E,,}

and let Z(D) be the completion of %, with respect to || - ||p. Roughly speaking, the
form (D, Z(D)) corresponds to the minimal jump process. Define

Ao =mf{D(f): f € 2(D), | fll = 1}.
Then we have the following variational formula for the lower bound of \y.

Theorem 4.7 (Chen,2000d). Ao > supg. e p-essinf (—€g)/g.

Applications to the Neumann eigenvalue

We need the following result. Let E be a locally compact separable metric space
with Borel o-algebra &, 1 an everywhere dense Radon measure on E, and (D, Z(D))
a Dirichlet form on L?(u) = L3(E; p).

The next result is due to V.G. Maz'ya(1973) (cf.Maz’ya (1985) and references
within) in a particular case, where the use of capacity was begun. The general case
is due to Z. Vondracek(1996). Its proof was simplified by M. Fukushima and T.
Uemura(2003).
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Theorem 4.8. For a regular transient Dirichlet form on A € &,
(46(4)) 7! < Ao(A) € O(A) 7,
where ©(A) = SUDoppacy 1.4 7(K)/Cap(K),
Cap(K) = inf {D(f) : f € 2(D) N Co(E), flx =1},
and Cy(F) is the set of continuous functions with compact support.

Combining the above two results, we obtain the following one.

Theorem 4.9. Let u(F) < co. Then for a regular irreducible Dirichlet form, we have

inf (40(A)) <A <2 inf 0(A)~ .
open A: w(A)€(0,1/2] open A: w(A)€(0,1/2]
In particular,
A1 >0 iff sup O(A) < 0.

open A: w(A)€(0,1/2]

We will return to this capacitary method in Chapter 7.

We now study the existence criterion in a different way. For compact state spaces
(E,&), it is often true that A; > 0. Thus, we need only consider the noncompact
case. The idea is to use Cheeger’s splitting technique. Split the space F into two
parts A and A°. Mainly, there are two boundary conditions: the Dirichlet and the
Neumann boundary conditions, which are absorbing and reflecting at the boundary,
respectively. See Figure 4.1. The corresponding eigenvalue problems are denoted by
(D) and (N), respectively.

(N)
(D) (D): Dirichlet boundary

AC

(N): Neumann boundary

Figure 4.1 Four choices of boundary condition

Next, let A be compact for a moment. Then on A€, one should consider the
problem (D). Otherwise, since A° is noncompact, the solution to problem (N) is
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unknown, and it is indeed what we are also interested in. On A, we can use either

of the boundary conditions. However, it is better to use the Neumann one, since

the corresponding \; is closer to the original A\; when A becomes larger. In other

words, we want to describe the original A\; in terms of the local A\;(A) and Ag(A°).
We now state our criterion informally, which is easier to remember.

Criterion (Informal description [Chen and F.Y. Wang,1998]). A; > 0 iff there
exists a compact A such that A\g(A°) > 0, where
Mo(A%) =inf{D(f,f): fla=0,7(f*) =1}
To state the precise result, define

M (B) = inf {Dp(f) : n(f) = 0,7(f2)/m(B) = 1},

where 1

Dolf) =5 [ Ie.dy)(f) - @)

Theorem 4.10 (Criterion [Chen and F.Y. Wang,1998]). Let A C B satisfy 0 <
w(A), m(B) < 1. Then
M(A%) - AuB)ho(A%)7(B) — 2Man(B°)]
m(A) 77 20(B) + m(B)2[No(A°) + 2M4]
where My = esssupy ,J(dz, A°)/m(dx), esssup, , denoting the essential supremum
over the set A with respect to the measure 7.

(4.6)

As mentioned before, usually A\;(B) > 0 for all compact B. Hence the result
means, as stated in the heuristic description, that A\; > 0 iff A\g(A°) > 0 for some
compact A, because we can first fix such an A and then make B large enough so that
the right-hand side of (4.6) becomes positive. The reason we have to use two sets A
and B rather than a single A is that the operator is not local, and there may exist
an interaction with a very long range. The final choice of regions and the boundary
conditions are shown in Figure 4.2.

BC

Figure 4.2 Nonlocal, need intersection
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Proof of Theorem 4.10. Let f satisfy m(f) = 0 and 7(f?) = 1. Our aim is to
bound D(f) in terms of A\g(A¢) and A\ (B).
(a) First, we use A1 (B):

D(f) > Dp(fIp) = M(B)m(B) " [x(f*Ip) — m(B) ' (f15)]
— M(B)(B) M x(f2Ip) — n(B) 'x(fls:)’]. (4.7)

Here in the last step, we have used 7(f) = 0.
(b) Next, we use \g(A°). We need the following elementary inequality:

[(fTae)(x) = (fLac) ()| <|f(2) = F()] + Taxacuaexa(@, y)|(fLa)(x) — (fL1a)(y)]-
Then

2

AMA?ﬂfUm)SDUIM%Z%/JﬁadwKﬂmxw—LﬂmX@]
<2Duw+;/ J(de, dy)[(f1a) () — (F14)(@)]?

AxAe
< 2D(f) 4+ 2Mam(f?14). (4.8)

(¢) Estimating the right-hand sides of (4.7) and (4.8) in terms of v := 7 (1),
we obtain two inequalities D(f) > ¢;v+¢, and D(f) > —cqv+ ¢, for some constants
¢y, ¢z > 0. Hence

D(f) > inf max{e,y+ ey —c37+ ey}

v€[0,1]
Clearly, the infimum is achieved at ~,, which is the intersection of the two lines I';
and I'y in {---}. See Figure 4.3. Then the required lower bound of \; is given by
c1% + ¢ [

A

Y

0] Yo 1
Figure 4.3 Intersection of I'y and I,
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4.5 Proof of Theorem 4.4

The proof of Theorem 4.4 is based on Cheeger’s splitting idea, that is, to estimate
A1 in terms of \g for a more general symmetric form

1

Dif)=3 [ I~ f@P+ [ K@ofa? @)

where K is a nonnegative measure on (F,&). Studying A is meaningful, since
D(1) # 0 whenever K # 0. It is called the Dirichlet eigenvalue of (D, 2(D)).
Thus, in what follows, when dealing with Ay (respectively, A1), we consider only the
symmetric form given by (4.9) (respectively, (4.1)). Instead of (4.2), we now require
that

TV (dz, E) + KW (dz)]/w(dz) <1,  m-aus, (4.10)
where J(® is the same as before and
o K (dz)
K! )(dx) = I{s(m)o‘>0}W

for some nonnegative function s(x). Corresponding to (J(®), K(®)) we have a sym-
metric form D(®)| defined by (4.9). Next, define

N J@ (A x A°) + K@) (A)
C w(A)>0 7(A)

Theorem 4.11 (Chen and F.Y. Wang,1998). For the symmetric form given by (4.9),
under (4.10), we have
R(1/2)2

0= :
1+V1—h®?

Proof. (a) First, we express h(®) by the following functional form

A

hwnﬂﬂ{;/ﬂwmaQMﬂm—f@ﬂ+Kwkﬂ:f>awuw=@.

By setting f = I4/m(A), one returns to the original set form of h(®). For the reverse
assertion, simply consider the set A, = {f > ~} for v > 0. The proof is also not
difficult:

/ T (da, dy)[f () = f(y)] + K ()
[ @)> ()}

_ /Ooo dv{J(a)({f(@ >y > f(y)}) + KY{f > 7})}

(coarea formula)
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_ /0 @ (A, x A) + K©(A,)]dy
> h(o‘)/o m(A,)dy = )7 (f).

The appearance of K makes the notation heavier. To avoid this, one can enlarge
the state space to E* = E'U {oo}. At the same time, extend f to a function f*
on E*: f* = fIp. Regarding K as a killing measure on E*, the form D(f,g) can
be extended to the product space E* x E* but can be expressed by a symmetric
measure J* only:

J@ (), Ce&xE,
JHC) = K@ (A), C=Ax{oc}or{oc}xA, Acé&,
0, C = {oo} x {o0}.

Then, we have J*()(dz,dy) = J*(%)(dy, dz) and

/ JO(dz, B)f(2)? + K@ (f?) = / * T (dx, B*) f*(2)?,
DO =g [ () - @)

% / T (da, dy)|f(y)— £ ()| + | K@ (da)|f(z)]

:1 * () * e
S| Ol e

W =it {5 [ Ol @) - Wl 0 A =1
2 E*xX E*

(b) Take f with w(f2) = 1, by (a), the Cauchy—Schwarz inequality, and condition
(4.10), we have

h(l)Q < 1/ J*(l)(d d * 2 px 2 ’
i3l z, dy)|f*(y)? = f*(x)?]
E*xFE

< %D(l)( ) / T (dz, dy) [/*(y) + *(2)]°

ExxXE*
= %D“)(f){? / T (dz, dy)[£* (1) + f*(2)?]
Ex*xXE*

_ /E*XE* T (dz, dy) [f*(y) — f*(fv)f}
< DW(f)[2 =DV (). (D
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Solving this quadratic inequality in D™ (f), one obtains

DO(f)>1—1/1-hrD>

(c) Repeating the above proof but by a more careful use of the Cauchy—Schwarz
inequality, we obtain

f*(y) + £ (@) }2

r(z,y)

From this and (b), the required assertion follows. [

Proof of Theorem 4.4. (a) For any B C E with 7(B) > 0, define a local form as
follows:

(a) _1 () T — f(r 2 () . B¢ 1'2
D=5 [ IOndn)lf) - f@F + [ IO B fw)

Obviously, IN)EBQ)(f) = INDEBQ)(fIB). Moreover,
No(B) = inf{D(f) : flpe =0, |f] = 1} =inf {Dp(f) : 7(f215) = 1}.
Let 78 = 7(- N B)/#(B) and set
(o) _ J@(Ax(B\ A))+J)(Ax B) , J(@)(Ax A°)

o _
B ACB,H711'(A)>O (A) ACB,IE(A)>O m(A)

Applying Theorem 4.11 to the local form on L?(B,& N B, 7B) generated by J? =
7(B)"YJ|pxp and KP = J(-, B°)|5, we obtain

2
B/

_
1+y/1 -1y

(b) Noting that inf,(py<1/2 hg) = k(@) by Theorem 4.6, we get

Ao(B) >

2 _ 2
inf hg/Z) inf ntr(m)<1/2 hg/z)

>
T 2 T NS 2
B2y )] Py Bz [ py

2
inf?‘r(B)<1/2 hg/2) k(1/2)2

> =
= 5 2.
1+ \/1 —infrpyciphly T H VIR

A

WV
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We obtain the required conclusion. l

4.6 Logarithmic Sobolev inequality

Theorem 4.12 (Chen,2000b). Denote by o the optimal constant in the logarithmic
Sobolev inequality:

Eni(/?) < 2D(f).

We have
W >0 > 20 K12 > 1,41/2)2’
A2 — Ay g 3c02) B
where
k() = inf (A x A7) k=rO),

 w(A)e(0,1) —7(A)log m(A)’
and A = inf{D)(f) : 7(f) =0, [|f]| = 1}.

Proof. The proof is partially due to F.Y. Wang. To get the upper bound, simply
apply the inequality to the test function f = I4/\/7(A), w(A) € (0,1). To prove
the lower bound, let 7(f) = 0 and || f|| = 1.

(a) Set € =1/2 — )\gl)/[2/€(1/2)] and E(f) = w(f*log f?). We claim that

2e\/D(f) + 1. (4.12)

Actually, one shows first that

Fim g [0 ady) 5@ - F@?| </ A)D(). @y

The proof is standard, as used before (cf. the proof (¢) of Theorem 4.11). Next, set
= {f2 > t} and prove that

I>sY2IE(f) -1] (4.14)
The proof goes as follows. Note that hy := m(A;) < 1At~1. We have

I= / JA/2 (A, x AD)dt > ﬁ<1/2>/ (—hy log hy)dt
0 0

> m(1/2)/ hi log tdt = (/2 / hi(logt 4 1)dt — (/2
0

o /dw / g+ 1)dt — K/

— OB}
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Combining (4.13) with (4.14), we get (4.12).
(b) By (4.12), on the one hand, we have

E(f) < 2:7/D(f) + 1 < 7eD(f) + /7 +1.

where v > 0 is a constant to be specified below. On the other hand, by [Bakry
(1992); Theorem 3.6 and Proposition 3.9], the inequality

m(f*log f2) <CiD(f)+Co,  w(f)=0, [Ifl=1, (4.15)

implies that
o > 2/[C1 + (Cy +2)AT . (4.16)

In other words, if A\; > 0, then the weaker inequality (4.15) is indeed equivalent to
the original logarithmic Sobolev inequality. We will prove this fact soon. Combining
these facts, it follows that
S 2
o> :
ey +[e/v+ 3]/ M

Maximizing the right-hand side with respect to v, we get
2\ k(1/2)

. (4.17)
V@ = A0 4 36072

o>

Next, applying Theorem 4.4 to JV), we have £(1/2) = k() and hence )\gl) > 1 -

V11— kD2 Combining this with Theorem 4.4 and noting that k*/2) > (log 2)x(*/2),
it follows that the right-hand side of (4.17) is bounded below by

2
2(log 2)%k(1/2) S lﬁ(1/2)2_ 0
(log2+3)[1 + V1 - kD] 8

We now introduce a more powerful result; its proof is quite technical and is
omitted here.

Theorem 4.13 (Chen,2000b). Define

O g YDA A +In(4)
7(A)>0  (A)\/1—logm(A)
B (2+6)(A +9)
A(9) = CGIE : 0> 0.
Then we have
21
2k >0 >

~ 14 16infs-0 A(6)"
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Proof of (4.16). Let f = f — w(f). Then the assertion follows by Lemma 4.14
below, (4.15), and the Poincaré inequality:

Ent(f?) < Ent(f?) + 2Hﬂ|2< CiD(f) + (2 + CQ)HfHQZ [Cl + 2??2]1)(1‘). ]

The following result was proved by J.D. Deuschel and D.W. Stroock(1989, page
247), and goes back to O.S.Rothaus (1985, Lemma 9).

Lemma 4.14. We have
SupEnt((f—i—c)2) éEnt(fQ) —i—27r(f2), w(f) = 0.

ceR

Proof. Obviously, the assertion is equivalent to

sup Ent ((f +)%) < Ent((f — w(£)%) +27((f = 7(£)?).

Without loss of generality, assume that || f —7(f)|| = 1 and set h = f — 7(f). Then
we have w(h) = 0 and ||h]| = 1. Using h + 1/t instead of f + ¢, it suffices to show
that

1+ th)?
/(1 + th)?log %dﬂ' < t2/h2 log h?dm + 2t*, teR.
Define s
141
h(;(t):/(1+th)2log( +th) + d7r—t2/h2logh2d7r.
14 t2
Then

(1+th)3h
A+thZ+o

B (#) :2/(1+th)hlog[(1+th)2+(5]d7r+2/

— 2t !1 + log(1 4 %) + / h*log hzdw] :

1 4 th)? 1 4 th)?
h§(t)=2/h210g( + th) +6d7r+10/h2 (L) o

1+ 2)h? (L+th)2+0
1+ th)? 4¢2
g [t - .
/h 1+ th)2 4 02" 1+

By Jensen’s inequality,

1+th)>+46 (1+th)?+§ )
2] ( <1 / =1 1
/h og TERBTE dr < log dr =log | 1+ 12 )

since w(h) = 0 and ||h|| = 1. On the other hand, by the Schwarz inequality,

) 5 (1+th)? [, (1+th)?
A(t, ) </h Tt A) ._/h Tt e
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Hence

4]

1"
h(;(t) < 210g (1 + m

) — [4A(t,6)* — 10A(t,0)] — 2 < 2log(1 + §) + 4.

Noting that hs(0) = log(1 + ¢) and hj5(0) = 0, by Taylor expansion, we get
hs(t) <log(1+ 68) + [2 + log(1 + 6)]t2.

The assertion now follows by letting 6 — 0. [J

4.7 Upper bounds

The upper bound given by Theorem 4.12 is usually very rough. Here we intro-
duce two results which are often rather effective. The results show that order one
(respectively, two) of exponential integrability is required for A\; > 0 (respectively,
o> 0).

Theorem 4.15 (Chen and F.Y. Wang,1998). Suppose that the function r used in
(4.2) is J-a.e. positive. If there exists ¢ > 0 such that

ess sup |p(z) — o(y)*r(z,y) <1, (4.18)

then
M <inf {e2/4: 620, 7(e) = oo, (4.19)

Consequently, A\; = 0 if there exists ¢ > 0 satisfying (4.18) such that ﬂ'(e‘e@) = oo for
all e > 0.

Proof. We need to show that if 7r(659") = 00, then \; < €2/4. For n > 1, define
frn = exple(p An)/2]. Then we have

M < D(fa)/[7(f2) = 7(fn)?]. (4.20)

Since {¢ = m} | 0 as m — oo, for every m > 1, we can choose r,, > 0 such that
(@ = rpy) < 1/m. Then

2

T (L £2) 7 2 Vw (Lpzr,f0) 2 Vm(fa) = Vmesr /.

Hence
w(£a) < [\r(72) fvm + e ] (4.21)

On the other hand, by the mean value theorem,

et —eP| < |A - BleVB = |A - B|(e? v P)
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for all A, B > 0. Hence

D) = 5 [ I dy)lfa(e) = fu(w)
<= / TV (e, dy)lp(@) — )P y) [fa@) V fuly)] (422)

£
< Zﬂ(fg)

Noticing that 7(f2) 1 oo as n — oo, combining (4.22) with (4.20) and (4.21) and
then letting n 1 oo, we obtain A\; < 52/[4(1 — m_l)}. The proof is completed by
setting m T oo. [

Theorem 4.16 (F.Y. Wang,2000a). Suppose that (4.18) holds. If o > 0, then

eom(p?)

50@2
7r(e )éexp[l_28

] < 00, e€0,1/2).

Proof. (a) Given n > 1, let ¢, = ¢ An, f, = exp[re2/2], and h,(r) =
W(eT@i). Then, by (4.2), (4.18), and applying the mean value theorem to the func-
tion exp[rz? /2], we get

D(f) =

- / J(dz, dy)[fa (@) — Ful(y)])?

< [0 aie) -~ owPriy
x maxx {pn (@) fu (@), u(¥) Fu ()}
<r? [0 e, dy)on (o) fo(a)
< r?hl.
(b) Next, applying the logarithmic Sobolev inequality to the function f,, and
using (a), it follows that
rhl (r) < hn(r)log hy(r) + 2r2h. (1) /0, r > 0.

That is,

1
R (r) < ———
n(r) r(1—2r/o)
Since h,(r) > 1 for all r > € > 0, applying Corollary A.5 to the interval [e,2/0), it
follows that

hy (1) log hy, (1), r€[0,0/2).

r(en)
1—-2r/c

The required assertion then follows by letting n — oco. [

(1) < ()72 ) /201 =20/0) %exp[ ] as & = 0.
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4.8 Nash inequality

Theorem 4.17 (Chen,1999b). Define the isoperimetric constant I,, as follows:

JA/2) (A x A°) JA/2) (A x A

L/ - i f — i f s > 1.
o<n(y<r/z m(A)DF T 0<n(<t [r(a) Am(Ae)]C
Then
Var(f)"52Y <202D(f) | fIIY", e L3(n). (4.23)

Proof. The proof below is quite close to that of L. Saloff-Coste(1997). Fix a
bounded g € Z(D). Let ¢ be a median of g. Set f =sgn(g — c)|g — c[?>. Then f has
median 0. On the one hand, by using the functional form of I,

I, = inf{ 5 J JUA (da, dy)| fy) - f()]

1nfc: c is a median of f ||f - CHV/(V—l) .

fe LY(r)is nonconstant}, (4.24)
which will be proved later, and setting ¢ = v/(v — 1), we obtain

1 _
lg —cll5y = Iflq < 5" [ JY2(de, dy)| f(y) — f()]- (4.25)
2
On the other hand, since

la? — b?| if ab > 0,

—b| (Ja| + |b]) =
a | (la] + [b]) {(a|+|b)2 it ab < 0,

we have | f(y) — f(2)| < lg(y) —g(2)| (|g9(y) — ¢l +|g(x) —¢c|). By using this inequality
and following the last part of the proof of Theorem 4.11, we get

/ JAD (A, dy)| £ (y) — F ()

1/2
< v/2D(g) !/J(l)(dx,dy)[lg(y) — o +g(x) — €]’ (4.26)

< 2v/2D(g) llg = cll2-

Combining (4.25) with (4.26), we get

lg — cll3, < I, '\/2D(g) [lg — cllz.
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On the other hand, writing g2 = ¢%/(*t1 . ¢2¥/(*+1) and applying the Holder in-
equality with p’ = (v +1)/2 and ¢/ = (v +1)/(v — 1), we obtain

1/(v+1 v/(v+1
lgll2 < lglly/ @V g5 0.

From these facts, it follows that

B v/2(v+1) 1/(v+1
lg —cll2 < [1'v/2D(g) llg ~ cll2] lg = el ¢+,

Thus
lg — el 3" < 21,2D(g) g — €|},

and hence
Var(g) 2/ < 21,2D(g) ||g]|}/"

We now return to prove (4.24). Denote by J, the right-hand side of (4.24). Set

q = v/(v—1) and ignore the superscript “(1/2)” in J(}/2) everywhere for simplicity.
Take f = I4 with 0 < m(A4) < 1/2. Then f has median 0. Moreover,

/J@%@Mﬂw—fmﬂ=lﬂAxA% 1£lla = m(A)V4.

This proves that I, > J,.
Conversely, fix f with median c. Set fi= (f —c¢)*. Then f, + f_ = |f — ¢| and
F () = f@)] = [£+(y) = f@)| + |~ (y) = f~(x)|. Put F = {fx >t}. Then

5 [T )~ @)= 5 [ Te ) 1 0) - F1()] +17-) — f-@)]

= [ e ) ()

(by the coarea formula)

1l
>, / ()Y 1 n(F) Y9 de.
0

Next, we need the following simple result.

Claim. Letp > 1. Then | f|, < Fiff | fg]l1 < FG holds for all g satisfying ||g||, < G,
where 1/p+1/q=1.

It follows that

r(FE)V/a = HIFtin = | S|Fg1 <IFt:|:, 9), 1/r+1/q=1.
glirx
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Thus, for every g with ||g||» < 1, we have

%/NMAwﬂw—ﬂm>Lffh%ﬂm+ﬂawﬁﬂ
V[<f+7 f_ >}
u<‘f_c‘ g>

Taking the supremum with respect to g, we get

%/JQQMMﬂw—f@ﬂ>LW—dM O

4.9 Birth—death processes

Finally, we apply the above results to birth—death processes to illustrate the power
of Cheeger’s approach. Consider a regular birth—death process on Z, with birth
rates (b;) and death rates (a;). Then J;; = mb; if j =i+ 1, J;; = ma; if j =i —1,
and J;; = 0 otherwise. We have the following result.

Theorem 4.18. For a birth—death process, take 7;; = (a; + b;) V (a; + b;) (i # j).
Then the following assertions hold:

(1) For the Nash inequality, I, > 0 for some v > 1 iff there exists a constant ¢ > 0
such that
Q4

2 C[ Uy
A/ Tii—1 ;
If so, we indeed have I, > ¢
(2) For the logarithmic Sobolev inequality, £(°°) > 0 iff

. ;A
inf s — log m; > 0;
i>1 i1 (; ”)\/ ; T

. UEeZ;
ergl Tffi_1/( — ij) logZWj > 0.

Jjzi JZ2i

(v—1)/v
] st

k(W) > 0 iff

(3) For the Poincaré inequality, k(®) > 0 iff there exists a constant ¢ > 0 such that

7'('1(1@ .
e E T, 1> 1.
7,2 1 >

Then we indeed have k(%) > ¢.
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In particular, for the Poincaré inequality, the sufficient condition given by the
last assertion can be rewritten as

/Tnon—
sup p[n, 0o) NVl <. (4.27)

n>1 Mn—lbn—l
The criterion given in Table 1.4 is

1

sup p[n, 0o) Z < 0. (4.28)

n>1 j<n—1 /~LJ 7

From these, the difference of the methods should be clear. Further comparison is
given in Section 7.3.

Example 4.19. Consider the birth—death process with ag;_1 = (2i — 1), ag; = (2i)%,
and b; = a; for all ¢ > 1. Then (4.28) holds but (4.27) fails.

Proof. Since b; = a;, we have u,b, ~ 1 and so

1
E ~ T as mn — oQ.
jan—1 MV

But u[n,00) ~ 1/n; hence (4.28) holds. Next, since 7, , 1 ~ n?, it is clear that
(4.27) fails. O

The details of this chapter are included in Chapter 9 of the second edition of?.



Chapter 5

Ten Explicit Criteria in
Dimension One

Traditional ergodicity constitutes a crucial part of the theory of stochastic processes
and plays a key role in practical applications. The theory of ergodicity has been
much refined recently, due to the study of some inequalities, which are especially
powerful in the infinite-dimensional situation. The explicit criteria for various types
of ergodicity for birth—death processes and one-dimensional diffusions are collected
in Table 1.4 and Table 5.1 below, respectively. In this chapter, we explain in detail
an interesting story about how to obtain one of the criteria for birth—death processes.

This chapter is organized as follows. First, we recall the study of exponential
convergence from different points of view in different subjects: probability theory,
spectral theory, and harmonic analysis (Sections 5.1 and 5.2). Then we introduce
an explicit criterion for convergence, variational formulas, and explicit estimates for
the convergence rates. Some comparisons with known results and an application
to geometry are included (Section 5.3). Next, we present ten (eleven) criteria for
the two classes of processes (birth—death processes and one-dimensional diffusions),
respectively (Section 5.4). The technical proofs are collected in the last two sections.
Section 5.5 is devoted to exponential ergodicity for the discrete case. Section 5.6 is
devoted to strong ergodicity, using both analytic and coupling proofs.

Let us begin with the chapter by recalling the three traditional types of ergodicity.

5.1 Three traditional types of ergodicity

Let @ = (g;;) be a regular @-matrix on a countable set £ = {i,j,k,...}. That is,
q;; = 0 forall i # j, ¢, == —q;; = Zj;,gi q;; < oo for all i € E, and () determines
uniquely a transition probability matrix P; = (p;;(t)) (which is also called a Q-
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process or a Markov chain ). Denote by m = (m;) a stationary distribution of P;:
wP, = 7w for all t > 0. From now on, assume that the ()-matrix is irreducible and
hence the stationary distribution 7 is unique. Then the three types of ergodicity are
defined as follows:

Ordinary ergodicity : tlim Ipij(t) —mj| =0, (5.1)
— 00
FExponential ergodicity : tlim e |pi;(t) — ;| =0, (5.2)
—00
Strong ergodicity : tlim sup |pi;(t) — 7| =0 (5.3)
—0o0
= 1tli}m &Pt sup [p;;(t) — ;[ =0, (5.4)

where & and B are (the largest) positive constants and i, j vary over all of E. The
equivalence in (5.4) is well known, but one may refer to the second part of Section
5.6. These definitions are meaningful for general Markov processes once pointwise
convergence is replaced by convergence in total variation norm. The three types of
ergodicity were studied a great deal during the period 1953-1981. Especially, it was
proved that

strong ergodicity = exponential ergodicity = ordinary ergodicity.

Refer to W.J. Anderson(1991),?, Chapter 4, S.P. Meyn and R.L. Tweedie(1993b)
for details and related references. We will return to this topic in Chapter 8. The
study is quite complete in the sense that we have the following criteria, which are
described by the Q-matrix plus a test sequence (y;) only, except for the exponential
ergodicity, for which one requires an additional parameter .

Theorem 5.1 (Criteria). Let H # () be an arbitrary but fixed finite subset of E. Then
the following conclusions hold:

(1) The process P, is ergodic iff the system of inequalities
DicH 2o Gi¥i < 00,

has a nonnegative finite solution (y;).
(2) The process P, is exponentially ergodic iff for some A > 0 with A\ < ¢, for all ¢,
the system of inequalities

Y < —Ayi— 1, i ¢ H, (5.6)
Dicn Dz Gij¥i < 0

has a nonnegative finite solution (y;).
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(3) The process P; is strongly ergodic iff the system (5.5) of inequalities has a bounded
nonnegative solution (y;).

Replacing (y;) in (5.6) with (7; = Ay; + 1), one can rewrite (5.6) as

Yi > 17 Z S E7
> %Y < —yi, i ¢ H, (5.67)
DicH 2ojzi 1ij¥i < 00

The probabilistic meaning of the criteria are respectively as follows:

max E;o; < oo, maXEie/\UH < oo and supE;o4 < oo,

1€H i€eH icE
where o = inf{t > the first jumping time: X; € H} and A is the same as in (5.6).
The criteria are not completely explicit, since they depend on the test sequences (y;),
and in general it is often nontrivial to solve a system of infinitely many inequalities.
Hence, one expects to discover some explicit criteria for some specific processes.
Clearly, for this, the first candidate should be the birth—death processes. Recall
that for a birth—death process with state space E = Z, = {0,1,2,...}, its Q-matrix
has the form: ¢; ;,y = b; >0 foralli >0, ¢;; y =a; >0foralli>1, and ¢g;; =0
for all other ¢ # j. Along this line, it was proved by R.L. Tweedie(1981) [see also
W.J. Anderson(1991) or Chen(?)] that

1
S = Z [n Z ~ < oo = Exponential ergodicity, (5.7)

where py =1 and p,, = bg -+ bp—1/a;1 - - - a, for all n > 1. Refer to Z.K. Wang(1980),
X.Q. Yang(1986), or Z.T. Hou et al.(2000) for the probabilistic meaning of S. The
condition is explicit, since it depends only on the rates a; and b;. However, the
condition is not necessary. A simple example is as follows. Let a; = b; =7 (i > 1)
and by = 1. Then the process is exponentially ergodic iff v > 2 but S < oo iff v > 2.
See Chen(1996) or Examples 8.2 and 8.3. Surprisingly, the condition is correct for
strong ergodicity.

Theorem 5.2 (H.J. Zhang, X. Lin, and Z.T. Hou,2000). Strong ergodicity holds iff
S < o0.

Refer to Z.T. Hou et al(2000). With a different proof, the result has been extended
by Y.H. Zhang(2001) to the single birth processes with state space Z (the details are
presented in Section 5.6 below). Here, the term “single birth” means that ¢; ;,, > 0
for all ¢ > 0 but ¢;; = 0 can be arbitrary for j < ¢. Introducing this class of
Q-processes is due to the following observation. If the first inequality in (5.5) is
replaced by equality, then we get a recursion formula for (y;) with one parameter



98 5 Ten Explicit Criteria in Dimension One

only. Hence, there should exist an explicit criterion for ergodicity (respectively,
uniqueness, recurrence, and strong ergodicity). For (5.6), there is also a recursion
formula, but now two parameters are involved, and so it is unclear whether there
exists an explicit criterion for exponential ergodicity.

Note that the criteria are not enough to estimate the convergence rate & or B [cf.
Chen(2000a)]. That is the main reason why we have to return to the well-developed
theory of Markov chains. For birth—death processes, the estimation of & was studied
by E.A. van Doorn in a book(1981) and in a series of papers(1985; 1987; 1991; 2002).
He proved, for instance, the lower bound

a > iI>1£ {CL¢+1 +bi —Vaib; — v/ ai+lbi+1}a

which is exact when a; and b; are constant. The following formula for the lower
bounds was implied in his papers and rediscovered from a different point of view (in
a study of the spectral gap) by Chen(1996):

& = sup inf{a;41 +b; — a;/vi—1 — bip1v4}.
v>0120

Furthermore, the precise value of & was determined by E.A. van Doorn for four prac-
tical models. The main tool used in van Doorn’s study is the Karlin—-Mcgregor rep-
resentation theorem, a specific spectral representation involving heavy techniques.
No explicit criterion for & > 0 ever appeared until Chen(2000c).

5.2 The first (nontrivial) eigenvalue (spectral gap)

Birth-death processes have a nice property, symmetrizability: p;p;;(t) = p;p;i(t)
for all 7,7 and ¢t > 0. Then the matrix ) can be regarded as a self-adjoint operator
on the real L?-space L?(u) with norm || - ||. In other words, one can use the well-
developed L?-theory. For instance, one can study the L?-exponential convergence
given below, assuming that Z = ) . p; < oo and then setting m; = p;/Z. Then
convergence means that

1Pof = (I <L = a(f)lle™™ (5-8)

for all t > 0, where 7(f) = [ fdm and \; is the first nontrivial eigenvalue (or spectral
gap) of (—Q) [cf.?, Chapter 9 or Theorem 5.10 below].

The estimation of A; for birth—death processes was studied by W.G.Sullivan
(1984), T.M.Liggett (1989), and C. Landim, S. Sethuraman, and S.R.S. Varad-
han(1996) [see also C. Kipnis and C. Lamdin(1999)]. It was used as a comparison
tool to deal with the convergence rate for some interacting particle systems, which
are infinite-dimensional Markov processes. Here we recall three results.
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Theorem 5.3 (W.G. Sullivan,1984). Let ¢, and ¢, be two constants satisfying

D isi M 1
Cy >supj;, Co = SUp —.
izl i i1 Qi

Then \; > 1/4c3c,.

Theorem 5.4 (T.M. Liggett,1989). Let ¢; and ¢, be two constants satisfying

D isi > i Mia;
i1 Milg i1 iy

Then Ay = (/e2 — Vo — ) Jcqy = 1/4cqc,.

Theorem 5.5 (T.M. Liggett,1989). Let inf;>; a; > 0, inf;>¢b; > 0 and SUp; > b; <
oo. Then A1 > 0 iff (u;) has an exponential tail: Zj%. p; < Cp; for all 4 and some
constant C' < oo.

The reason we are mainly interested in the lower bounds is that on the one
hand, they are more useful in practice, and on the other hand, the upper bounds
are usually easier to obtain from the following classical variational formula:

A = inf {D(f) : () = 0,u(f2) = 1},

where

Zulqw f% 2(D) = {f € L*(u): D(f) < oo},

and p(f) = [ fdp.
Let us now leave Markov chains for a while and turn to diffusions.

One-dimensional diffusions

As a parallel of birth—-death process, we now consider an elliptic operator L =
a(x)d?/dz? + b(z)d/dz on the half-line [0, 00) with a(x) > 0 everywhere and with
reflecting boundary at the origin. Again, we are interested in estimation of the prin-
cipal eigenvalues, of which the study is a typical, well-known Sturm—Liouville eigen-
value problem in the spectral theory. Refer to Y. Egorov and V. Kondratiev(1996)
for the present status of the study and references. Here, we mention two results,
which are the most general ones we have ever seen.

From now on, we often omit the integral variable when it is integrated with respect
to the Lebesgue measure.
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Theorem 5.6. Let b(x) = 0 (which corresponds to the birth—death process with a; = b;
for all i > 1) and set § = supx>0xfxoo a~1. Then we have the following results.

(1) 1.S. Kac and M.G. Krein(1958): =1 > Xy > (40)~!, where )¢ is the first eigen-
value corresponding to the Dirichlet boundary f(0) = 0.
(2) S. Kotani and S. Watanabe(1982): =1 > \; > (40)~ L.

It is a simple matter to rewrite the classical variational formula as (5.9) below.
Similarly, we have (5.10) for A.
Poincaré inequalities

' If == (H)II> < AT'D(S), (5.9)
Ao : IF1? < A 'D(f),  f(0)=0. (5.10)

It is interesting that inequality (5.10) is a special but typical case of the weighted
Hardy inequality discussed in the next subsection.

Weighted Hardy inequality
The classical Hardy inequality goes back to G.H. Hardy(1920):

[e’e) f p D P 0o . - /
/o <E> <<pT1>/O 7 f(0)=0, f'>20,p>1,

where the optimal constant was determined by E. Landau (1926). When p = 2, this
corresponds to the operator L = 224> /dx?. Then the result says that \g = 1/4.
Clearly, this operator is too special. The extension by I. Kac and G. Krein(1958)
to the operator L = a(z)d*/dz?, mentioned in Theorem 5.6 (1), provides nice lower
and upper bounds up to a factor 4, rather than an explicit formula for A\g. After a
long period of efforts by analysts, the inequality was finally extended to the following
form, called the weighted Hardy inequality, by B. Muckenhoupt(1972):

/OO fPdr < A/OO PN, fect, f(0)=0, f' >0, (5.11)
0 0

where v and A\ are nonnegative Borel measures. This is the most general form in
dimension one.

Another direction to generalize the Hardy inequality is to go to higher dimen-
sions. A general result was stated in Theorem 4.8.

The Hardy-type inequalities play a very important role in harmonic analysis and
potential theory, and have been treated in many publications. Refer to the books B.
Opic and A. Kufner(1990), V.G. Maz’ya(1985), A. Kufner and L.E. Persson(2003),
and the articles E.M. Dynkin(1991), E.B. Davies(1999), and A. Wedestig(2003) for
more details. We will return to this inequality soon.

We have finished an overview of exponential convergence (equivalently, the Poincaré
inequalities) in different areas. The difficulties of the topic are illustrated in Section
1.1.
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5.3 The first eigenvalues and exponentially
ergodic rate

We are now in a position to state our results. To do so, define

Zuj,

j<i—1 'LLJ g>z

W ={w:w,=0,w; 11}, Z:ZW’ 5—Supz

1>0

where “t1” means strictly increasing. Recall the notation w; = w; — w(w). By

suitable modification, we can define # (cf. the last subsection of Section 1.2) and
explicit sequences {0, } and {4,} (the diffusion analogues are given in Theorem
6.1(3)). Refer to Chen(2001a) for details.

The next result provides a complete answer to the question proposed in Section
5.1. In particular, we have gone a long way to arrive at an explicit criterion (parts
(3) and (4) below). A direct proof of the criterion will be presented in Section 5.5.
The assertion (4) below is now a consequence of Theorem 8.18 (4).

Theorem 5.7. For birth—death processes, the following assertions hold:

(1) Dual variational formulas.

A1 = sup mf pibi(wip1 — w;) / Z p;w;  Chen (1996)] (5.12)
wew 120 it

= inf sup pbi(wis1 — / > pjw;  Chen (2001a)] (5.13)
wey 120 jZitl

(2) Approzimation procedure and explicit bounds.
Z6 26 >N >0 > (46)7! forallm [Chen(2000b; 2001a)].

(3) Explicit criterion. Ay > 0iff § < oo  [L. Miclo(1999b), Chen (2000b)].
(4) Relation: & = A1 Chen (1991b)].

The formula (5.12) is nothing new, but is simply Theorem 3.2 (Section 3.7). The
proofs of parts (2) and (3) are similar to those for the continuous case (stated as
Theorem 5.8 below), and will be presented in Section 6.7. In part (1) of Theorem

5.7, only two notations are used: the sets # and # of test functions (sequences).
Clearly, for each test function, (5.12) gives us a lower bound of A;. This explains
the meaning of “variational.” Because of (5.12), it is now easy to obtain some
lower estimates of Aq, and in particular, one obtains all the lower bounds given
by Theorems 5.3-5.5. Next, by exchanging the orders of “sup” and “inf,” we get
(5.13) from (5.12), ignoring a slight modification of # . In other words, (5.12) and
(5.13) are dual to each other. For the explicit estimates “671 > \g > (45) 17 and
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in particular for the criterion, one needs to find a representative test function w
among all w € # . This is certainly not obvious, because the test function w used
in the formula is indeed a mimic eigenfunction (eigenvector) of A1, and in general,
the eigenvalues and the corresponding eigenfunctions can be very sensitive, as we
have seen from the examples given in Section 1.1. Fortunately, there exists such a
representative function with a simple form. We will illustrate the function in the
context of diffusions in the second to the last paragraph of this section.
In parallel, for diffusions on [0, c0), define

o =/f o, s=sup [ /

{fGCOoo)ﬂC’l(Ooo  f —Oandf\(()oo)>0}

Again, denote by .Z a suitable modification of .Z F |cf. (6.8) below].

Theorem 5.8 (Chen(1999a; 2000b; 2001a)). For diffusion on [0, c0), the following
assertions hold;

(1) Dual variational formulas.

Ao > sup inf e f/(x // feC/a, (5.14)
feF x>0

Ao < inf sup e“@) f/(x // fe /a. (5.15)
feﬁ x>0

Furthermore, the equality holds in (5.14) and (5.15) if both a and b are continuous
on [0, 00).

(2) Approximation procedure and explicit bounds. A decreasing sequence {J,} and
an increasing sequence {Sn} are constructed explicitly such that

S >0t >N >0 > (467 foralln.

(3) Explicit criterion. Ao (respectively, A1) > 0 iff § < co.

We mention that the above two theorems are also based on Chen and F.Y.
Wang(1997a).

To see the power of the dual variational formulas, let us return to the weighted
Hardy inequality.

Theorem 5.9 (B. Muckenhoupt,1972). The optimal constant A in the inequality

/ f2dv < A/ F2a), fect f)=o, (5.16)
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satisfies B < A < 4B, where

B = sup vz, oo)/ (daps/dLeb) ™!
0

x>0

and d\,ps/dLeb is the derivative of the absolutely continuous part of A with respect to
Lebesgue measure.

By setting v = 7 and A = e“dz, it follows that the criterion in Theorem 5.8 is
a consequence of Muckenhoupt’s theorem. Along this line, the criteria in Theorems
5.7 and 5.8 for a typical class of the processes were also obtained by S.G. Bobkov
and F. Go6tze(1999a; 1999b), in which, the contribution of an earlier paper by J.H.
Luo(1992) was noted. Refer also to L.H.Y. Chen(1985a), and his joint paper with
J.H. Lou(1987) for a different approach to some Poincaré-type inequalities.

We now point out that the explicit estimates “6=! > X\g > (40)~1” in Theorems
5.8 and 5.9 follow from our variational formulas immediately. Here we consider the
lower bound “(46)~!” only; the proof for the upper bound “5=1” is also easy, in
terms of (5.15) (cf. Section 6.2).

Recall that § = sup,~¢ [y € [~ €% /a. Set p(z) = [ e~ . Using the integra-
tion by parts formula, it follows that

[ e ([)

VA
(@9

_|_
| &,
a\
8

S
)
(@9

Hence

e—C(x) oo\/@eC e—C(x) /QO(LE). 25 B
(W)'(x)/x « SR pw

This gives us the required bound by (5.14), since /¢ € Z.
Theorem 5.8 can be immediately applied to the whole line or higher-dimensional

situations. For instance, for the Laplacian on compact Riemannian manifolds, it
was proved by Chen and F.Y. Wang(1997b) that

A1 = sup inf - 4f(;)“)
fez re0.D) [FC(s)~1ds [7 C(u) f(u)du

= 517

for a specific function C(r) (Theorem 1.1). Thanks are given to the coupling tech-
nique, which reduces the higher-dimensional case to dimension one. We now have
>0 1 >6 > 611> (40)7 1, similar to Theorem 5.8. Refer to Chen(2000b;
2001a), or Theorem 6.1 (3) and Theorem 6.2 (3), for details. As we mentioned be-
fore, the use of test functions is necessary for producing sharp estimates. In fact,
the variational formula enables us to improve a number of best known estimates
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obtained previously by geometers, but none of them can be deduced from the esti-
mates “6~1 > & > (46)71.” Furthermore, the approximation procedure enables us
to determine the optimal linear approximation of & in K: & > n2/D?+ K /2, where
D is the diameter of the manifold and K is the lower bound of Ricci curvature, as
stated in Corollary 1.3 [cf. Chen, E. Scacciatelli and L. Yao(2002)]. We have thus
shown the value of our dual variational formulas.

5.4 Explicit criteria

Three basic inequalities

In the last three sections, we have mainly studied the Poincaré inequality, i.e., (5.17)
below. Naturally, one may study other inequalities, for instance, the logarithmic
Sobolev inequality or the Nash inequality listed below:

Poincaré inequality - ||f — 7(f)||? < A\ED(f); (5.17)
Logarithmic Sobolev inequality : /f2 log(|f|/IlfINdm < o~ D(f); (5.18)

Nash inequality - || f —=(f)]|*T*/" < n_lD(f)HfHLlL/V (for some v > 0).
(5.19)

Here, to save notation, o (respectively, 1) denotes the largest constant such that
(5.18) (respectively, (5.19)) holds.
The next inequality is a generalization of the Nash one.

Liggett-Stroock inequality :  ||f —m(f)||* < CD(f)*?V(f)'1, (5.20)
where V' is homogeneous of degree two:
Vief +d) =V (f), c,d € R. (5.21)

The importance of these inequalities is due to the fact that each inequality de-
scribes a type of ergodicity.

Theorem 5.10 ([Chen(1991b; ?), T.M. Liggett(1989; 1991)]). Let V satisfy (5.21)
and let (P;);>0 be the semigroup determined by the Dirichlet form (D, 2(D)).

(1) Let V(Pf) < V(f) for all t > 0 and f € L*(w) (which is automatic when
V(f) = |Ifl?). Then the Liggett—Stroock inequality implies that

Var(Pf) = [|Pf —m(HI* <OVt t>0.

(2) Conversely, in the reversible case, the last inequality in (1) implies the Liggett—
Stroock inequality.
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(3) Poincaré inequality <= Var(P,f) < Var(f) exp[—2A1t].

Proof. Here we prove parts (1) and (2) only. The proof of part (3) is similar [cf.?,
Theorem 9.1].

(a) Assume that (5.20) holds. Let f € (D) and w(f) = 0. Then f, :== P(t)f €
2(D). Set F, = m(f?#). Since

F{ = =2D(f) < =207V () I f[* = ~2CPEPV(§) P/,

part (1) follows from Corollary A.4. Note that the proof of this step does not need
reversibility.

(b) Conversely, since the process is reversible, the spectral representation theorem
(cf. Section 7.4) gives us

LF-PORL DT D) as 10
Hence

LA =tD(f) < (PO S, ) < IPOSIIAI < IFIVE V=, a(f) =0.

Put A = D(f), B = ||fl|\/CV(f), and C; = |f||>. Tt follows that C; — At <
Bt(1=9)/2 The function h(t) := At + Bt=9/2 — C; (> 0 for all ¢ > 0) achieves its
minimum

q—1 2/(q+1) 9 (q—=1)/(g+1)

h(t) = || —=— Y Ala=D/(a+1) p2/(¢+1) _ o
2 q—1

at the point

Now, since h(tp) > 0, it follows that || f]|> < Cy D(f)Y/PV(f)'/9 for some constant
Cy > 0, and so we have proved part (2). O

[ 24 ] —2/(q+1)
to =

Criteria

Recently, the criteria for the logarithmic Sobolev and Nash inequalities as well as
for the discrete spectrum (which means that there is no continuous spectrum and
moreover, all eigenvalues have finite multiplicity) were obtained by Y.H. Mao(2002a;
2002b; 2004), based on the weighted Hardy inequality. On the other hand, the
main parts of Theorems 5.7 and 5.8 were extended to a general class of Banach
spaces by Chen(2002a; 2003a; 2003b), which unify a large class of inequalities and
in particular provide a unified criterion. This is the aim of the next chapter. We can
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now summarize the results in Tables 1.4 and 5.1. The tables are arranged in such
an order that the property in each line is stronger than the previous one, the only
exception being that even though the strong ergodicity is often stronger than the
logarithmic Sobolev inequality, they are not comparable in general (Chen,2002b);
refer to Chapter 8 for more details.

For birth—death processes, ten criteria are presented in Table 1.4. For two of the
criteria, the proofs are given in the next two sections.

For diffusion processes on [0, 00) with reflecting boundary and operator

d? d
L=a(z)~— =
) =g+ b()
define . y
Cw = [ bja, o= [ Ca
0 x
Then we have criteria listed in Table 5.1. Here, “(x) & ---” means that one

Table 5.1 Eleven criteria for one-dimensional diffusions

Property Criterion
Uniqueness / 1[0, 2] ¢®) =00 (%)
0
Recurrence / e ¢ =
0
Ergodicity () & pf[0,00) < oo
E . 1 . e X
xgonentla ergodicity (%) & supu[x,oo)/ e C < oo
L#-exp. convergence >0 0
Discrete spectrum (%) & lim plz, oo)/ e =0
T—r 00 0

Log. Sobolev inequality T
Exp. convergence in entropy (+) & ii%” [, o9logluz, 00} 0 ¢ =

(*)&/ pfz, 00)e” ) < o
0

Strong ergodicity
L'-exp. convergence

xX
Nash inequality () & sup p[z, oo)(”_Q)/”/ e % <00
>0 0
requires the uniqueness condition in the first line plus the condition “---”. The “(g)”

in the last line means that there is still a small gap from being necessary. In other
words, when v € (0, 2], there is still no criterion for the Nash inequality. The reason
we have one more criterion here than in Table 1.4 is due to the equivalence of the
logarithmic Sobolev inequality and exponential convergence in entropy. However,
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this is no longer true in the discrete case. In general, the logarithmic Sobolev
inequality is stronger than exponential convergence in entropy. A criterion for the
exponential convergence in entropy for birth—death processes remains open (open

problem) [cf. S.Y. Zhang and Y.H. Mao(2000), Y.H. Mao and S.Y. Zhang(2000)].
The other two equivalences or coincidences in the tables come from Figure 1.1.

5.5 Exponential ergodicity for single birth
processes

In this section, we study exponential ergodicity for single birth processes, which are
in general irreversible. In particular, we prove the criterion for the ergodicity of
birth—death processes presented in Table 1.4. The strong ergodicity for this class of
processes will be studied in the next section.

The Q-matrix of a single birth process () = (qw i,j € Z4) is as follows: ¢; ;| >
0, ¢ ;4; =0forallieZ,;:= {0,1,2,...} and j > 2. Throughout the chapter we
consider only a totally stable and conservatlve Q-matrix: ¢, = —q; = Y i Qij < 00

for all © € Z. Define g = Zj 0n; for 0 <k <n(k,neZy)and

1
mo=—, My <1+Zq(k) ), n>1,

do1 qn ,n—+1
1 n—1 ’
FM =1, F=-——3%¢MRY,  0<i<n,
qn n+1 k—3
do =0, d, 1+Zq(k) . n>1.
qn n+1
More simply,
n Fék:) n Efbk) FT(LO)
d, = , My = = +d,, n > 0.
iy Qk k1 o Ik k+1 qo1

Here, as usual, ), = 0. For birth-death processes, these quantities take a simpler
form:

1
Lnbn,

bo 1
Y n — Mnbn

My = ulo,n], E© = pll,n],  n>1,

nbn

where pli, k] = 3, ;< #tj- The main advantage of single birth processes is that the
exit boundary consists of at most one single extremal point, and so explicit criteria
can be expected. Here are the criteria for the three classical problems.
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e Uniqueness (regularity) <= > m, = co. Next, assume that the Q-matrix
is irreducible; then

e recurrence <= y -, F? = co. In the regular case,
o ergodicity <= d := SqueZ+(ZI:L:o dn)/(ZfL:o Féo)) < 00

[cf.?, Theorems 3.16 and 4.54].

Unfortunately, a criterion for the exponential ergodicity of general single birth
processes remains unknown (open problem). Here is a sufficient condition, due to
Y.H. Mao and Y.H. Zhang(2004) with an addition (Proposition 5.13), which is a
generalization of the criterion for birth—death processes.

Theorem 5.11. Let the single birth ()-matrix be regular and irreducible. If

1
quZ >0 and M := SupZF( )Z (5.22)

© <
>0 j=i Gj+1L;

then the process is exponentially ergodic. Condition (5.22) is necessary for the expo-
nential ergodicity of birth—death processes for which

—5—supz Z,u]<oo

z>0
Proof. In view of Theorem 5.1, the condition inf; g; > 0 is indeed necessary.
We prove first the sufficiency of (5.22).
(a) Let H = {0}. We need to construct a solution (g;) to the equation (5.6") for
a fixed \: 0 < \ < inf; ¢;. First, define an operator

1 1—1 o0 f
ZEZ%F"(O) Z _ Ik i>1.
=

(0)’
k=j+1 4dp. k+1F

This is an analogue of the operator I(f) used several times before and will be
discussed in more detail in the next chapter. It indicates a key point in this proof,
which comes from a study of the first eigenvalue. Next, define

i—1
1
@0207 @i:_ZFj(O)a 121

Then ¢ is increasing in 7, and ¢ = q01 Let f = cqi9+/qo1 % for some ¢ > 1. Then
f is increasing and f1 = cqy. Finally, define g = fII(f). Then g is increasing and

- T J1
g1 = Z oy = 5 =Cc> 1.
k=1 qk:,k:—i—le(: ) Q12F1( )

We now need a technical result, to be proved later, taken fromChen (2000c¢).
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Lemma 5.12. Let (m;) and (n;) be nonnegative sequences, n; # 0, satisfying
C 1= sup n; m; < oQ.
. Z j Z j

Define oo = 0, ¢ = Z;:é n;. Then for every v € (0,1), we have

Zsojmj <e(l—7) ]l
By Lemma 5.12, it follows that
0 Va4
9i = ¢q10v/ 4901 ZF() Z - 0

(0)
7=0 —]—i—l kk—l—lF

2MCCI10 0) —1/2
S Z F( : J+{
v 401 =0

< 2Meano ZF(O) <oo, i1
\/CImSOl

Let go =1. Then1 < g; < oo forall7 > 0. We now determine A in terms of equation
(5.6"). When i = 1, we get A < (¢ — 1) LI (f)~t. When i > 2, we should have

<qu’“)F(°) Z — i Z

(0
j=k+1 495 j+1 k=i+1 9k k:—i—lF

F<o>

For this, it suffices that

)‘gz Z qz(k)F(O) Z (0) —4; z—l—l ( 0) Z

(0
J=1 j j—}-l J k=i+1 9 k+1F
0 0
=4dq; z—l—lF( ) Z — q; 2—|—1F( ) Z (0)
k=i 9k k—{-l k=i+1 4k k:+1F

~ i

In other words, for (5.6"), we need only A < f;/g; = IL;(f)~! for all i > 2 and
A< (c—1)c I (f)~t. Then we can choose any \ satisfying

0< A< (—1 m(f)~ ) A (‘mf IIi(f)_l) A (irilfqi), (5.23)

=2
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provided the right-hand side of (5.23) is positive, or equivalently, sup,~,II;(f) < oc.
To prove the last property, define another operator

F~(O) o0 fk:

¢ SR SAR— 1> 1
] I (0)’ = 4
firr = Fi \ 531 @ oy P

Li(f) =

which is exactly the analogue of the one we have used many times before. By the
proportion property, we get

sup I1;(f) < sup Li(f).

i>1 i>1

By Lemma 5.12 and the condition M < oo, it follows that

Fz(O) > /—90].C _ QMF(O)

< <4M
VPit1 — /P ZZ 0 o FO 7 01 (VPir1 — VPPt
k=it+1 D k+11%

Li(f) =

for all 7 > 1. Therefore, sup;»; II;(f) < 4M < oo as required. We have thus
constructed a solution (g;) to equation (5.6") with 1 < g; < oo for all ¢. This implies
the exponential ergodicity of the process.

For the remainder of this section, we consider birth—death processes only. We
need only prove the necessity of (5.22).

(b) Denote o, by o,. Suppose that the process is exponentially ergodic. As
mentioned below Theorem 5.1, there exists a A with 0 < A < g, for all ¢ such that
Eoe?0 < co. Define

eio(\) = / MPyjoy > (dt, i€ Zy.
0

Then E;e*0 = Aejo(A) + 1. By?, Proof (a) of Theorems 4.45 and 4.44, one gets
eio(\) < oo for all 4 > 1. Furthermore, E;e*?0 < oo for all i > 1. Note that if the
starting point is not 0, then o is equal to the first hitting time:

7, = inf{t > 0: X(t) = 0}.

Hence E;e*™ < oo for all i > 1. Define m( " = = [E,;7y. The Taylor’s expansion

00 AP .
00 > E;ero = E —m ( ) (5.24)
n!
n=0

leads us to estimate the moments m( ), By a result due to Z.K. Wang [cf.Wang
(1980, Chapter 3), or Z.T. Hou and Q F. Guo(1978, Chapter 9), or Z.K. Wang and
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X.Q. Yang(1992)], we have

1—1 o)
mgl)zz 1b- Z Pk

=0 H3% p Sy

1—1 00
n 1 n—
mz(-):ng — E g n
L
= =j+1

V
N

(5.25)

Obviously, m\"™ > m{™ if k > i. By (5.25), it follows that

(3

i—1 00 1—1 )
n 1 n— 1 n—
i 0D S g ”M( .b.Zuk)mg b, nze
777 ;

and

1—1 o)
ngl) = Z 1b~ Zﬂk—

=0 3% %=

Hence, by induction, one gets

1—1 e n
mgn)>n!<z 15.2/““) : n>1.

=oM% =

Combining this with (5.24), we obtain

00 i—1 00 n
()\Z 22“’“) < 00,

which implies that

Taking the supremum over i, we obtain § < A\™! < co. Hence, the necessity of the
second condition in (5.22) is proven.
(c) To complete the proof of the theorem, it suffices to show that

infg, =0 = 0 = 0. (5.26)

To do so, we need the following result.

Proposition 5.13. For a general reversible Markov chain, if inf; ¢; = 0, then A\; = 0.
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Having the result at hand, the proof of (5.26) is trivial, because for birth—death
processes, by Theorem 5.7 (2), we have (45)! < A\; < Z6~!. We have thus com-
pleted the proof of Theorem 5.11. [

Proof of Lemma 5.12. Let M,, = >
by parts formula and the assumption M,, < cp, !, we get

]>n m;. Fix N > 4. Then by the summation

N N N
1
> “@lm; < @I Mi+ Y [0l — @) IMj < C{SO;Y + > [ - ‘P}]/SDJ'“}'

j=i j=i j=i

By using the elementary inequality v(1 —~) (27"t — 1)+ 27 > 1 (z > 0), it is easy
to check that
lei — o) foirr < V(1= )T = )],

Combining this with the last estimate gives us the required assertion. [J

Proof of Proposition 5.13. Without loss of generality, let the state space E be
{0,1,...}. Consider the test function f = ¢, Iy + ¢y, where ¢; and ¢, are constants

such that (f) =0 and 7(f?) = 1:

Then
D(f) = Z Wiqz'j(fj - fz)2

(2,5):i<j

= > mea (i = fo)?+ Y migu(fe — fi)?
Jik<j ini<k

_ qkj

= > e > e
jik<j i<k
1 — 7

Applying the classical variational formula (5.9) to this f, we obtain

A
1—m’

A1 <

since for large enough ko, we have sup; ., m < 1/2, and therefore

gt = (of ) A (i) > (5) A (i) ©



5.6 Strong ergodicity 113

5.6 Strong ergodicity

This section is devoted to strong ergodicity for general Markov processes. We will
adopt both the analytic method and the coupling method. Let us begin with the
analytic method for single birth processes.

For birth-death processes, the next result was first obtained by Hou et al.(2000)
with a different proof. The general case is due to Y.H. Zhang(2001). We adopt the
notation introduced at the beginning of the last section.

Analytic method

Theorem 5.14. Let Q = (g;;) be a regular, irreducible single birth @-matrix. Then
the (Q-process is strongly ergodic iff

sup Z F(O)d d;) < (5.27)

kEZ+ j=0

For birth—death processes, the criterion becomes

1
S = Z wn + 1, 00) Z [ Z < o0
>0 “"b >1 j<no1 Hi%
nz= n ISN—
as stated in Table 1.4,
Proof. (a) We prove that the equation
Qij 1 :
yi=» Lyi+-, izl y=0, (5.28)
A 4 4

has a bounded nonnegative solution iff (5.27) holds. If so,
- 0 0
::kseuzliv;)d /;Fé)—klingo d /Z:OF,Q,
and the unique solution to (5.28) is as follows:
=0 y=d Yprr=yn+Fy —d,, n>=1 (5.29)

First, assume that (5.27) holds and define (y;) by (5.29). Then, it should be easy
to verify that (y;) is a bounded nonnegative solution of (5.28).

Next, let (y;) be a bounded nonnegative solution of (5.28) and define v, =
Ynt1 — Yn for n > 0. From (5.28), it is not difficult to derive

(Z q(k)vk ) n=1.

k=0

qn ,n—+1
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By induction, we can easily prove that v, = Fflo)vo — d,, for all n > 0. Note that
vo = ;. From these facts, it follows that

Y1 = Z Uy = Z (FOvy —dy,),  k€Zy. (5.30)
n=0

Now, on the one hand, by (5.30) and yx41 > 0, it follows that

k k
0 > Zdn/ZFT(LO), ez,
n=0 n=0
Hence vg > d = supyez, Zﬁ:o dy/ ZI:L:o F'?. On the other hand, by (5.30) again,

k
dn
L:v Zn;o kEZ+. (531)

Note that (y;) is bounded and ZI:L:() F? & fooask — oo (by recurrence). Letting
k — oo in (5.31), we see that the right-hand side of (5.31) tends to a limit vg — d’,

where .
=1 E©.
¢ = Jim ) d / Z

Furthermore vy < d’ < d. Hence, we have y; = vy = d = d’. Combining this with
(5.30), it follows that the solution (y;) to (5.28) must have the representation (5.29)
and hence is unique. Finally, by the boundedness of (y;) and (5.30), condition (5.27)
follows.

(b) By Theorem 5.1 (3), we know that the Q-process is strongly ergodic iff the
following equation has a bounded nonnegative solution:

Zqijyj<—17 i ¢ H; quijyj<ooa
J i€H j#i

where H is a nonempty finite subset of Z,. Let H = {0}. For single birth processes,
the last equation is reduced to

Y auyi< -1, i#0, (5.32)
J

since Z#O Q0jY5 = do1Y1 < ©0.
Assume that the single birth process is strongly ergodic. Then there exists a
bounded nonnegative solution (u;) of (5.32), i.e

1
uiZquj—F— 1> 1; ug = 0.
)
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Denote by (u}) the minimal nonnegative solution of (5.28). By the comparison
theorem below, we have u; > u} for all ¢ > 0. Thus, (u}) is bounded, and (5.28) has
a bounded nonnegative solution. By (a), (5.27) holds.

Conversely, let (5.27) hold. Define (y;) by (5.29). By (a), (y;) is a bounded
nonnegative solution of (5.28). Clearly, (y;) is also a bounded nonnegative solution
of (5.32). This implies strong ergodicity by the criterion quoted above. [

To conclude this subsection, we introduce some elementary facts, taken from Z.T.
Hou and Q.F. Guo(1978), or?, also needed in Chapter 9, about the theory of the
minimal nonnegative solutions for systems of equations with nonnegative coefficients.
All the results below can be easily proved using induction.

Theorem 5.15 (Existence and uniqueness theorem). Let ¢;; > 0, b; > 0. Then

there exists a unique minimal solution (z} : i € F) to the equations

€T, = Zcmxk—f—bi, 1€ F.
keE

More precisely, define

xl(.o) =0, :UE"“) = Z cikx,gn) + b;, 1€ B, n=>0.
kEE

Then 2™ 1 27 for all i € E as n — oc.

Theorem 5.16 (Comparison theorem). Let (z; : i € F) satisfy

€T, = Zcik$k+bia 1€ F.
keE

Then z; > z for alli € E.

Theorem 5.17 (Linear combination theorem). Let G be a countable set and ¢, > 0
for all & € G. Denote by (z; (@) ¢ E) the minimal solution to

zi= Y cpar 0%, i€ B
keE

Then (ZQEG cart ™ i€ E) is the minimal solution to the equations

xr; = Z CikTk + Z Cabga), 1€ b

keFk aeG
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Coupling method

For a general Markov process with transition probability P(t,z,dy) on (F,&) and
having a stationary distribution 7, strong ergodicity means that

sup ||P(t,z,) — 7||var — O as t — 00.

el
Such convergence must be exponential. Indeed, note that for a signed measure v,
we have

HV”Var: sup ’V(f>|
ffI<1

It is easy to check that

1
sup [|P(t + s, z,-) — ||var < 5 Sup |P(t,x, ") — 7||var - sup || P(s, x, ) — 7||var-
X X X
Hence 1 sup, | P(t,,) — 7||var must have exponential decay. The various appli-
cations to the convergence rate in the total variation of the coupling methods is
based on the following simple observation. Let (X, Y;) be a coupling of the Markov
processes starting from x and y, respectively, and define the coupling time as follows:

T=inf{t>0:X, =Y}

Then we have

~

IP(t ) = 7llvar <2 [ w(ADE Tiopry =2 [ ()BT > ),
E E

Here we assume that X; = Y; for all ¢ > T. In particular, by the Chebyshev
inequality, we have

sup | P(t, z, ") — 7|lvar < 2sup E®¥(T™)/t" and
x TF#Y

sup || P(t, ,-) — 7||var < 2sup E*Y (e*)e M, A > 0.
x TF#Y

We have thus obtained some strongly ergodic rates in terms of the coupling time.
Along this line, there are a number of publications. See for instance?, T. Lindval-
1(1992) and the references within, or more recent papers by Y.Z. Wang(1999), Y.H.
Mao(2002d; 2002e).

We now study the estimation of the moments of the coupling time [refer to Chen
and S.F. Li(1989, Theorem 5.7) for a refined result].

Theorem 5.18. Let (X4,Y;) be a Markovian coupling with operator L Fe, (f)
F >0 and F(x,z) =0 for all . Suppose that

LF(z,y) < -1, x#v. (5.33)
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Then for every nonnegative ¢ € C1[0,0), we have
~ tAT N tAT
B [ p(elds < p0)F (o) 1B [ GPOG YA (530
0 0
Proof. Let f(t;x,y) = ¢(t)F(x,y). By using the martingale formulation,
t
f(t; X4, Y3) —/ [0sf (53 X5, Ys) + Lf(s; X, Ys)]|ds
0

is a Iﬁx’y—martingale with respect to the natural flow of o-algebras. Hence
P(0)F (2,y) = () E™F (Xenr, Yinr)

- Ew/o [/ (8)F(Xo, Ys) + o(s)LF(X,, Ya)] ds

~ tAT _ tAT
> —Ex’y/ ' (s)F(X,,Ys)ds + Ewy/ o(s)ds,
0 0

by (5.33). This gives us the required assertion. [
Applying (5.34) to ¢ = 1, we get

E*YT < F(z,y).

Next, applying (5.34) to ¢(t) =t™(m > 1), we get
E*YT™H < (m + 1)||F|| oo EZYT™.
Hence, we have
E*YT™ < m! | F|7 F(z,y) <m!|F|™, m>1. (5.35)
Finally, applying (5.34) to ¢(t) = e* (XA > 0), we obtain
A LE®Y [GA(tAT) _ 1] < F(z,y) + ”FHOOExy [6>\(t/\T) _ 1}.

Thus,

|Fle 1
A~ [Flle ~ T-A[Fll

E*ver <1+ 0< A< || F|] oo < o0. (5.36)

Certainly, one can also deduce (5.36) from (5.35) by Taylor expansion.
For a compact Riemannian manifold, simply take F' = H o p, where p is the
Riemannian distance and

H(r)= /O TC’(S)_ldS / DC(u)du, C(r)=cosh?™! [g\/g] r € (0,D),
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and adopt the coupling by reflection. Then (5.36) holds. This was done by Y.Z.
Wang(1999) and Y.H. Mao(2002d; 2002¢). In the one-dimensional case, since there
is a linear order, one can simply use the classical coupling, which is order—preserving.
Note that T is controlled by the hitting time inf{t > 0 : Y; = 0}. One can study its
moments in the same way as above, replacing the coupling operator by the marginal
one. For birth—death processes, one takes

1—1 0
F=Y
=0 =j

bjng «

Then (5.36) holds once ||F|loc = lim; o F; < 00. Equivalently, S < oo, which is
indeed necessary by Theorem 5.14. This was done by Y.H. Mao(2002d).



Chapter 6

Poincaré-Type Inequalities in
Dimension One

This chapter offers a brief and elementary overview of recent progress on a large
class of Poincaré-type inequalities in dimension one. The higher-dimensional case
will be discussed in the next chapter. The explicit criteria for the inequalities,
the variational formulas, and explicit bounds of the corresponding constants are
presented, first for ordinary Poincaré inequalities (Section 6.2) and then for Poincaré-
type inequalities (Sections 6.3 and 6.4). As typical applications, the Nash inequalities
(Section 6.5) and logarithmic Sobolev inequalities (Section 6.6) are examined. To
illustrate the main ideas, some short proofs are included. In the last section (Section
6.7), partial proofs are presented for the main dual variational formulas given in
Theorem 6.1, which is the starting point of this chapter.

6.1 Introduction

First, we explain the problems we are going to study in this chapter.

The one-dimensional case in this chapter means either the second-order ellip-
tic operators (one-dimensional diffusions) or the tridiagonal matrices (birth-death
Markov processes). Let us begin with diffusions.

Let L = a(x)d?/dz? + b(z)d/dz be an elliptic operator on an interval (0, D)
(D < 00) with Dirichlet boundary at 0 and Neumann boundary at D when D < oo,
where a and b are Borel measurable functions and a is positive everywhere. Set
C(z) = [y b/a. Here and in what follows, the Lebesgue measure dz is often omitted.
Throughout this chapter, assume that

D
= ec a Q. .
Z._/O Ja < (6.1)
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Hence, dp := a~'e“dx is a finite measure, which is crucial in the chapter. We are
interested in the first Poincaré inequality

D D 9
Hﬂﬁ:iéf%m<4éf"é%=ADw» feCa0,D], f(0)=0,  (62)

where C, is the set of all continuous functions, differentiable almost everywhere and
having compact support. When D = oo, one should replace [0, D] by [0, D), but
we will not mention this again in what follows. Next, we are also interested in the
second Poincaré inequality

D
!V—wum%=[;ﬁ—w0»%u<Apux feC o.D),  (63)

where w(f) = u(f)/Z = [ fdu/Z. To save on notation, we use the same A (respec-
tively, A,) to denote the optimal constant in (6.2) (respectively, (6.3)).

The aim of the study of these inequalities is to find a criterion under which (6.2)
(respectively, (6.3)) holds, i.e., the optimal constant A < oo (respectively, A < 00),
and furthermore to estimate A (respectively, A). The reason we are restricting our
attention to dimension one is that we are looking for some explicit criteria and
explicit estimates. Actually, we have dual variational formulas for the upper and
lower bounds of these constants. Generally speaking, such an explicit story does not
exist in the higher-dimensional situation (see Section 7.1).

Next, replacing the L?-norm on the left-hand sides of (6.2) and (6.3) with a
general norm ||-||p in a suitable normed linear space (the details are given in Section
6.3), we obtain the following Poincaré-type inequalities

HfQHB A]B%D (f),  FeCal0,D], f(0) =0, (6.4)
|(f ==()?|g < AsD(f),  feCql0,D] (6.5)
for which it is natural to study the same problems as above. The main purpose of

this chapter is to solve these problems. By using this general setup, we are able to
deal with the Nash inequalities (J. Nash,1958)

If == (HIFH" < AnD()|IFI1T (6.6)

in the case of v > 2, and the logarithmic Sobolev inequality (L. Gross,1976)
f2

(f2)
The remainder of the chapter is organized as follows. In the next section, we

review the criteria for (6.2) and (6.3), the dual variational formulas, and explicit
estimates of A and A. Then, we extend a large part of these results to normed

D
Ent (f?) ::/0 f?log < ApsD(f). (6.7)
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linear spaces, first for the Dirichlet case and then for the Neumann one. For a
very general setup of normed linear spaces, the resulting conclusions are still rather
satisfactory. Next, we specify the results to Orlicz spaces and finally apply them to
the Nash inequalities and the logarithmic Sobolev inequality.

6.2 Ordinary Poincaré inequalities

In this section, we introduce the criteria for (6.2) and (6.3), the dual variational
formulas, and explicit estimates of A and A, which strengthen Theorem 1.5 and the
results listed in Section 5.3.

To state the main results, we need some notation. Write x A y = min{x, y} and
similarly, = V y = max{x,y}. Define

F ={feC0,D]NnC*(0,D): f(0) =0, f|o0.p) >0},

F ={feCo,D]: f(0)=0,3x (0, D] such thatf = f(- A ),
fGC’l(O,:Eo),f’|(07$O)>O, and fe€ L?(r) if mozoo},

feCl0,D]: f(0) =0, flo,p) >0},

feCl0,D]: f(0) =0, there exists xg € (0, D] such that
f=f(N=o), flioz,) >0, and f € L?(7) if 29 = oo}.

- (6.8)

{
{

7 -

Here the sets . and .#’ are essential; they are used, respectively, to define below the
operators of single and double integrals, and are used for the upper bounds. The sets
Z and .Z' are less essential, being simply modifications of .# and .%’, respectively,
to avoid the problem of integrability, and are used for the lower bounds. Define

6—0(3:) D
I(f)(z) = () / [fe€ /a] (u)du, feZ, (6.9)
T D
II(f)(:z:):ﬁ /0 dye= W) / [fe€/a](w)du,  fe F. (6.10)

The next result is taken fromChen (2001b, Theorems 1.1 and 1.2). The word
“dual” below means that the upper and lower bounds are interchangeable if one
exchanges the orders of “sup” and “inf” with a slight modification of the set .#
(respectively, .Z#") of test functions.

Theorem 6.1. Let (6.1) hold. Define p(z)= [; e ¢ and B = SUP,e(0,p) P(T)

D ,© . .
X [~ Then we have the following assertions:
X a

(1) Explicit criterion. A < oo iff B < o0.
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(2) Dual variational formulas.

A< inf  sup II(f)(z) = inf sup I(f)(x), 6.11
g, S (£)(@) = inf S (f)(x) (6.11)
A> sup inf II(f)(z) = sup inf I(f)(x). 6.12
s (@) = st 107)) (6.12)

The two inequalities all become equalities whenever both a and b are continuous
on [0, D].

(3) Approximation procedure and explicit bounds.
(CL) Define f1=\/¢v fn:fn—llj(fn—1>v and Dnzsupme(O,D) II(fn) (I’) Then

D,, is decreasing in n and A < D,, < 4B for all n > 1.
(b) Fix z¢ € (0, D). Define

(wo) 90( /\xO): fT(LmO) f(mo)( )If(f(m())( /\370)):

and Ch = sup, c(o,p) Ifze(0,0) II(fT(l )(-/\330))( ). Then C), is increasing
innand A>C,, > Bforalln>1

We mention that the explicit estimates “B < A < 4B” were obtained previously
in the study of the weighted Hardy inequality by B.Muckenhoupt (1972). A short
proof of “A < 4B” was presented in Section 5.3. The proof of “A > B” is also easy.
Indeed, fix z € (0, D) and take

TAY
Fo) = Folo) = [ e C0as ye(.D)
Then f'(y) = e “W if y < 2 and f'(y) = 0 if y € (x, D). Furthermore,
117 = [ fP(ds) + f(@)Pnls, D],
D(f )_/ CWeCWdy /7 = f(x)/2,
0
where 7[p, q f dr and Z = p[0, D]. Hence

> 1£12/D(f) / F(y)*n(dy) + Zf(x)xle, D] > f(z)ulz, D).

Taking the supremum with respect to x, it follows that A > B
The proofs of parts (2) and (3) of Theorem 6.1 are more technical; see Section

6.7 for details.
We now turn to study A, for which it is necessary to assume that

D s
/ e_C(S)ds/ a(u)"te¢™Wduy = oo, (6.13)
0 0
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since we are working in the ergodic situation.

Theorem 6.2. Let (6.1) and (6.13) hold and set f = f — w(f). Then we have the
following assertions:

(1) Explicit criterion. A < oo iff B < oo, where B is given by Theorem 6.1.
(2) Dual variational formulas.

sup inf I(f)(z) <A< inf sup I(f)(z). 6.14
sup il K@ <A< ol sup ()0 (6.14)

The two inequalities all become equalities whenever both a and b are continuous
on [0, D].

(3) Approximation procedure and explicit bounds.
(a) Define fi=1/@, fn="Fa—11(fn—1), and En:Spre(o,D) II(f,) (x). Then

A<D, <4B forall n > 1.
(b) Fix ¢ € (0, D). Define
) = o Amo). i = FC A @) (FL)( A o)),
and 'y, = sup,_c(o,p)y Infze(0,0) H(fr,(fo)(' A zo))(z). Then A > C,, for all
n > 2. By convention, 1/0 = 0.

Part (1) of the theorem is taken fromChen (2000c, Theorem 3.7). The upper
bound in (6.14) is due to Chen and F.Y. Wang(1997b). The other parts are taken
fromChen (2001b, Theorems 1.3 and 1.4).

Finally, we consider inequality (6.3) on a general interval (p,q) (—oo < p < ¢ <
o0). When p (respectively, ¢) is finite, at which the Neumann boundary condition is
endowed, we adopt a splitting technique. The intuitive idea goes as follows. Since
the eigenfunction corresponding to A, if it exists, must change sign, it should vanish
somewhere in the present continuous situation, say at 6. Thus, it is natural to divide
the interval (p,q) into two parts: (p,6) and (6,q). Then, one compares A with the
optimal constants in the inequality (6.2), denoted by Ajp and Asg, respectively, on
(0,q) and (p,0#) having a common Dirichlet boundary at 6. Actually, we do not
care about the existence of the vanishing point #. Such a 6 is unknown, even if it
exists. In practice, we regard 6 as a reference point and then apply an optimization
procedure with respect to §. We now redefine C(z) = [;" b/a. Again, since we are
in the ergodic situation, we assume the following (nonexplosive) conditions:

q 0
Z19 ::/ e“/a < o0, Zag ::/ e“/a < oo,
0 p

0 0
/ e_C(S>d3/ e“/a=o00if p=—o0, and (6.15)
yy S

q s
/ e_C(S>ds/ e Ja = oo if ¢ = o0,
0 0
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for some (equivalently, all) 8 € (p, q). Corresponding to the intervals (6, ¢) and (p, 0),
respectively, we have constants Biyp and By, given by Theorem 6.1.

Theorem 6.3. Let (6.15) hold. Then we have the following:

(1) SUPge (p,q) (Aw A AQQ) < A < infge(p’q) (Alg V Agg).

(2) Let 6 be the median of y; then (Aw V Agg)/2 <A< AV Agp.

In particular, A < 0o iff B1g V Bay < 00.

Comparing the variational formulas (6.11), (6.12), and (6.14) with the classical
variational formulas

Ao = inf {D(f): f € C'(0,D)nC0, D], f(0)
A =inf {D(f): f € C*0,D)NC[0,D],x(f)

(f7) =1},
(f%) =1}

0,
0

s
s

Y

one sees that there are no common points. This explains why the new formulas
(6.12) and (6.14) have not appeared before. The key here is the discovery of the
formulas rather than their proofs, which are usually not hard, due to the advantage
of dimension one. As an illustration, here we present a part of the proofs.

Proof of the upper bound in (6.14)

Originally, the assertion was proved in Chen and F.Y. Wang(1997b) using coupling
methods. Here we adopt the analytic proof given inChen (1999a). The discrete
analogue was presented in Section 3.2.

Let g € C[0,D] N CY0,D), n(g) = 0, and w(g?) = 1. Then, for every f € .F
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with 7(f) > 0, we have

D
1= %/0 m(dz)m(dy)[g(y) — g()]?

[ o [ LT
/{w y}w(dx)w(dy) /: gJ:/((ulz; du /: f(&)de

/N

\(by the Cauchy—Schwarz inequality)
= [ @) [ i) - )

fo<y) - f'(w)

D e_C(u) u D
— /0 a(u)g'(u)%(du)Zf,T /0 m(da) / m(dy) [f(y) — f(z)]

e—C(u) u D

<Dl) sy G [ wian) [t (50 - o)
< D(g) sup I(f)(=).

z€(0,D)

Replacing f with f, it follows that D(g)~! < SUP ¢ (0, D) I(f)(x), and so

A= sup D(g)~' < sup I(f)(x).
g: m(g)=0, w(g?)=1 z€(0,D)

This gives us the required assertion:

A< inf sup I(f)(z).
fE€ZF ze(0,D) (i)

The proof that equality holds for continuous a and b needs more work, since it
requires some more precise properties of the corresponding eigenfunctions, as shown

in Sections 3.7 and 3.8 for the discrete case. [

6.3 Extension: normed linear spaces

Beginning in this section, we introduce recent results obtained in Chen(2002a;

2003a). We will not quote these papers time by time subsequently.

In this section, we study the Poincaré-type inequality (6.4). Clearly, the normed
linear spaces used here cannot be completely arbitrary, since we are dealing with a
topic of hard mathematics. From now on, let (B, || - |3, ) be a normed linear space

of functions f : [0, D] — R satisfying the following conditions:
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(1) 1eB;
(2) Bisideal: if h € B and |f| < |h|, then f € B;
b (6.16)
) Iflla=sup [ 7lodp,
geEY JO

(4) ¢ > go with inf gy > 0,

where ¢ is a fixed set, to be specified case by case later, of nonnegative functions on
[0, D]. The first two conditions mean that B is rich enough, and the last one means
that ¢ is not trivial: it contains at least one strictly positive function. The third
condition is essential in this chapter, which means that the norm || - ||p has a “dual”
representation. A typical example of such a normed linear space is B = L"(u); then
¢ = the unit ball in Li(u), L/r+1/r"=1.

The optimal constant Ap in (6.4) can be expressed as a variational formula as
follows:

2
A]stup{%:fECd[O,D],f(O):0, O<D(f)<oo}. (6.17)
Clearly, this formula is powerful mainly for the lower bounds of Ag. However, the
upper bounds are more useful in practice but much harder to handle. Fortunately,
we have quite Complete results.

Define ¢(z fo ¢ as before and let
A )2
By = sup ©(@)||l@p)ls  Ce= sup (=) HB,
z€(0,D) z€(0,D) o(x) (6.18)
oo o IRl |
z€(0,D) ()

Theorem 6.4. Let (6.1) and (6.16) hold. Then we have the following assertions:

(1) Explicit criterion. Ag < oo iff By < oo.
(2) Variational formulas for the upper bounds.

Aﬂgfienf sup f 1Hf901'/\ HIB%

z€(0,D
—C(x) (6.19)

e
< inf Sup f x B-
€7 ze(0,D) f( ) 17 )l

(3) Approzimation procedure and explicit bounds. Let By < oco. Define fo = /9,

fu(@) = || fo—1p(z A -)|lB, and Dp(n) = sup,e(o,py fn/fn—1 for n = 1. Then
Dg(n) is decreasing in n and

B < CE < AE < DB(TL) < DB < 4BB (620)
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for all n > 1.

We are now going to sketch the proof of the second variational formula in (6.19),
from which the explicit upper bound Ay < 4Bp follows immediately, as we did
at the end of the last section. The explicit estimates “Bp < Ap < 4Bp” were
previously obtained in S.G. Bobkov and F. G6tze(1999b) in terms of the weighted
Hardy inequality [cf. B.Muckenhoupt (1972), i.e., Theorem 5.9]. The lower bounds
follows easily from (6.17).

Sketch of the proof of the second variational formula in (6.19)

The starting point is the variational formula for A (cf. (6.11)):

A< inf G / Je% g ¢ o / " fd
< inf  sup = inf sup L.
FEZ geo,p) [ fegxe(OD) () Ja

Fix g > 0 and introduce a transform
b—b/g, a—alg>0, (6.21)
under which C(x) is transformed into

C,(x) = /0 9 _ o).

a/g
This means that the function C' is invariant with respect to the transform, and so
is the Dirichlet form D(f). The left-hand side of (6.2) is changed into

/fzgec/a—/ fPgdp.

At the same time, the constant A is changed into

A f et / fgd
< inf sup gdu.
I fe& x€(0,D) f

Taking the supremum with respect to g € ¢4, the left-hand side becomes
D
sup [ fgdu= |77
geY Jo
and the constant becomes

—C(CL‘)
Ap = supA < sup mf Sup / fagdu
g

—C(iv)

e—C(@)

/(@

< il}f sup Sup / fodu = 1nf sup Sup/ J 1z, pygdp.
g

1nfsup ef Hf (z, D)H]E
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We are done! Of course, more details are required for completing the proof. For
instance, one may use g + 1/n instead of g to avoid the condition “g > 0” and then
pass to the limit. [

The lucky point in the proof is that “sup inf < inf sup,” which goes in the
correct direction. However, we do not know at the moment how to generalize the
dual variational formula for lower bounds given in (6.12) to general normed linear
spaces, since the same procedure goes in the opposite direction.

6.4 Neumann case: Orlicz spaces

In the Neumann case, the boundary condition becomes f’(0) = 0, rather than
f(0) = 0. Then Ay = 0 is trivial. Hence, we study Ay (called the spectral gap of L),
that is, the inequality (6.3). We now consider its generalization (6.5). Naturally,
one may play the same game as in the last section extending (6.14) to normed linear
spaces. However, it does not work this time. Note that on the left-hand side of
(6.5), the term m(f) is not invariant under the transform (6.21). Moreover, since
w(f) = 0, it is easy to check that for each fixed f € Z#, I(f)(a:) is positive for all
x € (0,D). But this property is no longer true when du is replaced by gdu. Our
goal is to adopt the splitting technique explained in Section 6.2.

Let 6 € (p, q) be a reference point and let A%? BE? CEY DE° (k
constants defined in (6.17) and (6.18) corresponding to the intervals (¢
respectively. By Theorem 6.4, we have

= 1,2) be the
,q) and (p, ),

B < OFf < AR < DEO <4BE?, k=12
Theorem 6.5. Let (6.15) and (6.16) hold. Then we have the following assertions:

(1) Eaplicit criterion. A < oo iff BE? v B2Y < oo.
(2) Explicit estimates.

1 _
max {5 (AL A AZ)| Ky(AY v A]%f)} < Ay < AL v A2

where Ky is a constant.

We may now consider briefly the discrete case, i.e., the birth—death processes.
Let b; (i > 0) be the birth rates and a; (i > 1) the death rates of a birth—death
process. Define

bO"'bn—l N Hn
=1, pn=——"t 2= iy, Ta=,ml
fo=1, p o a nzou T =,
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Consider a normed linear space (B, | - ||s, ) of functions £ := {0,1,2,...} — R
satisfying (6.16). Define

7

1 .
©; = Z ,ujaj’ 1> 1 Bg = 312111) Soi“f{i7i+l,-.-}“]3'

j=1
Clearly, the inequalities (6.4) and (6.5) are meaningful with a slight modification.

Theorem 6.6. Consider birth—death processes with state space E. Assume that
Z < oQ.

(1) Ezplicit criterion for (6.4). Ap < oo iff By < o0,
(2) Explicit bounds for Ag. By < Ap < 4Bg.
(3) Euxplicit criterion for (6.5). Let the birth—death process be nonexplosive:

> 1b’ > py = oo, (6.22)

i—o Hi%i 2

Then Ap < o iff B < oo.
(4) Explicit estimates for Ag: Let By = {1,2,...} and let ¢; and ¢, be two constants
such that |7 (f)| < ¢q||fllg and |7 (fIEg,)| < || fIE,||s for all f € B. Then

s 2 max {|115", (1= /ea(l = m)llls )} 4s

, (6.23)
Ap < (1+ cluluﬁ) Ap.

Similarly, one can handle the birth—death processes on Z.
An interesting point here is that the first lower bound in (6.23) is meaningful
only in the discrete situation.

Orlicz spaces. The results obtained so far can be specialized to Orlicz spaces. This
is, as far as we know, the only way to deduce the criteria for the Nash and logarithmic
Sobolev inequalities, given in the next two sections, respectively. The idea also goes
back to S.G. Bobkov and F. Go6tze(1999b). A function ®: R — R is called an
N-function if it is nonnegative, continuous, convex, even (i.e., ®(—z) = ®(x)), and
satisfies the following conditions:

O(x) =0 iff x =0, lim ®(x)/x =0, lim ®(x)/z = co.

x—0 xr— 00

In what follows, we assume the following growth condition (or As-condition) for ®:

sup ®(2z)/®(x) < 0o (<:> sup 2@’ (z)/®(z) < oo),
z>1 z>1
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where ®’_ is the left derivative of ®. Corresponding to each N-function, we have a
complementary N-function:

O.(y) :=sup{zly| = ®(z) : 2 >0},  yeR

Alternatively, let . be the inverse function of ®’ ; then ®.(y) = 0|y| @e [cf. M.M.

Rao and Z.D. Ren(1991)].
Given an N-function and a finite measure p on E := (p,q) C R, define an Orlicz
space as follows:

={f (£~ B): [@(du<ool, Ifle=sup [ Iflodu, (020

geEY

where ¥ = {g > 0: [, P(g)dp < 1}, which is the set of nonnegative functions

in the unit ball of L®<(1). Under the As-condition, (L% (u),] - ||s, ) is a Banach
space. For this, the As-condition is indeed necessary. Clearly, L*(u) > 1 and is
ideal. Obviously, (L*(u), | - |ls, ) satisfies condition (6.16), and so we have the
following result.

Corollary 6.7. For any N-function ® satisfying the growth condition, if (6.1)
(respectively, (6.15)) holds, then Theorem 6.4 (respectively, 6.5) holds for the Orlicz

space (L% (u), || - ll@, 10).

6.5 Nash inequality and Sobolev-type
inequality

It is known that when v > 2, the Nash inequality (6.6)

If = =(HIFH" < AnD)|IFIY”

is equivalent to the Sobolev-type inequality

||f - W(f)”%l//(l/—2) < ASD(f)7

where || - || is the L"(u)-norm. Refer to D. Bakry et al.(1995), E.A. Carlen et
al.(1987), and N.Varopoulos (1985). This leads to the use of the Orlicz space L® ()
with ®(z) = |z|"/r, r =v/(v — 2):

[(f = 7()?]|4 < AuD(f). (6.25)

The results in this section were obtained in Y.H.Mao (2002b), based on the weighted
Hardy inequalities (Theorem 5.9).
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Define C(z) = [, b/a, p(m,n) = [ e /a and

9019(56)=/ e, Bie:Suggpw(x)u(x’q)(V—Q)/V7
6 >

9
wQett):=j[ Ol B = sup(o) ulpya) I
T <<

Here B* (k = 1,2) is specified from Bg given in (6.18) with B = L®((6,q), ) or
B = L((p.0) ), since |- la = ()|l 17+ 11" = 1.

Theorem 6.8. Let (6.15) hold and assume v > 2.

(1) Explicit criterion. The Nash inequality (equivalently, (6.25)) holds on (p, q) iff
Bl v B < .
(2) Ezxplicit bounds.

B 1 Z1o N Zog 1/241/v72
A, > max{ = (BY A B¥), [1 — (1—) B v B2 L

A, <4(B)’ v BY). (6.26)

In particular, if 8 is the median of yu, then

[1—(1/2)Y2+/"]*(B v B) <4, < 4(BY v BY).

We now consider birth—death processes with state space {0,1,2,...}. Define

| o N (-2)/v
%:Z , 121 Byzsupgoi<z,uj> .

Theorem 6.9. For birth—death processes, let (6.22) hold and assume that Z < oo.

Then we have

9 2/v 71 1/241/v2 o

Hence, when v > 2, the Nash inequality holds iff B, < oo.
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6.6 Logarithmic Sobolev inequality

The starting point of our study is the following observation.

)

Lemma 6.10. Let ®

®(z) = |z[log(1 + [z]), L(f) = sup.epEnt ((f + c)?), and
Ent(f) = [ flog Z5du,

f = 0. Then we have

21— =PI, < 205 < 22— (h)]l,. (6.28)
5 20

The proof of Lemma 6.10 is given at the end of this section.

The observation (Lemma 6.10) leads to the use of the Orlicz space B = L% (u)
with ®(z) = |z|log(1l + |z|). The results in this section were obtained by S.G.
Bobkov and F. Gotze(1999b), and Y.H.Mao (2002a), based again on the weighted
Hardy inequalities (Theorem 5.9). Refer also to L.Miclo (1999b) for a related study,
and F. Barthe and C. Roberto(2003) for a refinement.

Define
C(z) = -, p(m,n) = e” /a;
g a m

x 0
O A

0 @ (6.29)
M(z) =z [ <1+1+\/1+4x>];

1+ \/1 + 433 2x
By = sup oY (x)M(u(0,2)), BE¥ = sup ¢*’(x)M(u(x,0)).

aze(e,q) mE(p,@)

Again, here BYY (k = 1,2) is specified from By given in (6.18).

Theorem 6.11. Let (6.15) hold.

(1) Explicit criterion. The logarithmic Sobolev inequality on (p,q) C R holds iff

1 X
sup p(z,q)log / e Y < 0 and
x€(0,q) M(LIZ, Q) 0
(6.30)

1 .
sup u(p,x)log / e < oo
z€(p,0) :u(pa SC) T

hold for some (equivalently, all) 8 € (p,q).
(2) Explicit bounds. Let 6 be the root of BLY = B2%, 0 € [p, q]. Then we have

1 _
533 Aps < —Bg. (6.31)
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By a translation if necessary, assume that # = 0 is the median of ;. Then we have

(vV2-1)° 51
5

(B vB) < Aps < E(B(}ﬁ v BY). (6.32)

We now consider birth—death processes with state space {0,1,2,...}. Define

. .
i = Z ;2L Bg = sup ;M (puli, 00)),
= 19y i>1

where p[i,00) = >, pr; and M(x) is defined in (6.29).

Theorem 6.12. For birth—death processes, let (6.22) hold and assume that Z < oo.
Then we have

e [T (-5 o

where Z; = Z — 1 and U1 is the inverse function of ¥: W(z) = z?log(1 + 2?). In
particular, Ars < oo iff

, 1
sup ¢; pli, 00) log < 00.

i>1 pli, 00)

Proof of Lemma 6.10. We follow the proof given in S.G. Bobkov and F. G6tze(1999b),
andChen (2002a).

Without loss of generality, we may replace p with 7 in definitions of Z(f),
Ent(f), and || - ||¢. In other words, we may assume that p = .

For convenience, we adopt a more practical but equivalent norm as follows:

HfH(q,):inf{oz>0:/ @(f/a)duél}. (6.33)
E
The comparison of these two norms is as follows:

1fll@) < [[flle < 2([fll@) (6.34)

[cf. M.M. Rao and Z.D. Ren(1991, Section 3.3, Proposition 4)]. Because Hf2H(<D) =
I¥a H%\I,), it suffices to prove that

S =Ty < 205 < s llF — 7Dy (6.35)
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Let ||f]l(wy =1 and 7(f) = 0. By Lemma 4.14, we have

Z(f) <Ent(f?) + 2m(f?). (6.36)
Express the right-hand side as

/f2(6+logf2)d7r+7r(f2)[2—5—log7r(f2)}

for some § € [0,2]. Note that z(2 — & —logz) < €' for all z > 0. Let ¢(§) be the
bound such that § +logx < ¢(d) log(1 + ) for all x > 0. By solving this inequality,
it follows that the smallest ¢(d) should satisfy the equation

cloge — (¢ —1)log(c—1) =4, c>1.

Then we have
2(f) < c(5)/f2 log (1 4+ f2)d + ¢'% < c(8) + .

Minimizing the right-hand side in d under the above constraint, we obtain ¢ =~
1.02118, ¢(d) ~ 1.56271. Then c(§) +e! =% < 2.542 < 2.55 = 51/20, and the required
upper bound follows.

For the lower bound, let 7w(f) = 0 and .Z(f) = 2. Because

R(f2) = w(f) = 5 T Bot ((f +a)) < 320,

|a|—o0 2
we get 7r(f2) < 1. Hence 7T(f2) logw(fQ) < 0, and moreover,
m(f*log(f*)) =Ent(f*)+(f*) log w(f*) <Ent (f*) <ZL(f)=2. (6.37)
The idea is to find the smallest constant § ~ 0.4408 such that
zlog (1+2/(2+0)) <d+zlogz
for all x > 0. Then

/(f2/(2—|—5))10g (1+ f%/(246))dr < <5—|—/f210gf2d7r)/(2—|—5) <1,

by (6.37). Thus, ||f/v2+ 0 ||(w) <1, and so ||f||%q,) <2+46<5Z(f)/4. O

6.7 Partial proofs of Theorem 6.1

In this section, we prove Theorem 6.1 except for the conclusion that equality in
(6.11) and (6.12) holds for continuous coefficients a and b. The proof of the last
assertion requires some finer properties of the eigenfunction in the weak sense, as
seen from Sections 3.7 and 3.8 in the discrete case.
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Proof of (6.11)

(a) First we prove that A < infyegs sup,e o py I(f)(x). Given h with h[q py > 0,
for every g: g(0) =0, ||g|]| = 1, by the Cauchy—Schwarz inequality, we have

| = /0 7 o(e)r(de) = /0 } W(dx)[ /0 ) g’(u)du]

< /0 g /0 (9% h ! (w)au /O [he 0] (€)as

2

_ / - ,
—/0 a(u)g' (u) W(du)h(u)/u W(dm)/o he
1 D oC(y) y
< D(g) sup / dy / he™¢
ve(0,0) M) J» aly) 7 Jo
=: D(g) sup H(z).
x€(0,D)
Now, let f € F' satisfy sup,¢ py I (f)(x) = ¢ <oo. Take h(z f fa=teC.

Then we have fII(f)(z) < cf(zr) < oo and furthermore H(x) = fx fII(f)eC /a
< cwa fe€/a < oo for all € (0, D). By the mean value theorem, we get

C x
sup H(x) < sup [— e—(:z:)] / he ™ = sup II(f)(x). (6.39)
x€(0,D) x€(0,D) ah’ 0 x€(0,D)

Because ¢ is arbitrary, by (6.38) and (6.39), we obtain the required assertion.
(b) Next, we prove that

inf sup II(f = inf sup I(f
P (f)(z) = inf S (f) ().

Given f € 7, without loss of generality, assume that sup,¢ py I(f)(x) < co. By
the mean value theorem, sup,.¢ o py I (f)(z) < sup,eo,py 1(f)(z). But F' > .F, so

inf  sup II(f)(x) < inf sup I(f)(x
ik, sue (f)(x) joL s (f)(@).

Conversely, for a given f € F' with sup,¢ py H(f)(x) =t ¢ < o0, let g = fII(f).
Then g € .% By using the mean value theorem again, we obtain

([

Here we have used the fact that fxD ge€ /a < cfxD fe“/a < co. Hence

sup II(f)(z) > sup I(g)(x) > inf sup I(f)(x).

2€(0,D) z€(0,D) feZ ze(0,D)

—1

D
/ ga 1< sup (9/f)(x) =

z€(0,D)
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Taking the supremum with respect to f € %/, it follows that

inf  sup II(f)(x) > inf sup I(f)(z).
fEF" 1e(0,D) FeF 2€(0,D)

An alternative proof of this inequality can be obtained by using the identity
(e ’) —fe®/a. (6.40)
We have thus proved the required assertion.

Combining (a) with (b), we get (6.11). O

Proof of (6.12)

(a) For sup . 5 infye(0,p) L (f)(x) = sup; 5 infye0,p) I(f)(x), the proof is a dual
of the above one, exchanging supremum and infimum, inverting the order of the
inequalities, and redefining g = [fII(f)](- A xp).

(b) Let f € .F satisfy f = f(- A wo) and ¢ := sup,¢ o p) I (f)(x)"" < oo and
let go = [fI(f)](- AN xg). Then gy is bounded and (6.40) holds on (0,xg). By the
integration by parts formula, we get

D 5 Z ,
/ g6 €“ = [g096e“](zo—) — / 90(e“90)
0 0
2, D
:/ gofec/a—l—go(xo)/ fec/a
0 E0)
D D
:/ gofec/a</ (93¢ /a) sup_f/g0
0 0

z€(0,D)
D
= c/ gee® /a.
0

Hence A > ¢!, and furthermore, A > sup,_ z inf,eo,p) I(f)(@).
Combining (a) with (b), we get (6.12). [

Proof of part (3) of Theorem 6.1

First, we consider the case (a). Condition B < oo implies that

/OD Voella < \/E/OD (/xD ec/a> _1/260/a — 2VBZ < .

Hence f1 = /¢ € L(m) [these two conditions are needed for the initial function f;.
In practice, one can certainly choose some more convenient functions]. Assume that
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fn_1 € LY(m). Then

Ful®) = o @H(fr)(@) = [ " dyeCW) J

0

€T
< Zan_1||1/ e ¢ < o0.
0

By induction, it follows that f,, € L!(x) for all n. Furthermore, since f,, € .#’, by
(6.11),
A< inf  sup II(f)(x) < sup II(f,)(z)= D,.
feF" ze(0,D) 2€(0,D)

Then by the mean value theorem and the proof of the upper bound given in Section
5.3, we get D1 < 4B. On the other hand, by the definition of f,, and (6.40), we have

(—eCf) =ateCfo1 = a Ve D, (6.41)

n

That is, fre®/a < Dp_1(— ecf{l)/. Hence

D

frg1(z) < Dp_y / e~ Wy / (—eCf2) (w)du = Dy_1 fo(z), (6.42)

0 Y

From this, one deduces that D,, < D,,_1.
We now consider the case (b). By the identity

D T D
FI(f))(z) = / fol- A z)eC Ja = / foe fa+ p(a) / £/,

we get
D

(20 (2 A 20) > (& A 0)1p(0) / e /a,

)
and so

D —1
sup [FO0/5 @ nzo) = sup [FO0) 0] (@) < [80(370) / eC/a] .
z€(0,D) x€(0,x,) T

0

This implies that C; > B. Here, the reason one needs the local procedure “stopping
at zo” is the possibility of ¢ ¢ L(r), which then implies that D(p) = cc.
Finally, we prove the monotonicity of the C,,. Applying the mean value theorem
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twice, we obtain

sup [ (%)/ 7(1_1_01)}(:1:/\:80)
x€(0,D)

= sup [qu 0)/ (%)}( ) < sup [ (0)//f759i)1)/]( )

z€(0,2,) x€(0,x,)

< sw / o // £ (A 2g)eCa
x€(0,x,)

< sup [ (xo)/f(xo)} (.CU/\wo).
z€(0,D)

This implies that C,, > C},—1. The inequality A > C,, > B comes from (6.12). O



Chapter 7

Functional Inequalities

This chapter deals with some stronger and weaker inequalities than the Poincaré
one, called functional inequalities for simplicity. Equivalently, we are studying some
stronger and weaker types of convergence than the exponential one. Corresponding-
ly, this chapter is divided into two parts.

In the first part, we discuss some types of stronger convergence. We show how to
go to normed linear (Orlicz) spaces, starting from Hilbert space (L?-space), in the
higher-dimensional situation. This part is an extension of the main results obtained
in the last chapter. There are three sections. In Section 7.1, we state the results.
Their proofs are sketched in Section 7.2. In Section 7.3, we compare the capacitary
method used here with Cheeger’s method.

In the second part, we discuss some weaker (slower) types of convergence. There
are four sections. In Section 7.4, we examine the general convergence speed, and
then two functional inequalities are introduced in Section 7.5. In Section 7.6, we
discuss algebraic convergence. The general (irreversible) case is discussed in the last
section, Section 7.7.

7.1 Statement of results

Let E be a locally compact separable metric space with Borel o-algebra &, p an
everywhere dense Radon measure on E, and (D, Z(D)) a regular Dirichlet form on
L?(u) = L*(E; ). Regularity means that 2(D)NCy(E) is dense with respect to the
norm /D(f) + || f||2, where Cy(E) is the set of continuous functions with compact
support. The starting point of our study is the following result, which is a copy of
Theorem 4.8.

Theorem 7.1. For a regular transient Dirichlet form (D, Z(D)), the optimal constant
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A in the Poincaré inequality

1112 = /E fdu< AD(f),  f € 2(D)nCo(E), (7.1)

satisfies B < A < 4B, where
p(K)
B= sup ———F.
compact K Cap(K)
The transiency here has the usual probabilistic meaning. Recall that
Cap(K) = inf {D(f) : f € 2(D) N Co(E), f|x > 1}.

Certainly, in (7.1), one may replace “Z2(D)NCy(E)” by “2(D)” or by the extended
Dirichlet space “Z.(D),” which is the set of &-measurable functions f:

|f] < 0o, p-a.e., there exists a sequence {f,} C Z(D) such that
D(fn — fm) — 0asn,m — oo, and lim f, = f, p-a.e.
n—oo

Refer to the standard books by M. Fukushima, Y. Oshima, and M. Takeda(1994),
and by Z.M. Ma and M. Rockner(1992) for some preliminary facts about the theory
of Dirichlet forms.

As mentioned in Chapter 5, the proof of inequality (7.1) on the half-line (£ = R )
was begun by G.H. Hardy in1920 and completed by B. Muckenhoupt in1972 [see also
B. Opic and A. Kufner(1990)] with explicitly isoperimetric constant B.

The first goal of this chapter is extending (7.1) to the Poincaré-type inequality

|72]ls < 4sD(P), f € 2(D) N Co(E), (7.3)
for a class of normed linear spaces (B, || - ||, ) of real functions on E. To do so, we
need the following assumptions on (B, || - ||, p):

(H1) Transient case: I € B for all compact K. Ergodic case: 1 € B.
(H2) If he B and |f| < h, then f € B.

(H3) Iflle = supyeq [ 1flgdp,

where ¢, to be specified case by case, is a class of nonnegative &-measurable func-
tions. Unless otherwise stated, these assumptions will be used throughout this and
the next sections. Note that part (4) of condition (6.16) is ignored here.

We can now state our first result as follows.

Theorem 7.2. For a regular transient Dirichlet form (D, Z(D)), the optimal constant

Ap in (7.3) satisfies
< Ag < 4B, (7.4)

where the isoperimetric constant B]B is given by

1
Be= sup 1k [

Con(K)" 7.5
compact K Cap( ) ( )
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Next, we go to the ergodic case. Assume that p(FE) < oo and set m = p/u(E).
Throughout this chapter, we use a simplified notation: f = f — w(f), where 7(f) =
[ fdr. We adopt a splitting technique. Let E; C E be open with 7(E;) € (0,1)
and write Fy = Ef \ 0F;.

The restriction of B to E; gives us (B, || - ||z, 1):

Y =19lp 1 9€9],

Bi = SUp If\gdu = Sup/ |flgdp,  i=1,2
gegz .

B' =

If

Correspondingly, we have a restricted Dirichlet form (D, ;) on L*(E;, u*), where

2; = {f € Z(D) : the quasi-version of f equals 0 on Ef, q.e.}. The corresponding

constants given by Theorem 7.2 are denoted by Ap: and Bp: (i = 1,2), respectively.
Denote by c; a constant such that

(NI <ealfls,  feB (7.6)

For each G C FE, denote by ¢,(G) a constant such that

m(fle)| < (G| flgllw,  feB. (7.7)

Theorem 7.3. Let (D, Z(D)) be a regular irreducible Dirichlet form. Assume that
p(E) < oo and SUPypen g, r(Ey)e(0,1/2) C2(E1)m(E1)||[1]|p < 1. Then the optimal con-
stant Ag in the Poincaré-type inequality

%z < AeD(f),  fe 2(D)NCo(E), (7.8)
satisfies
Ap >k sup Apr > K sup Bg:1, (7.9)
open Ei: w(E1)€(0,1/2] open E1: n(FE1)€(0,1/2]
A <Rk sup Apr < 4R sup B, (7.10)
open Ei: w(E;)€(0,1/2] open Ei: n(FE1)€(0,1/2]

2 _ 2
WheI’EE = (1_Supopen Eq: w(E1)€(0,1/2] \/CZ(El)ﬂ_<E1)H1H]B) and K = (1—'_ Vv ClHlHB) .

For the logarithmic Sobolev inequality,

[E Flog [£2/n(f3)]du < AisD(f),  fe 2(D)NCo(E), (7.11)

the next theorem is a generalization of the one-dimensional result given in Barthe
F. and Roberto, C.(2003).
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Theorem 7.4. Let (D, Z(D)) be a regular irreducible Dirichlet form. Assume that
p(E) < oo. Then the optimal Arg in (7.11) satisfies

Brs(e?)/4 < Brs(1/2) < Aps < 4 Brs(e?), (7.12)
where
p(K) g
Bus(y) = sup —————log <1 + —> (7.13)
’ open O : w(0) € (0,1/2] Cap(K) m(K)

compact K C O

In particular, for one-dimensional diffusions, the assertion holds with Byg(y) = B4 (v)V
B_(v), where

Bi(y) = 5;1}7)1 plx, o0) log <1 + W[m:yoo)) /T: e ¢ (7.14)
B_(7) = sup (o0, 7] log <1 + m> /xm e=C (7.15)

and m is the median of .

The results stated in this section are mainly taken from Chen(2002d).

Computation of the isoperimetric constant in dimension one

It is known that in general, the optimal constant Ag is not explicitly computable even
in dimension one. However, the next results show that the isoperimetric constant
Bp in dimension one is computable and coincides with those given in Chapter 6.
Here we consider the ergodic case only. Then Ap is controlled by Bg in view of

Theorem 7.3 and Theorem 6.6 (3).

Corollary 7.5. Consider an ergodic birth—death process with birth rates b; (¢ > 0) and
death rates a; (i > 1). Define (u,,) as before. Then the isoperimetric constant By with
Dirichlet boundary at 0 can be expressed as follows:

n—1
1
Bg = sup || Ijn,00)llz > i

n>1 i—0 )

Proof. (a) We show that in the definition of Cap(K'), one can replace “f|x > 17
by “f|x = 1.7 Clearly, we can assume that f > 0.

Because 1 € Z(D), we have f A1 € 2(D)NCy(E) if so is f. Then the assertion
follows from D(f) > D(f A 1).
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(b) Next, let K; (i = 1,2,...,k) be disjoint intervals with natural order. Set
K =[min K7, max Kj|, where min K = min{: : i € K} and max K = max{i : i € K}.
We show that

rlls o M+ tmlls
Cap(K) - Cap(Ky + -+ + Ki)

In other words, the ratio for a disconnected compact set is less than or equal to that of
the corresponding connected one. For f with f|x,+..+x, = 1, the restriction of f on
the intervals [max K;, min K; 1] may not be a constant. Thus, if we define f = f on
K¢ and f|x =1, then D(f) < D(f), due to the character of birth-death processes.
This means that Cap(K) < Cap(K;7 + -+ + Ki). In fact, equality holds, because
for f with f|x = 1, we must have f|x,+..+x, = 1, and so the inverse inequality is
trivial. Since K D K; + --- 4+ K} and (H3), we have ||Ix|p > ||k, +...+K, |- This
proves the required assertion.

(c) Because of (b), to compute the isoperimetric constant, it suffices to consider
the compact sets having the form K = {n,n+1,...,m} for m > n > 1. We now fix
such a compact set K and compute Cap(K).

Given f with f|x =1 and supp(f) ={1,..., N}, N > m, we have

n—1 N
D(f) =Y pibi(fisr — fi)*+ ) wabi(fira — £:)7, (7.16)
=0 i=m
where fo = 0 and fyy1 = 0. Then
oD
— = 21305 (fi1 — f3) + 2p5-105-1(f5 — fi-1)
of;

= —2ujijj + 2,uj_1bj_1vj_1, 1 é] < n—1 o m+1 <j < N,

where v; = fiy1 — fi. The condition 0D/0f; = 0 gives us

i 1bi_
v; 'ujljlvj_l, 1<j7<n—1or m+1<j5<N.
f15b;
Hence
Uj:,uo 01}07 0<j<n—1, and vj:u, m<j <N (7.17)
1450; 1150;
Therefore
j—1 j—1 )
;= v; = pobov ; 0<j<n,
I ;z MOOO;MJ% J
j—1 j—1 1
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On the other hand, since f,, =1 and vy, = fn41 — fv = —fn, we get
n—1 N—1
1 Lo Oy Ui, 1
1 = pob — = —UmbmUm — 1.
HoPoo ; ,UJ,L’bi, ,LLNbN a ! Z:Zm ,uzbz
Then
n—1 1 -1 N 1 —1
bovg = , mOmUm = . 7.18
Hobovo <; ,uibi) H <Zz: MJ%) ( )

Inserting (7.17) and (7.18) into (7.16), we obtain

n—1 N

,LLObOUO Z ,um mvm)2

z
O 1=m

n—1 1 —1 N 1 —1
:<;Mibi) +(;Mz‘bi> '

Since the process is recurrent, > .~ 1/p;b; = co, we have

’MZ
=

n—1 —1
Cap(K)=inf{D(f), fo=0, f has finite support, f|x >1}= (Z 1 ) ,

which is independent of m. Therefore

oo Ml _ el
x Cap(K ) 1<n<m Cap([n, m])

sup HI

as required. [

We remark that once we know the solution f that minimizes D(f), the proof (c)
above can be done in a different way, as illustrated in the next proof.

Corollary 7.6. Consider an ergodic diffusion on [0, c0) with operator L = a(z)d?/dz?+
b(x)d/dx and reflecting boundary. Suppose that the corresponding Dirichlet form
(D, 2(FE)) is regular, having core C4[0,00): the set of all continuous functions with
piecewise continuous derivatives and having compact support. Define C(x fo b/a
for £ > 0. Then for Dirichlet boundary at 0, we have

X
Bs = sup oo lls [ 7.
x>0 0
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Proof. In view of (b) in the above proof, to compute the isoperimetric constant, we
need only consider the compact K = [n,m], m > n, m,n € R;. Define

fox e‘c/fon e_c, if0<x<n,
g(z) =<1, ifn<xz<m,
1— fTZAN e ¢/ fn]j e, if © > m.

We now show that Cap(K) can be computed in terms of this g € C4[0,00). Note
that

Cap(K) =inf{D(f) : f € C4[0,00) : f|x = 1}.
Next, let f1 € C4[0,n] with f1(0) = fi(n) =0, f2 € Ca[m, N] with fo(m) = f2(N) =
0, and study the following variational problem with respect to €1 and es:

n N
Hieve) = [ (g +eaf)PeC+ [ (g +eatp?e
0 m
If necessary, one may regard fon as for: and similarly for fn]j Without loss of
generality, assume that f; # 0. Otherwise, we can set ¢, = 0. Clearly, H should
have a minimum in a bounded region. From 0H/de, = 0, it follows that

g fieS Jo __ h-hO)
fo [%eC (fo /260)(f0n e C) (fo /260)(f0n e=“) ’
I N Jon % M) = fm)
IR (N RO (SN e0) (N 152e0) () )
More precisely, if f’ is discontinuous at nq, ..., ng, then

/f—/ P /f —J(0) -+ (F(n) — f(np)
—f(0) =

since f is continuous. Thus, H (51,52) attains its minimum

po=( ), ) (L)

o —
at €1 = g9 = 0. Moreover, due to the recurrence, we have fm e ¢

= oo. Com-

bining these facts, we obtain Cap(K ( fo ) ' The assertion now follows
immediately. [

For higher dimensions, the geometric aspect of estimating the isoperimetric con-
stant or capacity has been developed extensively. Refer to V.G. Maz’ya(1985), 1.
Chavel(2001), D.R. Adams and L.I. Hedberg(1996), and references within. However,
in view of the generality of Theorems 7.1-7.4, our knowledge about the isoperimetric
constants is still rather limited (open problem).



146 7 Functional Inequalities

7.2 Sketch of the proofs

The key to proving Theorem 7.1 is the following result.

Theorem 7.7. For a regular transient Dirichlet form (D, 2(D)), we have

/Ooo Cap({z € E: |f(z)| > t})A(t2) <4D(f),  f€ 2(D)nCy(E).

Proof. The simplified proof given here is due to M. Fukushima and T. Uemura(2003,
Theorem 2.1). In this proof, one needs more knowledge about Dirichlet forms. Refer
to the books by Fukushima et al.(1994), and by Ma and Rockner(1992).

Let f € (D) N Cy(F) and set Ny = {|f| = t}. Then there exist e(t) € Z.(D),
e(t) = 1, quasi everywhere (q.e.) on V¢, and a measure p; such that
Cap(Ni) = pue(Ni) = D(e(t)), (7.19)
D(e(t), g) = / g, ge (D). (7.20)
Ny
Since e(s) =1, 0 < s < ¢, g.e. on Ny, by (7.20), we have
D(e(t), e(s)) = pt(Ni) = D(e(t)). (7.21)
Next, define ||g||% = D(g). By (7.21), we have

le(s) — e(t)[|5 = Cap(N,) — Cap(Ny).

Thus, |le(t)||p is measurable in ¢, since Cap is right-continuous. On the other hand,
by (7.19), we have

00 0o I f1loo
/ le())llpdt = / V/Cap(Vy) di < / /Cap(Supp(f)) dt
0 0 0

= || fllso v/Cap(Supp(f)) < oo.

We can define the Bochner integral ¢ = [ e(t)dt. Moreover,

D(,g) = / T Dle(t).9)dt, g€ 2(D). (7.22)
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With these preparations, we can now prove our assertion:

/ Cap(N,)di2 = 2 / [Cap(N,)dt = 2 / Ln(ND)dE (by (7.19))
0 0 0
< 2/ . 1/ Fldudt  (since |f]/t > 1 on Ny)
Ny

—2/ D(e(t), |f))dt  (by (7.20))

2D, 1) (by (7.22))
2/ D()D(|f]) (by the Schwarz inequality)
2

D) D(f).

<
<

But

D(y)

([ o
[ oo " o

D(e
dt /0 D(e(t))ds  (by (7.21))
1D

-
:2/000
:2/

e(t))dt = 2 / h tCap(N,)dt  (by (7.19))
0 0
:/ Cap(Nt)dt2,

and so the required assertion follows. [

Having Theorem 7.7 in mind, the proof of Theorem 7.2 (which is more ge-
neral than Theorem 7.1) is quite standard. Here we follow the proof of V,A.
Kaimanovich(1992, Theorem 3.1).

Proof of Theorem 7.2. Let f € (D) NCy(F) and set Ny = {|f| > t}. Since N,
is compact, by (H1), Iy, € B. Next, since |f| < [|f|looL{supp(f)}» Py (H1) and (Ha),
f? € B. Note that

00 00 | f]
/ In,d(t?) = 2/ tlf|f|>4ydt = 2/ tdt = f2 (coarea formula).
0 0 0
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Since N, is compact, by the definition of B and Theorem 7.7, we obtain

2 _ 2 _ - 2
1Pl =g [ o= [ () @) o
— oo 2 > 2
=sup [ ( [ ot )a@) < [ @

< Bs [ Cap(N)A(?) < 4B5D(),
0

This implies that Ag < 4Bgp.
Next, for every compact K and any function f with f|x > 1, we have

HIKHIB Hf2HIB ApD(f).
Thus,

HJKHB<ABmf{D(f):fe.@(D)mCo( ), flx =1} = AgCap(K).

Dividing both sides by Cap(K) and taking the supremum with respect to K, it
follows that By < Ag, and the proof is completed. [

The proof of Theorem 7.3 is based on the splitting technique and the following
result.

Proposition 7.8. Let (E, &, ) be a probability space and (B, || - ||5) a normed linear
space, satisfying (H1) and (H2), of Borel measurable functions on (E, &, 7).

(1) Let ¢, be given by (7.6). Then

172]ls < (1 +/elltlls )] 725

(2) Let ¢y(G) be given by (7.7). If ¢y(G)7(G)||1||g < 1, then for every f with
flge = 0, we have

172[ls < 11725/ [1 - /e (G)m(G) 1115 °.

Proof. Note that 7T(f) (fz) CIHfZHB For all p,q > 1 with (p—1)(¢—1) =1,
we have (z + y)? < pz? + qy?, and so

1751l <Pl /215 +am (7Ll < (p+ ralitlie) |7l

Minimizing the right-hand side with respect to p and ¢, we get the first assertion.
The proof of the second one is similar. [

The proof of Theorem 7.4 uses ¥4 = {g 0: [eddrm < e? + 1} and % = {g >
0: f eddm < 1} respectively, for the upper and lower estimates.
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7.3 Comparison with Cheeger’s method

A typical case for which one needs the general form of Poincaré-type inequality is
the F'-Sobolev inequality [cf. F.Y. Wang(2000a), F.Z. Gong and F.Y. Wang(2002)]:

| PR()an< AeD(). £ 2(D)NCo(E), (7.23)

Theorem 7.9. Let F': R,y — R, satisfy the following conditions:

(1) 2F' + xF"” > 0 on [0, 00).

(2) lim,_o F(x) =0 and lim,_,, F(x) = oo.

(3) sup, 2F'(x)/F () < oc.
Then Theorem 7.2 is valid for the Orlicz space with N-function ®(x) = |z|F(|x]|).
Furthermore, the isoperimetric constant is given by

_ o, (K) ™' + p(K)F(a.(K))
Be = compint K& Cap(K) ’

(7.24)

where a, (K) is the minimal positive root of o?F’(a) = u(K).

To compare this result with the generalized Cheeger’s method, let us recall the
symmetric form

D) =5 [ 1Dy ) - F@)P + [ KO @ns@?,  a

WV
o

as defined in Section 4.5, satisfying the normalizing condition
[TV (dz, E) + KM (dz)] /7 (dz) < 1.

Next, define

Fi(z)
A —inf { D@ : =11, ¢; = su T

where F. denotes the right and left derivatives of F'.

< 00,

Theorem 7.10 (Chen,2000a). Suppose that F' is a continuous increasing function on
[0,00) with F(0) = 1 such that F' is piecewise continuous and ¢; < co. Then the
optimal A in (7.23) satisfies

W(G)F(T((G)_l)

Ar 2 a0 J(G x GO) + K(G)’ (7.25)
2 (1) 2 -1
Ar < su 41+ 1) (2= Xy )m(G)?F (7 (G) ). (7.26)

p
2(G)>0 [J(l/Q)(G > GC) + K(l/z)(G)]z
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Comparing (7.26) with (7.24) and (7.4), it is clear that Cheeger’s method is more
explicit (without using capacity) but less precise qualitatively than the capacitary
method. See also Example 4.19. In fact, as pointed out by A. Grigor’yan(1999), for
the Laplacian on a Riemannian manifold, the capacitary result Theorem 7.1 implies
Cheeger’s lower bound for the first Dirichlet eigenvalue.

Moreover, it should also be clear that these two methods are much less explicit
than the one-dimensional results studied in Chapter 6. The main reason is that in

the latter case, our starting point given in Section 6.2 is much more precise than
Theorem 7.1.

Comments on F'-Sobolev inequalities

The F-Sobolev inequalities are important in the following sense.

(1) It was proved by F.Y. Wang(2000a), and extended by F.Z. Gong and F.Y.
Wang(2002), that if the essential spectrum of the generator of the process is
empty, then F'-Sobolev inequality holds for a suitable function F. Here and
in what follows, we are talking about the ergodic case only. The converse
assertion holds once there exists a transition probability density with respect
to the reversible probability measure.

(2) The F-Sobolev inequalities were used by F.Y. Wang(2000b) to estimate the
higher eigenvalues \;, j > 1, not only the first one.

(3) Recently, F.Y. Wang(2004a; 2004b) has proved that the inequalities for sui-
table F' are equivalent to the Bochner-type inequalities, which are additive and
hence are useful in the infinite-dimensional situation to study the perturbation
of independent systems.

(4) Clearly, one may regard some F-Sobolev inequalities as interpolations between
the logarithmic Sobolev inequality and the Poincaré inequality (cf. F.Wang
(2003a)). It is meaningful, especially for Markov jump processes, to give some
sufficient conditions for exponential convergence in entropy.

7.4 General convergence speed

The aim of this section is to derive an inequality for general convergence speed for
reversible Markov processes.
Let £(t) 4 0 as t T co. Consider the general decay

1PfI? = 1P f = m(FII < CV(E), (7.27)

where C is a constant and V is a suitable functional to be discussed below more
carefully. On the right-hand side of (7.27), the variables ¢ and f are separated. Of
course, we are mainly looking for such a simple control, rather than a complicated
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expression. Now, a question arises. What is an analogue of the Poincaré inequality
for such decay?

Note that if we define
V(f) =sup&(t) | B fI%,
>0
then it is clear that the functional V' should be homogeneous in degree two,

V(af +8) = a®V(f), (7.28)

which is the main condition we need for the functional V. Next, if we define V(f) =
| f||?, then we will return to the exponential convergence £(t) ~ e L.

We now continue our search for an analogue of the Poincaré inequality. It is a
simple fact that

1 1—e_°‘t
< U-Rfp=[

. p d(Eof, ) T D(f) ast |0,

where {E, }a>0 is the spectral family of the semigroup, since (1 — e~ ")/t 1 as t |.
Because (P;f, f) is decreasing in t, there exists a nonnegative, increasing function
n (n(r) = r, for example) such that n(r)/r 1+ 1 as r | 0, and then for each f with
w(f) =0, we have

I£17 = 0@ D(f) < (Pef. ) < 1P < VC AL

by assumption. Solving this inequality in || f]|, we get

171 < 5 [VEVIPE® + VOVERD + a0 D7)

Therefore, we obtain the required inequality

I7]]” < 20(0)D(f) + C'V (&), (7.29)

where C’ is a constant.

In particular, if we set £(t) = t179(¢q > 1) and n(t) = t, then by optimizing the
right-hand side of (7.29) with respect to ¢, we obtain the following Liggett—Stroock
inequality:

1717 < Dy rvipe, (7.30)

where 1/p 4+ 1/q = 1. Refer to the proof of Theorem 5.10.
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7.5 Two functional inequalities

Let us return to (7.29). By a transform if necessary, without loss of generality, we
may assume that V' (f) = 1. Then the right-hand side of (7.29) becomes 2n(t)D(f)+
C'¢(t). Define ®(x) = inf,~o[2n(r)z + C'&(r)], > 0. Then inequality (7.29) takes
the following more compact form:

IFII°F < (D), V() =1

However, this inequality is not practical, since ® is not explicit. The trick now is to
regard t as a new parameter 7. Then we can rewrite (7.29) as

171" < D(f)+C'V(f)&(r), r>0 (7.31)

Before moving further, we show that it is easy to go back to (7.27) from (7.31).
Let w(f) = 0 and set f; = P.f, F; = 7r(ft2) Assuming that the semigroup is
V-contractive in the sense that V(f;) < V(f) for all f, then by (7.31), we have

(
V(f)E(r)
77(7“) n(r)

= —2D(f) < £y
V(Er) 1
g () n(T)Ft’ t>0,r>0.

By Corollary A.2,

t
F < Fpe-t/nn 4 CVIER) / o~ (t=)/n(1) 45
n(r) 0

<|f P+ CV(HEr),  t20,r>0.
Suppose that 7(r) 1 as 7 1 and define
r(t) = inf {r > 0: —n(r) log§ r) < th,
) =&0r),  V(H=CVH+ I
Then as ¢ 1 oo, 7(t) 1 0o and so £(t) | 0. Moreover,
IPfII> = Fe < V(HEE),  t>0,
which gives us the required decay (7.27).

As an application of (7.31), by setting n(r) = r/2 and V(f) = =(|f|)?, F.Y.Wang
(2000a) introduced the so-called super-Poincaré inequality

IFI2 < rD(f) + B(r)m(| ), Vr>0, (7.32)
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where 3(r) | as r 1. The reason for choosing V(f) = m(|f])? comes from the fact
that the ordinary Poincaré inequality is equivalent to

If1* < CD(f) +=(I£1)*,

for some constant C' > 0. It was also proved in F.Y. Wang(2000a), F.Z. Gong and
F.Y. Wang(2002) that (7.32) is equivalent to the F'-Sobolev inequality (ergodic case)

L/fQ dr <CD(f),  |f =1 (7.33)

where [ satisfies sup,.¢ g 1 [7F'(r)| < oo and lim, . F'(r) = co. The equivalence of
(7.32) and (7.33) provides us not only a more intrinsic understanding of these two
inequalities but also that we can use either of them according to our convenience.
For instance, as shown in the previous paragraph, (7.32) describes the decay of the
semigroup, and by Theorem 7.9 (and Corollaries 7.5 and 7.6), we obtain a criterion
for (7.33).

Next, we are going to look for a slower convergence. Again, we start from (7.31).
Note that the use of the new parameter r is mainly for our convenience. Actually,
the right-hand side of (7.31) plays a role only at a point r, at which the right-hand
side of (7.31) achieves the infimum. Note also that when V = || - |2, and n(r) =
for instance, we have lim,_,o 8(r) = oo. This singularity is sometimes reasonable
(in the case of algebraic convergence for instance), and makes (7.32) stronger for
smaller r. It may cost some difficulty in the applications and may exclude some
slower convergence. For this, we need further consideration. It is clear that using
a different pair (n,£) on the right-hand side of (7.31), one may obtain the same (or
equivalent) inequality. Based on these observations, by exchanging the position of
the functions r and S(r), M. Rockner and F.Y. Wang(2001) introduced the so-called
weaker-Poincaré inequality (WPI) as follows:

I7° < atr)D(f) + 1V (f),  ¥r>o, (7.34)

where a(r) > 0, a(r) | asr T on (0,00). It was proved in the quoted paper that when
V = -2, (7.34) is equivalent to the Kusuoka—Aida weak spectral gap property
[cf. S.Aida (1998)]:

For every sequence {f,} C Z(D) with 7(f,) =0,
| fnll <1, and hm D(f,) =0, we have f,, — 0 in P.

Here is one of the main results about WPL
Theorem 7.11 (M. Rockner and F.Y. Wang,2001).
(1) If |P.f]|? < £@)V(f) forall t > 0 and &£(t) | 0 as t 1 oo, then WPI holds with

the same V and

a(r) = 2r inf 15_1(361_5/7”), E7H(t) :==1inf{r > 0: £(r) < t}.

s>0 8
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(2) If WPI holds and V(P f) < V(f) for all t > 0, then

IPFIP <) vVn+17] ve>o,
where £(t) = inf{r > 0 : —a(r)logr/2 < t}.

To establish WPI, the generalized Cheeger’s (isoperimetric) method is also very
powerful [cf.R6ckner and Wang (2001)].

The functional inequalities and much more material are explored in a monograph
by F.Y. Wang(2004b).

7.6 Algebraic convergence

We now return to the Liggett—Stroock inequality (7.30). Instead of stating some
general but technical theorems, we introduce only two examples, from which one
can see the role played by different functionals V. Examples are the leading light of
our study. Every meaningful theorem should be supported by a good example.

Example 7.12 (Chen and Y.Z. Wang,2003). Consider the birth—death process with
rates a; = b; = 4" for large i (i > 1) and v > 0. The process is ergodic iff v > 1.

(1) Let v > 1. Then Ay > 0 iff v > 2. In other words, with respect to V(f) = HfH2
the process has L2-algebraic decay iff v > 2.

(2) Let y € (1,2). Then with respect to V*: V*(f) = supysq [(k+1)*|fot1 —fk|]2,
where 0 < s < — 1, the process has L?-algebraic decay iff v € (5/3,2).

(3) Let v € (1,2). Then with respect to Vo: Vo(f) = sup,;(fi — f;)?, the process
has L2-algebraic decay for all v € (1,2).

Example 7.13 (Chen and Y.Z. Wang,2003). Consider the birth—death process with
rates a; = 1, b = 1 —~/i for i > 1 and v > 0. The process is ergodic iff v > 1. We
now let v > 1.

(1) In general, we have A\; =0 for all v > 1.

(2) With respect to V°: VO(f) = supy>g |fr+1 — fx|?, the process has L*-algebraic
decay iff v > 3.

(3) With respect to Vo: Vo(f) = sup;;(fi — f;)?, the process has L*-algebraic decay
for all v > 1.

The beginning step of the proof

Note that the functionals V* and Vi are all of Lipschitz type with respect to some

2
distance p: Lip,(f)? = SUp,, £ ‘M . As we have shown before, the distances

vy plzy)
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play a very important role in the study of the spectral gap. The same happens in
the present situation. Here we show a few of the lines in the original proof. First,
recall the Liggett—Stroock inequality:

IfII> < CD(H)YPV ()M

Clearly, one has to use Holder’s inequality:

1
Var(f) = 5 S mimi(fi—fi)? =Y mimi(fi—F)
iJ {i.3}
1/

Z T (qubijﬁ)

{i.g}

1/q

p

{3,3}

Roughly speaking, in the last line, ¢;; represents a distance between 7 and j. The
last inequality indicates a good use of the Holder inequality. One may continue the
proof by estimating the right-hand side.

General ergodic Markov chains

Finally, we consider a general ergodic Markov chain with transition probability ma-
trix (p;;(t)) on a countable set, m; := lim;_, o p;;(¢t) > 0, but looking for polynomial
convergence only. Define

dE;L) = / t" (pzj (t) — ﬂj)dt, nc Z_|_,
0

ml — =E;07, oj =inf{t > 7 : X; = j},

2.7

where 7, is the first jumping time of the chain.

Theorem 7.14 (Y.H. Ma0,2003). For an irreducible and ergodic Markov chain, the
following assertions hold:

(1) ‘d(m‘ < oo for all i, j iff m( ") < 0 for some (equivalently, all) j.
(2) If m( ") < 50, then pij(t) —m; = o(t™ ") as t — .
(3) m ( ) < oo iff the inequalities

(n—1) . .

Zk# qjkYr < O,

have a finite nonnegative solution (y;).
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It is remarkable to note that equality in (7.35) indeed holds for (y; = m(‘7 )) In
other words, the nth moments are expressed in terms of the (n — 1)th moments,
and hence depend on all of the mth moments (m < n — 1). This indicates the com-
plexity of a criterion, in general, for algebraic convergence, especially for irreversible
processes. Recall that in the previous sections, general convergence speed depends
heavily on the Dirichlet form (reversibility) and so is not available for the general
irreversible situation.

7.7 General (irreversible) case

The discussion at the end of the last section leads to the following open problem.

Open Problem 7.15. What should be a criterion for slower convergence of a general
time-continuous Markov process in terms of its operator?

As a reference, here we consider the time-discrete case. Let (F, &) be a general
measurable space and (X, ),>0 a Markov process with state space (F,&). Define
the return time oz = inf{n > 1: X,, € B}. Next, define

log r(

0 = { ez 2< ol 1 2 [0 as g oo

%:{r( N)nez,: Iro € #Zo such that lim rin) >0 and lim rin) <oo}.

n—oo 10 (TL) n—oo T( (TL)

Roughly speaking, %, is the set of monotone speeds, and & is the perturbations of
the elements in %Zy. Here is the general answer to Problem 7.15 in the context of
time-discrete Markov processes.

For simplicity, one may think of the petite set and &' below, respectively, as the
compact set K and the Borel sets in R? having positive Lebesgue measure.

Theorem 7.16 (P. Tuominen and R.L. Tweedie,1994). Let a Markov process be
irreducible and aperiodic. Fix r € #Z. Then

lim r(n)||P.(z,-) — 7||var =0

n—o0

for all x in the set
og—1
{;U E, Z r(k) < oo, VB € 5+},
k=0

provided one of the following equivalent conditions holds:

(1) There exists a petite set K such that E, > %, r(k) < oo for all z € K.
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(2) There exist (fn)nez,: £ — [1,00], a petite set K, and a constant b such that
SUp,c i fo < 00, {fi < oo} C {fo < oo}, and furthermore,

Pfni1 < fn—r(n)+br(n)lk, ne”Zs.

(3) There exists A € & such that

sup E, Z r(k) < oo, VB e &T.
k=0

€A

It is proved by S.F. Jarner and G.O. Roberts(2002) that in the polynomial case,
one can use a single f instead of the sequence (f,) used above.

Finally, we mention that there is quite a number of publications devoted to
the study on the ergodic convergence rates for time-discrete Markov processes, not
included in this book. A natural extension of the classical types of ergodicity, largely
developed in S.P. Meyn and R.L. Tweedie(1993b, Chapter 16), is the V-uniform
ergodicity: |P™ — «|y — 0 as n — oo, where

IPi(z, ) = Pa(=,)lv = sup V(z) " sup |(P1 — P2)f(x)]

v€E FI<V

for a given function V € &: 1 <V < oco. Intuitively, the function V' comes from the
equivalent “draft condition”

PVy < —aVy+ BIp

for some petite set B and constants o > 0 and 3 < oo, where Vj > 1 is equivalent
to V: ¢ 'V < Vi < ¢V for some constant ¢ > 0. The exponential ergodicity
corresponds to a type of V-uniform ergodicity for a suitable V. In view of the drift
condition, for smaller V', the V-uniform ergodicity becomes stronger. In particular,
when V' =1 (the smallest one), we come back to the uniform (strong) ergodicity (cf.
Section 1.4). Refer to I. Kontoyiannis and S.P. Meyn(2003), G.O. Roberts and J.S.
Rosenthal(1997), J.S.Rosenthal (2002), L.M. Wu(2004), and references within for
recent progress. Two results of the relation between the V-uniform ergodicity and
the inequalities studied in the book are given in Figure 1.1 or Theorems 8.6, 8.8, and
8.13 in the next chapter. In general, they are not comparable, as shown by Examples
8.2-8.4. This is clear, since the inequalities deal with the norm of mappings from
one normed linear space to another, not necessarily from one to itself.






Chapter 8

A Diagram of Nine Types of
Ergodicity

This chapter consists of three sections. In the first section, we recall three basic
inequalities and their ergodic meaning. Then we recall three traditional types of
ergodicity. We compute the exact optimal constants of the inequalities or exact
ergodic rates for the traditional ergodicity in the simplest case, that the state space
consists of two points only. Next, we turn to study the diagram of nine types of
ergodicity presented in Theorem 1.9. In the second section, we discuss the value
of the diagram, consider its powerful applications, and make some comments on its
completeness. The comparison of the different types of ergodicity are shown by some
simple examples. The last section is devoted to the proof of the diagram with some
addition.

8.1 Statements of results

Ergodicity by means of three inequalities

Three basic inequalities. Let (F, &, 7) be a probability space and (D, (D)) a
Dirichlet form. Denote by Var the variational norm: Var(f) = || f||* — n(f)?. The
three inequalities mentioned several times before are as follows:

Poincaré inequality - Var(f) < A7 D(f),
Nash inequality - Var(f)'*2/v < n_lD(f)\\f\\;l/y, v >0,

Logarithmic Sobolev inequality : /f210g (f2/1f1?)dr < 207 D(f),
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where || - ||, is the LP-norm and || - || = || - [[o We remark that for the Nash inequality,
it holds as well if || f||; is replaced by || f||, for all » € (1,2). To save on notation,
here A1, 1, and o denote the optimal constants in the inequalities.

Ergodicity by means of the inequalities. Let (P;) be the semigroup determined
by the Dirichlet form (D, 2(D)): P; = et formally. Then

e Poincaré inequality <= Var(P; f) < Var(f)e 2Mt,
e Logarithmic Sobolev inequality = exponential convergence in entropy:

Ent(P, f) < Ent(f)e 27",

where Ent(f) = n(flog f) — n(f)log || f||1. Actually, one can replace “=" with
“<=" in the context of diffusions.

v/2
e Nash inequality <= Var(P,f) < (ﬁ) IF113.
Ui

At first glance, one may think that the Nash inequality is the weakest one, since
the convergence speed is slower. However, this is incorrect, as shown in Figure 1.1.
A result due to L. Gross(1976) says that

Logarithmic Sobolev inequality = Exponential convergence in entropy

—> Poincaré inequality.

Three traditional types of ergodicity

Recall that
|14 — v|[var = 2 sup |u(A) —v(A)[.
Ae&

Here are the three traditional types of ergodicity.

Ordinary ergodicity : lim ||P;(x,-) — 7||var = 0,
t—o0
Exponential ergodicity : lim eY||Py(z,-) — 7|var = 0,
t—00
Strong ergodicity : lim sup ||P;(z,-) — 7||var =0
t—oo

e lim sup || Py(x, ) — 7||var = 0,
t—o00 T

where & and B denote the largest positive constants in the corresponding equality
to save on notation. For these types of ergodicity, there is a classical theorem, which
will be proved in the last section of this chapter:

Strong ergodicity = Exponential ergodicity = Ordinary ergodicity.

As an illustration, we compute the optimal constants in the inequalities and the
exact rates of ergodic convergence for the simplest example.



8.1 Statements of results 161

Example 8.1. Let £ = {0,1} and consider the Q)-matrix

o= L)

Then the Nash constant and the logarithmic Sobolev constant are given by

a/\b)l/q o 2(aVb—aAb)
aVb ’ ~ log[(aVb)/(aAb)]’

n=(a+b)<

respectively. The rates of the L2-exponential convergence, the exponentially ergodic
convergence, and the strongly ergodic convergence (must be exponential) are all equal
to A1 = a+b. The results are summarized in Table 8.1.

Table 8.1 The optimal constants of the inequalities for two points

A =a :ﬁ Log Sobolev o Nash n
2(aVb—aAb) a Ab\' T
b b
o logaVb—logaAb (a+ )<a\/b>

In general, we have A\; > o (Theorem 8.7), but \; = o for this example iff a = b
(where o is regarded as the limit as a — b).

Proof. (a) Note that

I [ atbeM p(1l—eN0)
(.. _  tQ _
P = i) =@ = 5 (0

and 7y = a/(a+b), 1, = b/(a+ b). Hence

a\/be_)\lt.
a+b

pij(t) — 5| <

This proves the last assertion.
(b) Write

@=(a+b) <1_—90 931>’

where 0 = b/(a + b). Therefore, it suffices to consider the ()-matrix

-0 0
Q1:<1—9 9—1)'

Without loss of generality, one may assume that 0 < 1/2, i.e., b < a.
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(c) By P. Diaconis and L. Saloff-Coste(1996) or Chen(1997a), for @1, we have

o 2(1-26)
~log(1/0 — 1)

o

The computation of this constant is nontrivial. From this and (b), it is easy to
obtain the second assertion.
(d) We now show that the Nash inequality is equivalent to

If —x(HIZ <o tDHYVP|f =9, feL(n), (8.1)

where ¢ is a median of f. To see this, replacing f with f — ¢ in the original Nash
inequality, we get (8.1). The inverse implication follows from

If = elly = mf [[f —afly < [[f]l-

Next, consider Q1. Given a function f on {0, 1}, without loss of generality, assume
that fo > f1. Since 0 < 1/2, the median of f is fy. Set g = f — fo. Then

lgllv = 0lg1| = 0(fo — f1),
Var(g) = ng% + (7T191)2 =0(1—0)(fo— f1)2,
D(g) = moqo1(91 — g0)* = (1 — 0)0(fo — f1)>.
Hence for @1,

_ D@l 0\
= 1n = .
g Var(g) 1-6

Applying (b) again, we obtain the first assertion. [

Even in this simplest situation £ = {0,1}, the exact rate of the exponential
convergence in entropy is still unknown.

A diagram of nine types of ergodicity

The main topic of this chapter is the diagram of the different types of ergodicity
presented in Theorem 1.9.

8.2 Applications and comments

Here are some remarks about Figure 1.1.

The importance of the diagram is obvious. For instance, by using the estimates
obtained from the study of the Poincaré inequality, based on the advantage of the
analytic approach, the L?-theory and the equivalence in the diagram, one can esti-
mate exponentially ergodic convergence rates, for which current knowledge is still
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very limited. Actually, these two convergence rates often coincide (cf. the proofs
given in Section 8.3). In particular, one obtains a criterion for exponential ergod-
icity in dimension one, which was open for a long period (cf. Tables 1.4 and 5.1).
Conversely, from the well-known criteria for exponential ergodicity, one obtains im-
mediately some criteria, which are indeed new, for the Poincaré inequality. Here
is a criterion for exponential ergodicity. A -irreducible, aperiodic Markov process
with operator L is exponentially ergodic if there exist a probability measure v, some
functions h : E — (0,1], V : E — [1, 0], and some constants 6 > 0, ¢ < oo such
that
LV < (=6 +ch)V, Ry > h®v,

where Ry = [~ e *P,dt, A > 0, is the resolvent of the semigroup {P;};>0. Refer
to S.P. Meyn and R.L. Tweedie(1993a), 1. Kontoyiannis and S.P. Meyn(2003) for
more details. Next, there is still very limited knowledge about the L!'-spectrum, due
to the structure of the L!-space, which is only a Banach but not a Hilbert space.
Based on the probabilistic advantage and the identity in the diagram, from a study
of the strong ergodicity, one learns a great deal about the L'-spectral gap of the
generator. Refer to L.M. Wu(2004) for a comprehensive study of related topics for
time-discrete Markov processes.

As explained in Section 7.6, L?-algebraic convergence means that Var(Pf) <
CV(f)t'=4for all t > 0 and for some V having the properties that V is homogeneous
of degree two (in the sense that V(cf + d) = ¢V (f) for any constants ¢ and d) and
V(f) < oo for a class of functions f [continuous functions with compact support,
for instance; cf. T.M. Liggett(1991)]. Refer also to J.D.Deuschel (1994), Chen and
Y.Z. Wang(2003), Y.Z. Wang(2004; 2003b), M. Réckner and F.Y. Wang(2001) for
a study of L?-algebraic convergence.

Reversibility is used in both the identity and the equivalence. Without reversibili-
ty, L?-exponential convergence still implies 7-a.s. exponentially ergodic convergence.

An important fact is that the condition “having densities” is used only in the
identity of L!-exponential convergence and m-a.s. strongly ergodic convergence.
Without this condition, L!'-exponential convergence still implies 7-a.s. strongly
ergodic convergence, and so the diagram needs only a little change (however, re-
versibility is still required here). Thus, it is a natural open problem to remove or
relax this “density condition.”

Except for the identity and the equivalence, all the implications in the diagram
are suitable for general Markov processes, not necessarily reversible, even though the
inequalities are mainly valuable in the reversible situation, or when the stationary
distribution is known in advance. Clearly, the diagram extends the ergodic theory
of Markov processes.

The diagram is complete in the following sense: each single implication cannot be
replaced by a double one. Moreover, the L!-exponential convergence (respectively,
strong ergodicity) and the logarithmic Sobolev inequality (respectively, exponential
convergence in entropy) are not comparable.
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The differences among these types of ergodicity are illustrated by the following
examples.

Examples 8.2. Comparisons of the different types of ergodicity for diffusions on the
half-line with reflecting boundary at the origin. See Table 8.2. Here “\/" means “always

holds” and “x" means “never holds.”
Table 8.2 Comparisons of diffusions on [1,00)

Erg. | Exp. erg. | LogS | Strong erg. | Nash

b(x) =10
a((:z:)):xV v>1 v =2 v > 2 v > 2 v > 2
b(x) =10
aixgzleogm Vo[ az0 |zt 4> x

Z(m) _ V V X X X

Examples 8.3. Comparisons of the different types of ergodicity for birth—death pro-
cesses. See Table 8.3.

Table 8.3 Comparisons of birth—death processes

Ergodicity | Exp. erg. | LogS | Strong erg. | Nash
azi% v>1 v =2 v > 2 v > 2 v > 2
@i =" v >0 >1 > 1 X
— 42 log? i vz = Y
a; = a >
b = b V v X X X

We have seen from the above tables that strong ergodicity is usually stronger
than the logarithmic Sobolev inequality. The next example goes in the opposite

way.
Example 8.4 (Chen,2002b). Let (m; > 0) and take g;; = 7;(j # ). Then the process

is strongly ergodic but the logarithmic Sobolev inequality does not hold.

Proof. (a) Since the @Q-matrix is bounded, the logarithmic Sobolev inequality cannot
hold (cf. Theorem 4.12).
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(b) For strong ergodicity, note that the sequence yo = 0, y; = 1/m, (i # 0)
satisfies the following criterion [cf. Theorem 5.1 (3)]:

>ty —y) < -1, i #0,
E#o qojY; < 9,
(y;) is nonnegative and bounded.

Hence the process is strongly ergodic. [

For one-dimensional diffusions, a counterexample was constructed by F.Y. Wang
(2001) to show that strong ergodicity does not imply exponential convergence in
entropy (equivalently, the logarithmic Sobolev inequality).

The diagram was presented in Chen(1999¢; 2002b), originally stated mainly for
Markov chains. Recently, the identity of L!-exponential convergence and the 7-a.s.
strong ergodicity were proven by Y.H. Mao(2002c).

8.3 Proof of Theorem 1.9

The detailed proofs and some necessary counterexamples were presented in Chen(1999c;
2002b) for reversible Markov processes, except for the identity of the L!-exponential
convergence and m-a.s. strong ergodicity. Note that for a discrete state space, one
can rule out “a.s.” used in the diagram. Here, we collect the complete proofs of the
diagram, with some more careful estimates for the general state spaces. The author
would like to acknowledge Y.H. Mao for his nice ideas, which are included in this
section. The steps of the proofs are listed as follows:

(a) Nash inequality = L!-exponential convergence and m-a.s. strongly ergodic
convergence.

—~
o

L'-exponential convergence <= m-a.s. strongly ergodic convergence.

Strong ergodicity = exponential ergodicity = ordinary ergodicity.

@)

N/~
(@

L?-exponential convergence = LZ2-algebraic convergence.

L?-algebraic convergence = ordinary ergodic convergence.

@)

—_—~

Nash inequality = logarithmic Sobolev inequality.

Logarithmic Sobolev inequality = Poincaré inequality.

TN N
= 0R

L?-exponential convergence = 7-a.s. exponentially ergodic convergence.

—h
N N e e e N N

m-a.s. exponentially ergodic convergence = L?-exponential convergence.

~
i o

Moreover, at each step, once we have a more general result, it will be stated more
precisely.
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(a) Nash inequality = L'-exponential convergence and r-a.s.
strong ergodicity [Chen,1999b]

Theorem 8.5.
(1) In general, Nash inequality = L!-exponential convergence.

(2) In the reversible case, Nash inequality = m-a.s. strong ergodicity.

Proof. Denote by || - ||,—4 the operator’s norm from LP(7) to L(w). From proof
(a) of Theorem 5.10, it follows that
Nash inequality = Var(P;(f)) = [|Pof —7(f)|5 < C?|| fl[{/t*

= [[(Py = m) flla < O flla/t V2.

= ||P =71 < C/t9V2 (g i=v/241).
Since ||P; — 7|11 < || P — 7|12, we have Nash inequality = L!-algebraic conver-
gence. Furthermore, because of the semigroup property, the convergence of || - |11
must be exponential, and we indeed have Nash inequality = L!-exponential convergence.
Actually, we have seen that there is a t; > 0 and v € (0, 1) such that || P, — 7|11 <

v. Given t > 0, express t = mtg + h with m € Ny and h € [0,¢y). Then for every f
with 7(f) = 0, we have w(P.f) = 0 for all ¢, and furthermore

-1
1P fll = 1 Prtornfll < [Paflliy™ < I flliyt o™t =y~ telfo o8t £

for all £. This gives the required assertion since log~y < 0.
In the reversible case, P, — 7 = (P, — 7)*, and so

1Pt = 100 < NIPr = 7llims2| P = 7ll2s00 = 1P — 1,5
Hence ||P; — 7]|1 500 < C/t?1. Thus,

ess sup, || Py (z, -) — 7llvar = esssup, sup |(Pi(, ) — m)/]

[fI<1

<esssup, sup |(Pi(x,:) —m)f]
Ifll1<1

= sup esssup,|(P(x,:) —7)f]

S
= 1P = 71500

<O/t 50 as t — 00.

This gives us the m-a.s. strong ergodicity. [
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(b) L'-exponential convergence <= m-a.s. strong ergodicity
[Y. H. Ma0,2002¢]

Theorem 8.6.

(1) For reversible Markov process, we have L!-exponential convergence = m-a.s.
strongly ergodic convergence. Moreover, the exponential convergence rate of the
latter one is bounded below by the former one.

(2) Ifadditionally, P} (zx, -) < , then the two convergence rates coincide with each
other.

Proof. Since (L1)* = L™ = |P; — 7|11 = || PF — T||co—00, We have

IB; = Tllcosoe = essoup, sup (P =m)f(z)

> esssup, sup |(Pf—m)f(z)]
sup | f|=1

= esssup, || P/ (z, ) — 7||var-

This proves the first assertion. If, moreover, P;(z, ) < m, then the sign of the second
equality holds, and so m-a.s. strong ergodicity is exactly the same as L!-exponential
convergence. [

(c)Strong ergodicity—-exponential ergodicity =—-ordinary er-
godicity

If the Markov process corresponding to the semigroup (P;) is irreducible and aperiod-
ic in the Harris sense, then the implications hold. To see this, noting that by [Chen(?,
Section 4.4); D. Down, S.P. Meyn, and R.L. Tweedie(1995)], the continuous-time
case can be reduced to the discrete-time one, and then the conclusion follows from
S.P. Meyn and R.L. Tweedie(1993b, Chapter 16).

(d) L?-exponential convergence —> L*-algebraic convergence

Simply take V(f) = ||f]|? in (5.20) and apply Theorem 5.10 (1).

(e) L?-algebraic convergence — ordinary ergodic convergence

The proof is very much the same as proof (a) of Theorem 8.8 below.
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(f) Nash inequality = logarithmic Sobolev inequality
[Chen,1999b)

Because || f|[1 < || f][p for all p > 1, we have
-2 < I+ ams < G772,

and so
Nash inequality = Poincaré inequality <= \; > 0,
[Pellp—s2 < [[Pillime < [P = 7llime + (712 < oo, pe(l,2).

By D. Bakry(1992, Theorem 3.6), this implies (4.15). The assertion now follows
from (4.16).

(g) Logarithmic Sobolev inequality —> Poincaré inequality
[O.S. Rothaus,1981]

Theorem 8.7. \; =gap(L) > 0.

Proof. Consider f = 1+ eg for sufficiently small e. Then D(f) = ¢2D(g). Next,
expand f?log f? and f?log | f||* in € up to order 2:

f?log f? = 2eg + 3e%g* + O(&%),
FPlog || fI1? = 2em(g) + &2 ( — 27(9)* 4+ 7(g°) + 4g7(g)) + O(?).

Then we get [ f?log f2/| f||*dm = 2e? Var(g) + O(£%). The proof can be done using
the definitions of A\; and ¢ and letting ¢ — 0. [

The remainder of the section is devoted to the proof of the following assertion:

L?-exponential convergence <= m-a.s. exponentially ergodic convergence.
(8.2)

This was done by Chen(2000a). Because by assumption, the process is reversible
and P,(z,-) < m, set

) ),

Then we have p;(z,y) = p:(y,z), ™ X m-a.s. (z,y). Hence

pt(x,y) -

/ pe (2, y)Pm(dy) = / pe ()P (4, 2)7(dy) = pas(@,7) < 00
(E.A. Carlen et al.,1987).

(8.3)
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This means that p;(x,-) € L?(x) for all t > 0 and 7m-a.s. x € E. Thus, by
Chen(2000a, Theorem 1.2) and the remarks right after the theorem, (8.2) holds.

The proof above is mainly based on the time-discrete analogue result by G.O.
Roberts and J.S. Rosenthal(1997). Here, we present a more direct proof of (8.2) as
follows.

(h) L*-exponential convergence = m-a.s. exponentially ergod-
ic convergence [Chen,1991b; 1998b; 2000a]

Theorem 8.8.
(1) In general, we have ||uP; — 7||var < ||dp/dm — 1]|2e~t82P(E) provided du/dm €
L?(7).
(2) In the reversible case, we have €1 > gap(L) = A1, where ¢ is the largest ¢ such
that

HPt(xa ) - 7T”Var < C(x)e_st (84)

for some C(z) and all . Hence L*-exponential convergence = 7-a.s. exponen-
tially ergodic convergence.

(3) In the (-irreducible case, L?-exponential convergence = m-a.s. exponentially
ergodic convergence.

Proof. (a) Let p < m. Then

[Py — || var = sup ((uPy —m) f| = sup
1< |fI<1

(7 (%))

(ans1)
(= (@)l

= sup = sup
|fI<1 |f1<1 (8.5)
o (e dpe —tgap(L”)
<P 5= -1 < ||== — 1| etear
dm 1 dr 5
f— d_M — 1 -1 gap(L)
dm 5
This gives us the first assertion. We now consider two cases separately.
(b) In the reversible case with P,(z,-) < m, by (8.3), we have
dPs(x, -
”Pt(x: )_7THVa1" ‘Pt s<%—1>
7T 1
< lps(z, ) — 1|ge(t#) gan(L) (8.6)

— [\/pzs(x7x) _ 1 e's gap(L):| e_tgap(L), t 2 S.
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Therefore, there exists C(z) < oo such that
1P,(z,) — 7||var < C(z)e t8PL) >0, mas. (z).

This proves the second assertion.

(c¢) In the g-irreducible case, without using the reversibility and transition den-
sity, from (8.5), one can still derive m-a.s. exponential ergodicity (but may have
different rates). Refer to G.O. Roberts and R.L. Tweedie(2001) for a proof in the
time-discrete situation (the title of the quoted paper is confused, where the term
“L'-convergence” is used for the m-a.s. exponentially ergodic convergence, rather
than the meaning of L!-exponential convergence used in this book. These two types
of convergence are essentially different, as shown in Theorem 1.9 and Section 8.2).
In other words, the reversibility and the existence of the transition density are not
completely necessary in this implication. []

(i) m-a.s. exponentially ergodic convergence = L*-exponential
convergence [Chen(2000a), Y.H. Mao(2002c¢)]

In the time-discrete case, a similar assertion was proved by G.O. Roberts and J.S.
Rosenthal(1997) and so can be extended to the time-continuous case by the standard
technique [cf. Chen(?, Section 4.4)]. The proof given below provides more precise
estimates. To begin with, we prove some short lemmas.

Lemma 8.9. Let & be countably generated. Then m-a.s. exponentially ergodic con-
vergence and exponential convergence of || || Pi(e, ) — 7||var||1 are equivalent. Here and

in what follows, the L'-norm is taken with respect to the variable “o”.

Proof. By E. Numemelin and P. Tuominen(1982) or E. Numemelin(1984, Theorem
6.14 (iii)), we have in the time-discrete case that

m-a.s. geometrically ergodic convergence

< || ||P"(e,-) — 7||var||1 geometric convergence.
This implies the time-continuous case as stated in the lemma. [

From now on, assume that || || P;(e,-) — 7||var|[1 < Ce 2" with largest e,.

Lemma 8.10. If P,(x,-) < 7 or the process is reversible, then we have
H[P:(e,-) = ml[varllt = 1P = 7lloo—1-



8.3 Proof of Theorem 1.9 171

Proof. Let ||f||coc = 1. Then

ma—wvmz/EMMWMa»—mﬂ

</7‘(‘(dx) sup |(Py(x,-) —m)g]|

gllee <1

— /w(dx) sup ’(Pt(%') _77)9’

lg|<1
- H HPt(.7 ) - 7THVarH1-

The second-to-last equality comes from the following fact. If P;(x,-) < m, then
every T-zero set is a Py(x,-)-zero set. Next, if P, is reversible, then for every m-zero
set B, we have P;(z,B) =0, m-a.s.(x). [

Lemma 8.11. (1) In general, we have ||P; — 7||oos1 = || P — 7|2 /2.

(2) In the reversible case, we have || Pa; — 7||oos1 = || Py — 7|2 5.

Proof. The first assertion comes from

ma—mﬂ@</M&—ﬂﬂ%w<wmm/Ka—mﬂm
<2 FIP NP = 7l ooms1, feL>(n).

To prove the second assertion, note that

I(Pe = ) fII3 = (P = m) f, (P = m)f) = (f, (P — 7)*f)
= (/s (Par = 7)) < |[flloo [ (Par = ) fl2 (8.7)

< 121 P2e = 7lloost

Hence || Pot — 7|loos1 = ||P: — 7||% 5. The inverse inequality is obvious by using

the semigroup property and symmetry:
1Pot = mlloost <P = mllooms2llPe = mllamss = 1P = 7] 5sp. O
Lemma 8.12. In the reversible case, \; = gap(L) > ¢,.

Proof. By Lemmas 8.10 and 8.11 (2), for every f with «(f) =0 and ||f||2 = 1,

1Pfllz < CllflISce™"
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Following F.Y. Wang(2000b, Lemma 2.2), or M. Rockner and F.Y. Wang(2001), by
the spectral representation theorem, we have

1PI2 = / M A(E S, f)

0 t/s
> [/ e A(ENf, f) (by Jensen’s inequality)
0

2t/ s
— P,

WV

s
Thus, || P, f||3 < [C’Hfﬂgo]s/te_%?s. Letting t — oo, we get

IPfll3 <e7=, w(f) =0, [[fl2=1, fe L)
Since L>°(7) is dense in L?(7), we have
IPfl3 <e™2, 520, 7(f)=0,[fl2=1.

Therefore, \; > ¢,. [

Theorem 8.13.

(1) In general, if P,(z,-) < =, then || || Pi(e,") — ml|var|l1 = | B — 7|2 _2/2.

(2) In the reversible case, A\; = gap(L) > &,. In particular, if & is countably generated,
then m-a.s. exponentially ergodic convergence = L?-exponential convergence.

(3) In the reversible case, if pos(-,-) € L'/?(7) for some s > 0, then \; = &,.

(4) In the reversible case, if pos(+,-) € Ll/z(w) for some s > 0 and the set %" of

loc
bounded functions with compact support is dense in L?(7), then \; = &;.

Proof. The first assertion comes from Lemmas 8.10 and 8.11 (1). The second one
comes from Lemma 8.12. Its particular consequence then follows from Lemma 8.9.

To prove the third assertion, by (8.6), it follows that there exists a constant C'
such that || ||P;(e, ) — 7||lvar|i < Ce !, Hence, &, > A;. Combining this with
Lemma 8.12, we indeed have \; = ¢,.

To prove the last assertion, we follow C.R. Hwang et al.(2002). By assumption,
from (8.6), we have seen that if the process has L?-exponential convergence, then
(8.4) holds with C' € L (7) and € = & > A;.. Under this condition, as in (8.7), we
have

1P = m)f11 < (f, (Pae = 7))
< HfHoo/W(dx)\f(x)alzt = 7l var

<1 / r(dz)C ()2
supp (f)

=: Cfe_zélt, fex.
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The constant C¢ can be removed, as we did in the proof of Lemma 8.12, by using
the denseness of #. Therefore, we have A1 > £;. Therefore, we obtain the last
assertion. [

Refer also to F.Y. Wang(2002) for related estimates.






Chapter 9

Reaction—Diffusion Processes

This chapter surveys the main progress made in the past twenty years or so in the
study of reaction—diffusion (RD) processes. The processes are motivated from some
typical models in modern nonequilibrium statistical physics and are an important
class of interacting particle systems, which is currently an active research field in
probability theory, mathematical physics, and chemistry. The models are concrete,
but as a part of infinite-dimensional mathematics, the topic is quite hard. It is
explained how new problems arise and how some new ideas and new mathematical
tools are introduced. Surprisingly, the mathematical tools produced from studying
these simple models then turn out to have a number of powerful applications not
only in probability theory but also in other branches of mathematics. Nevertheless,
the story is still far from finished, and some important open problems are proposed
for further study.

The chapter consists of five sections. We begin with an introduction of the models
(Section 9.1). Then we turn to the finite-dimensional case, in which the processes
are indeed Markov chains (Section 9.2). This study leads to a powerful criterion for
the uniqueness of Markov chains. The infinite-dimensional processes are constructed
in Section 9.3. The main tool for the construction is the coupling methods discussed
in Chapter 2. The existence of the stationary distribution, the ergodicity of the
processes, and the phase transitions for several models are discussed in Section 9.4.
Again, the coupling methods play a key role in our study of ergodicity. In the last
section, the relation between the RD processes and RD equations (hydrodynamic
limits) and their interaction are studied.

A more complete exploration of RD processes can be found in Part IV of the
book by?.
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9.1 The models

Let S = Z%, the d-dimensional lattice. Consider a chemical reaction in a container.
Divide the container into small vessels, imagining each u € S as a small vessel in
which there is a reaction. The reaction is described by some Markov chains (MCs)
with @Q-matrices Q, = (qu(i,7) : i,j € Z1), u € S. That is, the rate of the MC in
u jumping from i to j # i is given by ¢,(¢,j). Throughout the chapter, we consider
only a totally stable and conservative Q-matrix: —qy(i,1) = >, qu(i, j) < oo for
all ¢ € Z,. Thus, the reaction part of the formal generator of the process is as

follows:
Qf(@) =2 > qul@uzu+k)[f(@+ke,) - f(2)],

weS kez\ {0}

where e, is the element in F := Zi whose value at site u is equal to one, and the
values at other sites are zero. Moreover, we have used the following convention:
qu(i,j)=0fori € Zy, j ¢ Z,, and u € S. Mathematically, one may regard x,, as
the uth component of x in the product space Zf;. The other part of the generator
of the process consists of diffusions between the vessels, which are described by a
transition probability matrix (p(u,v) : u,v € §) and a function ¢, (u € S) on Z.
For instance, if there are k particles in u, then the rate function of the diffusion from
u to v is ¢y, (k)p(u, v), where ¢, satisfies

cy = 0, c.(0) =0, u € S. (9.1)
Thus, the diffusion part of the formal generator becomes
Qdf(x) = Z Cu(xu)p<ua U)[f(I — €y T ev) - f(xﬂ
u,veS

Finally, the whole formal generator of the process is 2 = Q..+ Q4. A simple descrip-
tion of the models is given by Figure 9.1.

.. Container S = Z9

-, Small vessels: reactions

~ -_____.

V4 _ e GRS RS *-.. Diffusions

wu

State space E = (Z:L")S
Figure 9.1 The models of reaction—diffusion processes
Sometimes, it is more convenient to lift the spin spaces (regarded as “fibers”).
Then we have Figure 9.2.
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Example 9.1 (Polynomial model). The diffusion rates are described by ¢, (k)= k and
p(u,v), which is the simple random walk on Z?. The reaction rates are of birth—death

type:

mo mo-+1
qub, b+ 1) =bp =Y Bk, qulkk—1)=ar= > &k,
j=0 j=1

where k) = k(k —1)---(k—j+1), B;, 6; = 0 and Bo, Bmgs 61, 6mg+1 > 0.
In particular, we have the following example.

Example 9.2. (1). Schlégl’s first model: mg = 1.
(2). Schlogl’s second model: mg = 2 but 1 = d; = 0.

All these examples have a single type of particle and so the number of particles is
valued in Z. If we consider two types of particles, then the reaction part becomes
a Markov chain valued in Zi. Here is a typical example.

Example 9.3 (Brusselator model). For each type of particle, the diffusion part of the
formal generator is the same as in Example 9.1. As for the reaction part, the MC has
the following transition behavior:

Z:> (i, j) = (141, 75) at rate )\

(i—1,7) at rate  \4i
—(i—1,741) atrate Aot
— (i+1,7—1) atrate Agi(i—1)j/2,

where the \.'s are positive constants.

These examples are typical models in nonequilibrium statistical physics. Refer
toChen (1986b) or?, Part IV for more information about the background and ref-
erences. Fifteen models are treated in these books. The author learned about the
models from Prof. S.J. Yan in1980.

9.2 Finite-dimensional case

Replacing S = Z% with a finite set S (which is fixed in this section) in the above
definitions of €2, and €24, the corresponding processes are simply MCs, since the state

space B = Zi (or (Zi)s) is countable. At the beginning, one may think this step
can be ignored, because there already is a well-developed theory of MCs. However,
the object is not so easy as it stands. Indeed, we did not know how to prove the
uniqueness of the MCs for several years. The usual criterion for the uniqueness says
that the equations

S
(A= Qu(x) =0, 0 <u(z) <1, x € 17,
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have only the trivial solution zero for some (equivalently, for all) A > 0. It should be
clear that the equations are quite hard to handle, especially in higher dimensions.
The criterion does not take the geometry of the MC into account.

To overcome this difficulty, we regard the set {z : > g2, = n} as a single
point n (n > 0). Construct a single birth process (i.e., when k& > 0, g; ;41 > 0 iff
k = 1 but there is no restriction on the death rates ¢;; for all j < ¢ ) on Z, that
dominates the original process. See Figure 9.3.

7, Ep:={%: ) cg®u=n} —n

423 = MaXyecE, ZzEEg Rate(y — z)

o1 = MiNyef, ZzeEl Rate(y — z)

/i Single birth processes:

01 2 3 - Giipn > 0iff n =1

Figure 9.3 Reduce higher dimensions to dimension one

Since for single birth processes we do have a computable criterion for uniqueness
(cf. Section 5.5), then we can prove the uniqueness of the original processes by a
comparison argument. This and related results are presented in S.J.Yan and Chen
(1986). See also Chen(1999d) for some improvements and Sections 5.5 and 5.6 for
additional results. By using an approximation of the processes with bounded rates
(in this case, the process is always unique), a more general uniqueness result (even
for Markov jump processes on general state spaces) was proved inChen (1986a). The
following result is also included in Chen(1986b; 1991c¢; 7).

Theorem 9.4. Let ) = (¢;;) be a (-matrix on a countable set E. Suppose that
there exist a sequence {F,,}7°, a constant ¢ € R, and a nonnegative function ¢ such
that

(1) B, 1 E, sup;ep, (—qii) < oo foralln>1,
(2) lim,, o inf,¢ g, ¢; = 00, and
(3) >, (@ — i) < cy; foralli € E.

Then the process (MC) is unique (i.e., the minimal process is nonexplosive).
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To justify the power of the theorem, for Examples 9.1 and 9.2, simply take
o) =c[l+3 e and E,, = {z: > .oz, < n} for some suitable constant c.
A slight modification works also for Example 9.3. Indeed, it can be proved that the
conditions of the theorem are also necessary for the single birth processes [seeChen
(1986b) or?, Remark 3.20], and up to now we do not know any counterexample for
which the process is unique but the conditions of Theorem 9.4 fail. The theorem
now has a very wide range of applications. For instance, it is a basic result used in
the study of RD processes. Here is a long list of publications:

M. Bebbington et al.(1995), C. Boldrighini et al.(1987), Chen(1985b; 1987;
1989c; 1991d; 1994c¢), Chen, W.D. Ding and D.J. Zhu(1994), Chen, L.P. Huang
and X.J. Xu(1992) A. DeMasi and E. Presutti(1992), W.D. Ding, R. Durrett
and T.M. Liggett(1990), W.D. Ding and X.G. Zheng(1989), D. Han(1990;
1991; 1992; 1995), L.P. Huang(1987), Y. Li(1991; 1995), J.S. Lii(1997), T.S.
Mountford(1992), C. Neuhauser(1990), A.Perrut (2000), T. Shiga(1988), X.G.
Zheng and W.D. Ding(1987), S.Z. Tang(1985).

For the mean field models, see

D.A. Dawson and X.G. Zheng(1991), S. Feng(1994a; 1994b; 1995), S. Feng and
X.G. Zheng(1992).

These will be discussed later. The theorem was used in R.R. Chen(1997b) to study
an extended class of branching processes, and it was actually a key in J.S. Song(1988)
to study Markov decision programming in the unbounded case. The theorem is also
included in the book by W.J. Anderson (1991, Corollary 2.2.16) and is followed with
some extension by the following:

K. Hamza and F.C. Klebaner(1995), G. Kersting and F.C. Klebaner(1995),
S.P. Meyn and R.L. Tweedie(1993a).

The generalization of Theorem 9.4 to general state spaces given inChen (1986a) is
also meaningful in quantum mechanics, refer to A. Konstantinov et al.(1990) and
references within.

Sketch of the proof of Theorem 9.4. Instead of (p;;(t)), we use its Laplace
transform: p;;(A) = [ pij(t)e”*dt. The advantage of this is to reduce an integral
equation to an algebraic one.

(a) Let qu) = qijIp, (i) for i # j and ¢\ = >t ng). Then, from condition (1),
(n)

;< 00, and so there is uniquely a Q-process P, (\) = (pgy) (/\))

Next, replacing ¢ with ¢, = ¢V 0, condition (3) also holds for @,, = (qZ(Jn)) Because

it follows that sup, q

(pg»l)()\) NS E) is the minimal solution to the backward Kolmogorov equation

(n) 5i:
i A4 At
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by the linear combination theorem (Theorem 5.17), (3, p(n)( ANp; i € E) is the
minimal solution to the equation

(n)

ik ©i
T; = E — Ty + .
k#i)‘—i_qz( : At i

By condition (3), we have

Pi 4k Pk Pi
> : + 3 )\>C+
Ao ;qu‘”) Amer At g)”
[ A+ = aion + (A —ep) |

k#1

Then, the comparison theorem (Theorem 5.16) gives us

Zp 90]<m<00, )\>C_|_.

(b) Denote by (pfj“n()\) : i € E) the minimal solution to the backward Kol-
mogorov equation

i €E.

By the linear combination theorem, (pf4"(A) := ZjeApZ“n()\) : i € E) is the
minimal solution to the equation
ik 5z'A

Tk + )
/\+QZ Qi

where 0,4 = 1if i € A and d;4 = 0 otherwise.
When i € E,,, for all A C E,,, we have

PiA"( Z quk ) + A(ijqi = g&: o :J:’; §n)p?2“(A) w0 i"‘;n)
On the other hand, for i ¢ F,,, we have
s T in bi
i A (A)>0—;mpm (A)JFA—qz(”)’ ACE,.
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By the comparison theorem again, we get
PEEA) = Py (), i€ E, AC E,.
(c) Finally, by (b) and (a), we have
APIER(A) > )\pgg)n()\) =1- )\pg}%()\) (since (p(n)()\)) is nonexplosive)

1]

>1-0 Y P / it
J#En "

)\(pi 1

z 11— :
infigp, pi A—cy

s )\>C_|_.

Letting n — oo, by condition (2), it follows that Apfa"(\) > 1. This implies the
uniqueness as required. [

We have seen how the models led us to resolve one of the classical problems
for MCs and produce some effective results. Some new solutions to the recurrence
and positive recurrence problems are also given in S.J. Yan and Chen(1986),Chen
(1986b), and?, Chapter 4. However, the positive recurrence for the Brusselator mod-
el was proved only in1991 by D. Han in the case of d = 1, and by J.W. Chen(1995)
for the general finite-dimensional situation [cf.?, Example 4.50]. From the papers
listed above, one can see again a number of applications of these results, but we
are not going into details here. In conclusion, the finite-dimensional Schlogl’s and
Brusselator models are all ergodic and so have no phase transitions. Thus, in order
to study the phase transition phenomena for these systems, we have to go to the
infinite-dimensional setup.

Before going further, let us compare the above models with the famous Ising
model (cf. Section B.1).

e The state space ' = {—1,+1}Zd for the Ising model is compact, but for

Schlogl’s models, the state space F = Z_ZFd is neither compact nor locally
compact.

e The Ising model is reversible, its local Gibbs distributions are explicit. But
the Schlogl’s models has no such advantages except a very special case.

e The Ising model has at least one stationary distribution, since every Feller pro-
cess with compact state space does. But for noncompact case, the conclusion
may not be true.

e The generator of the Ising model is locally bounded but it is not so for the
Schlogl’s models.

In summary, we have Table 9.1.

Table 9.1 Comparison of Ising model and Schlogl models
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Comparison Ising model Schlogl model
_ z? A
Space {-1,+1} Ly~
compact not locally compact
System equ111b1."1um nqnequllll?rlum
reversible irreversible

not locally bounded

Operator locally bounded and nonlinear
Stationary always exists and ?
distribution locally explicit locally no expression

From these facts, it should be clear that the Ising model and the Schlogl’s models
are very different.

9.3 Construction of the processes

The diffusion part of the operator for RD processes cannot be ignored; otherwise,
there is no interaction, and then the processes are simply the independent product
of the classical MCs. If we forget the reaction part, then the processes are reduced to
the well-known zero range processes, for which the construction was completed step
by step by several authors. In a special case, the process was first constructed by
R. Holley(1970), and the general case was done by T.M. Liggett(1973). Then, E.D.
Andjel(1982), T.M. Liggett, and F. Spitzer(1981) simplified the construction. For
all the models considered in the last quoted paper, the coefficients of the operator
are assumed to be locally bounded and linear. Thus, even in this simpler case, the
construction is still not simple.

A standard tool in constructing Markov processes is semigroup theory, as was
used by T.M. Liggett(1985) to construct a large class of interacting particle systems.
However, the theory is not suitable in the present situation. Even if one has a
semigroup at hand, it is still quite a distance to construct the process, since in our
case we do not have the Riesz representation theorem for constructing the transition
probability kernel. Moreover, from the author’s knowledge, since the state space is
so poor, the usual weak convergence (even on the path space) is not effective for the
construction. What we adopt is a stronger convergence.

Recall that for two given probability measures P, and P, on a measurable state
space (E, &), a coupling of Py and P, is a probability measure P on the product space
(E x E,& x &) having the marginality P(A x E) = P;(A) and P(E x A) = Py(A)
for all A € &. Next, assume that (E, p, &) is a metric space with distance p. The
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Wasserstein distance W (Py, Py) of Py and Ps is defined by

W(PL Py =inf [ play. ) P(doy, doy), 9.2)
P JE2

where P varies over all couplings of P; and P». Refer to Section 2.2 and?, Chapter
5 for further properties of the Wasserstein distance.

Now our strategy goes as follows. Take a sequence of finite subsets {A,} of
S =174% A, 1 S. Using A, instead of S, we obtain an MC P, (¢, z,-) as mentioned
in the last section. For each n < m, one may regard P,(t,z,-) as an MC on the
larger space F,, := Z{i\_m and hence for fixed ¢ > 0 and =z € FE,,, the distance
W(P,(t,z,), Pn(t,z,)) of P,(t,z,-) and P,,(t,z,-) is well defined. Clearly, one
key step in our construction is to prove that

W(P,(t,z,), Pn(t,z,-)) — 0 as m, n — Q. (9.3)

Certainly, there is no hope of computing exactly the W-distance, since P, (¢, z, -)
is not explicitly known. In virtue of (9.3), we need only an upper bound of the
distance, and moreover, it follows from (9.2) that every coupling gives us such a
bound. The problem is that a coupling measure of P, (¢, z, ) and P,,(t, z, -) for fixed ¢
and x is still not easy to construct, again due to the fact that these marginal measures
are not known explicitly. What we know is mainly the operators €2,, obtained from
Q but replacing Z¢ with A,. Thus, in order to get some practical coupling, it is
natural to restrict ourselves to the Markovian coupling; i.e., the coupling process
itself is again an MC. This analysis leads us to explore a theory of couplings for
time-continuous Markov processes, which dates back toChen (1984).

Since then, we have gone a long way in the field: from MC to general jump pro-
cesses [Chen(1986a)], from discrete state spaces to continuous spaces [Chen and S.F.
Li(1989)], from Markovian couplings to optimal Markovian couplings [Chen(1994a;
1994b)], from exponential convergence to the estimation of spectral gap [Chen and
F.Y. Wang(1993b),Chen (1994a)], from compact manifolds to noncompact ones
[Chen and F.Y. Wang(1995; 1997a; 1997b)], and from finite dimensions to infinite
ones [Chen(1987; 1989c; 1991d; 1994c), F.Y. Wang(1994c; 1995; 1996)]. No doubt,
the coupling methods are now a powerful tool and have many applications. The
story of our study of couplings is presented in Chapter 2.

We now return to our main construction. We will restrict ourselves to a single
reactant for a while. Let (k,) be a positive summable sequence and set

Ey = {x €EE: ] =) wuky < oo},
u€eS

i.e., an Ll-subspace of E with respect to (k,). Roughly speaking, the key to our
construction (which is rather lengthy and technical) is to get the following estimates:



184 9 Reaction—Diffusion Processes

(E.1) Pu@) - [I(z) < (1 +[[z])e, x € Ey, and
(E.2) Wy (Pu(t,x,"), Pu(t,z,-)) < c(t,A\p,x;n,m), x € Fy,

where ¢ is a constant, independent of n, ¢(t, A,,, x;n, m) € Ry satisfy

lim  ¢(t,An,x;n,m) =0,

m=n— 00

and Wy, is the Wasserstein distance restricted to ZK, with respect to the underlying
distance >, v [#u — yu|ky. The second condition (E.2) shows that {P,(t,z,-) :
n > 1} is a Cauchy sequence in the Wy -distance (for each fixed finite V). Noting
that our operators are not locally bounded and the particles from infinite sites may
move to a single site, the process may explode at some single site. This explains
why we use Fy instead of E. Then, the first moment condition (E.1) ensures that
Ey is a closed set of the process. Finally, in order to prove that the limiting process
satisfies the Chapman—Kolmogorov equation, some kind of uniform control in the
second condition is also needed.
To state our main result, we need some assumptions:

unzz+k)|k:\<oo u €S, (9.5)
k0
sup |cy (k) — ey (b + 1) < 00 (9.6)
k,u
sup {gu(j17j2) + hu(j17j2) Suc Sa j2 > jl P 0} < 00, (97)
where
gu(i1,d2) = ——— > (qu(z.jo + k) = qu(r. n + k)b, j2 > 51 >0,
J2—Nn k20
o 2 = o oA . +
ho(J1,72) = = . Z {(%(]27,71 — k) — qu(j1, 21 — j2 — k))
J2 =,

(@it o + ) = quiz, 22 = 1+ k) ke 2> >0

Conditions (9.1), (9.4), and (9.5) are natural. For instance, when p(u,v) is the
simple random walk, (9.4) becomes trivial. However, conditions (9.6) and (9.7)
are essential in this construction; they are keys to the estimates (E.1) and (E.2)
mentioned above and also to the study of mean field models discussed below. To
get a feeling for condition (9.7), let us explain the coupling adopted to deduce (E.2).
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For the diffusion part, in the box A,,, we use the coupling of marching soldiers. For
each pair {u,v},u,v € A,, let

(r,y) — (x—ey+e,, y—e,+e,) atrate plu,v) (cu(xu) A cu(yu)) N
— (z—eutey, y) at rate p(u,v)(cu(Tu) — cu(yu))+
— (T, y—ey+ey) at rate p(u,v)(cu(yu) — culzu)) -

In the box A,, \ A, since (z, : u € A, \ A,,) is absorbed, the second process (y,,)
evolves alone. That is, for each u € A, and v € A, \ A,,, take

(z,y) = (x, y — ey +e,) atrate p(u,v)cy(Yy).

Conversely, for u € A, \ A, and v € A,,, we have the same evolution as in the last
line. Moreover, for different pairs, the couplings are taken to be independent. In
other words, we have the coupling operator Q,‘im for the diffusion part as follows:

Qp o f (2,7)
= Z p(u,v) (Cu(aju) N cu(yu)) [f(l’ — €y T €y, Y — €y T+ ev) - f(xvy)]

u,vEN,

+ > ) (eulma) = culy) 1f (@ = ew+ en, y) = f(z,y)]

u,veEN,

+ > pluv)(cu(yn) — cul@n) [z, y — eu +e0) — f(2,9)]

u,vEA,

+ Z p(“? U)Cu(yu)[f(a:v y_eu+ev) —f(a:,y)]

UEAL, VEAL\AY,

+ Z p(“?”)cu(yu)[f(xa y_eu+ev) —f(x,;y)]

UWEA M \Ap, VEAM

For the reaction part, in the box A,,, we also use the coupling of marching soldiers.
For each u € A,,, let

(z,y) — (z+keu, y+ke,) atrate qu(Tu,Tu + k) A qu(Yu, Yu + k)
— (x + key, y) at rate (Qu(mua Ty + k) - QU(yua Yu + ]{7))+
— (z, y + key) at rate (qu(yu, Yu + k) — qu(Ty, Ty + k:))Jr

Again, for each u € A,, \ A, let the second process (y, ) evolve alone:
(@, y) = (z, y + key) at rate qu(yu,yu + k).

Finally, for the reaction part, let each component evolve independently. Thus, we
have defined a coupling operator €2}, ,, for the reaction part. Then the whole coupling

of the operators (2, and (2, is defined by ﬁn,m = Q%m + ng Computing the
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action of the coupling operator on the distance in ZAm, we get condition (9.7) and
an estimate for (E.2). The computations are rather long and technical; only a part
of them are illustrated at the end of this chapter. Refer to?, Chapter 13 for details.

The next result is due to Chen(1985b), first reported at the Second International
Conference on Random Fields, Hungary, 1984. See alsoChen (1987, 1986b); ? for
more general results.

Theorem 9.5. Denote by & the Borel o-algebra generated by the distance || - || on
Ey. Under (9.1) and (9.4)—(9.7), there exists a Markov process on (FEy, &), and the
corresponding semigroup (P;) maps the set of Lipschitz functions on Ej with respect to
|| - || into itself. Moreover, for every Lipschitz function f on Ey, the derivative of P, f at
the origin coincides with €2f in a dense set of Ej.

It is now a simple matter to justify the assumptions of Theorem 9.5 for Exam-
ples 9.1 and 9.2. However, up to now, we do not know how to choose a distance so
that our general theorem [Chen(1987; 1986b; ?)] can be applied to obtain a Lips-
chitz semigroup for Example 9.3. In the case where the diffusion rates are bounded
or growing at most as fast as log x,, an infinite-dimensional process corresponding
to Example 9.3 was constructed by S.Z. Tang(1985) [see also?, Example 13.38] and
D. Han(1990; 1992; 1995). For the mean field models, the problem was solved by S.
Feng(1995). In the latter papers, the martingale approach was adopted but not the
analytic one used here.

Open Problem 9.6. Construct a Markov process for the Brusselator model.
The next result is due to Y. Li(1991), which improves the author’s one in(1991d).

Theorem 9.7. Under the same assumptions as in Theorem 9.5, if additionally,

sup Y qu (i, i+ k)[(i + k)™ —i™] < constant (1+i™), i€ Zy (9.8)
Y k£0

for some m > 1, then the process constructed by Theorem 9.5 is also unique.

The proof of Theorem 9.7 is also nontrivial. It uses an infinite-dimensional
version of the maximum principle, due to S.Z. Tang(1985) and Y. Li(1991). This is
the third mathematical tool developed from the study of RD processes.

9.4 Ergodicity and phase transitions

Existence of stationary distributions

When the state space is compact, it is known that every Feller process has a station-
ary distribution. But for the noncompact case, there is no such general theorem,
and so one needs to work things out case by case. The next result is a particular
case of Chen(1986b; ?). See also L.P. Huang(1987).
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Theorem 9.8. There always exists at least one stationary distribution for the polyno-
mial model.

The intuition for the result is quite clear. Since the order of the death rate is
higher than the birth one, the number of particles at each site is kept to be nearly
bounded, and then we may return to the compact situation. However, the proof
depends heavily on the construction of the process. We will not go into the details
here.

Ergodicity

There are two cases: the general case and the reversible case.

(a) General case. By using the coupling methods again, some general sufficient
conditions for the ergodicity of the processes were presented in Chen(1986b; 1989c).
The result was then improved in C. Neuhauser(1990) and further improved inChen
(1990). In the case that the coefficients of the operator are translation-invariant and
with an absorbing state, some refined results are given in Y. Li(1995). A particular
result fromChen (1990) can be stated as follows.

Theorem 9.9. For the polynomial model, when 3,..., B, and 01,...,0m,+1 are
fixed, the processes are exponentially ergodic, uniformly in the initial points, for all large
enough (.

We will come back to this topic at the end of this chapter (Theorems 9.18 and
9.19).

(b) Reversible case. When the reaction part is a birth—death process with birth
rates b(k) and death rates a(k), the RD process is reversible iff p(u,v) = p(v,u)
and (k + 1)b(k)/a(k) = constant, independent of k [cf. Chen, W.D. Ding, and D.J.
Zhu(1994)].

The next result is due to W.D. Ding, R. Durrett, and T.M. Liggett(1990).

Theorem 9.10. For the reversible polynomial model, the processes are always ergodic.

The proof of the result is a nice illustration of the application of the free energy
method. It also uses the power of the monotonicity of the processes. The result was
then extended by Chen, W.D. Ding, and D.J. Zhu(1994) to the nonpolynomial case.

If we replace By, 01 > 0 with By = 6; = 0, then we obtain two stationary distribu-
tions; one is trivial and the other one is nontrivial. The question is whether starting
from a nontrivial initial distribution, the process converges to the nontrivial sta-
tionary distribution (ergodic). The affirmative assertion is called Shiga’s conjecture
(T.Shiga (1988)), which was solved by T.S. Mountford(1992).

Theorem 9.11. For the reversible polynomial model with 8y = d; = 0, under mild
assumptions, Shiga's conjecture is correct.
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Phase transitions

(a) RD processes with absorbing state. The following result was first proved by Y. Li
and X.G. Zheng (1988) using a colored graphic representation, and then simplified
by R. Durrett (1988) using oriented percolation [see?, Theorem 15.8].

Theorem 9.12. Take S = Z. Consider the RD process with birth rates b(k) = Ak,
arbitrary death rates a(k) > 0 (k > 1), and diffusion coefficient z,,p(u, v), where p(u, v)
is the simple random walk. Then for the process X(t) starting from z%: x) = 1 and
22 =0 for all u # 0, we have

inf{\ : P[X"(t) # 0 for all ¢t > 0] > 0} < oo.
In other words, for some A\ > 0, there exists a nontrivial stationary distribution.

(b) Mean field models. In statistical physics, one often studies the mean field
models as simplified approximations of the original ones. It is usually a common
phenomenon that with the mean field models it is easier to exhibit phase transitions.
Roughly speaking, the mean field model of an RD process is the time-inhomogeneous
birth-death process on Z, with death rates a(k) as usual but with birth rates
b(k) +EX(t), where (X(¢)):>0 denotes the process. The term EX (¢) represents the
interaction of the particle at the present site with the particles at the other sites in
the original models. The next result is due to S. Feng and X.G. Zheng(1992).

Theorem 9.13. For the mean field of the second Schlogl model, there always exists
at least one stationary distribution. There is precise one if 1,3 > 1 and there are more
than two if 1 < &; < \/1/2+ (282 +1)/(381 + 6d3) and Sy is small enough.

For more information about mean field models, refer to D.A. Dawson and X.G.
Zheng(1991), S. Feng(1994a; 1994b; 1995), S. Feng and X.G. Zheng(1992). In B.
Djehiche and I. Kaj(1995), the models are treated as a measure-valued process.

Finally, we mention another model, the linear growth model that exhibits phase
transitions; refer to W.D. Ding and X.G. Zheng(1989). However, we are still unable
to solve the following problem.

Open Problem 9.14. Does there exist more than one stationary distribution for the
polynomial model with no absorbing states?

The last phrase means that Sy > 0. In physics, this represents an exchange of
energy between inside and outside (nonequilibrium). From the mathematical point
of view, there is an essential difference between 3y = 0 and Sy > 0. For instance,
when fy = 0, the process restricted to {z : ) x, < oo} is simply an MC, but this
is no longer true when 5y > 0.

Because the RD processes are quite involved, partially due to the noncompactness
of the state space, one may construct some similar models with finite spin space to
simplify the problem. There are many publications in this direction. Refer to R.
Durrett and S. Levin(1994), R. Durrett(1995), R. Durrett and C. Neuhauser(1994),

and references therein.
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9.5 Hydrodynamic limits

Consider again the polynomial model. However, we now study the process with the
rescaled operator QF = £72Q, + Q,. Our main purpose is to look for the limiting
behavior of the scaling processes as e — 0. To do so, let *(¢ > 0) be the independent
product of the Poisson measures for which uf(z,) = p(eu), u € Z¢, where p is a
nonnegative, bounded C?(R%) function with bounded first derivative.

Denote by 7. the expectation of the process with formal generator (2° and initial
distribution p°. The next result is due to C. Boldrighini, A. DeMasi, A. Pellegrinotti,
and E. Presutti(1987) [See?, Theorem 16.1]. Refer also to T. Funaki(1997; 1999),
J.F. Feng(1996), and A.Perrut (2000).

Theorem 9.15. For all r = (r',...,7%) € R? and t > 0, the limit f(¢t,r) :=

lime o B X}, /e) (), where [r/e] = ([r!/e],...,[r?/c]) € Z?, exists and satisfies the
RD equation
1 d 2 mo—+1 .
g9I _ - i_ -
zza +Zﬁjf Z %1% (9.9)
—1 i=0 i=1
( r) = p(r).

This result explains the relation between the RD process and RD equation, and
it is indeed the original reason why the processes were named RD processes inChen
(1985b). Certainly, at that time, a result like Theorem 9.15 did not exist, we had
only a rough impression that the RD equations describe the macroscopic behavior
of the physical systems, and our aim was to introduce the processes as a microscopic
description of the same systems.

To give some insight into the relationships between these two subjects, we need
some notation. Let A\ > 0 satisfy the algebraic equation

m—+1

D BN =Y 5N =0, (9.10)
§j=0 j=1

which is the simplest solution to the first equation of (9.9). A (constant equilibrium)

solution A is called asymptotically stable if there exists a § > 0 such that for any

solution f(¢,r) to (9.9), whenever |f(0,7) — A| <, we have lim;_, . | f(¢,7) — A| = 0.
The following result is due to X.J. Xu(1991) [see?, Theorem 16.2].

Theorem 9.16. Denote by \; > Ay > --- > A, the nonnegative roots of (9.10),
where A; has multiplicity m;. Then, f(¢,r) = A; is asymptotically stable iff m; is odd
and >, ,mj is even.

All known results are consistent with the assertion that a model has no phase
transition if every A; is asymptotically stable and it is a case of Schlogl’s first model
but not the second one. This leads to the following conjecture.
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Conjecture 9.17. (1). Schlogl's first model has no phase transition.
(2). Schlogl's second model has phase transitions.

To conclude this chapter, we want to show a use of the RD equation. Note
that for Schlogl’s second model, the role played by the parameters [ and Jp is
not clear at all. It seems too hard and may not be necessary to consider all of the
parameters. Based on the above observation and to keep the physical meaning, we
fix By = 6 (@ > 0), 61 = 9a, and 93 = . Then, when Sy € (0,4«), there are three
roots A1 > Ay > A3 > 0; A1 and A3 are asymptotically stable, but not A5. We have
thus reduced the four parameters to only one. Now we want to know for which region
of a the process can be ergodic. The following result is based on recent progress on
couplings [cf. Chapter 2 orChen (1994a)]; it is complementary to Theorem 9.9, and
is also the most precise information we have so far.

Theorem 9.18 (Chen,1994c). Consider the second Schlogl model with 5y = 2a,
B2 = 6a, 01 = 9a, and 03 = . Then the processes are exponentially ergodic, uniformly
in the initial points, for all o > 0.7303.

We now sketch the proof of the previous theorem. Actually, we have a general
result as follows.

Theorem 9.19. Consider the polynomial model. Let (ux) be a positive sequence on
Zy with ug = 1 and @ := supy>qup < 00. Set u* = sup;-;>o(u; —u;) V 0. Suppose
that there exists an € > 0 such that

brr1uk+1 — (bgtagr1+k+1—e)up + (ap+k)ug—1 + a0+ ku®™ <0, k>0,

where a; = 0 and u_; = 1. Then the reaction—diffusion processes are exponentially
ergodic, uniformly in the initial points.

Sketch of the proof. (a) Define a distance in Z; as follows:

SR N

J<k Jj<t

p(k7€) = 3 k‘7£€Z+‘

By Theorem 2.28, for birth—death processes, the couplings mentioned in Chapter
2, except the independent one, are all p-optimal. Thus, we now adopt the simplest
classical coupling. Denote by (). the coupling operator of the reaction—diffusion
processes, that is, using the classical coupling for each component of the reaction
part, but for the diffusion part still using the coupling of marching soldiers mentioned
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in Section 9.3. Fix z <y and u € S, and write x, =i < j = y,. We have

~

Qcp(i,j) = { — biu; + a;u;—1 + bjuj — ajuj—1}f{j—z‘>1} - (j - i)uj—l
—i(ujor —uim1) + Y (g — zo)p(0,w)ug + Y wup(v, u)(uj — u;)

= {buj — biu; — (a; + j)uj—1 + (a; + 1) ui—l}[{j i>1}

+Z vuu]—l—Zajvpvu)(uj—ul)

The last term on the right-hand side appears because p is not translation-invariant.
Now, by assumption, we have

{bjUj — bju; — (aj +j)Uj_1 + (a; + i)ui—l}I{j—izl}
j—1

- Z {(bertgy1 = beug) = [(agy + €4 Duy — (ag + Ouyp 4]}
(=i

N

—SZW (j—i)u—(j —i)iu"
< —sp(m) —(J—du—w’.

On the other hand, by the order preservation of the coupling and the translation
invariance of the processes, for every translation-invariant x and y with = < y, we
have

Zﬁm’y (Yv(t) — Xv(t))p(v, u)uyu(t) + Z Em’va(t)p('v, w) (uYu(t) — uXu(t))
S AE™Y (Y, (1) — X (1)) + w*E5Y X, ().

Collecting the above estimates, replacing ¢ and j by X, and Y,, respectively, we
arrive at

WV
o

IEgc’yﬁcp()(u(t)aYu(t)) < —€E$’yp(Xu(t),Yu(t)), t
By Gronwall’s lemma or Lemma A.6, this gives us
E*Yp(X,(t), Yu(t)) < E™Yp(X,(1),Y,(1))e™t, >0,

for every translation-invariant x and y.
(b) The reason we use the time ¢ = 1 as initial value rather than ¢ = 0 is the
first moment estimate

E* [ X (6)™] < @m(t) < o0, t>0, meN



192 9 Reaction—Diffusion Processes

[cf.?, Lemma 14.12]. Thus, we can extend the initial state to be oo everywhere. Let
(X7) be the process starting from (z, = n,u € Z%). Then, by (a), we obtain

Ep(X0(6), Y2 (1) < Ep(X0(1), Y°(1)e ™, ¢>0.

This certainly implies the ergodicity of the process, because of the translation in-
variance and monotonicity. Clearly, the convergence is exponential, uniformly in the
initial points (z,y). O

To complete the proof of Theorem 9.18, by Theorem 9.19, it remains to choose
a suitable positive sequence (u;). Regarding the reaction—diffusion processes at
a site as perturbation of the birth—death processes, it seems natural to choose
the sequence from the mimic eigenfunction that produces the explicit criterion
for exponential convergence (or equivalently, spectral gap). More precisely, take

wi = (gix1 — 9i)/(g91 — 9o), i = 0, where

i—1 00 i—1
1 1 .
gz:z 5 Z P/ Pk %:Z b 12 0.
im0 Mi% = —o M5

Due to the diffusion part, one may replace the original b and ax by br+k and ar +k,
respectively. Intuitively, this means that the interaction is ignored. However, the
resulting sequence (u;) is indeed not good enough for Theorem 9.18. Practically, we
adopt a more direct and economic way to define the sequence. Take ¢ < 10~° and
define

ug =1, Uy = uqy = 3/24¢ (trick!),
(aps1+br+Ehk+1—c)up—(ax + k)ug—1—(k+1)uy +k
br+1

Uk+1 = ’ k = 2.

Refer toChen (1994c) for more details.

A large number of publications of the study on hydrodynamic limits are collected
in the book by C. Kipnis and C. Landim(1999), from which one sees that the spec-
tral gap and the logarithmic Sobolev inequalities play a crucial role. The spectral
gap for the Ising model in dimension one was computed explicitly by R.A. Minlos
and A.G. Trishch(1994). For higher-dimensional results, refer to A.D. Sokal and
L.E. Thomas(1988), L.E. Thomas(1989), R.H.Schonmann (1994), S.L. Lu and H.T.
Yau(1993), and R.A.Minlos (1996). For other equilibrium particle systems, here
are some recent excellent explorations: A. Guionnet and B. Zegarlinski(2003), M.
Ledoux(1999; 2001), F.Martinelli (1999), and so on. Some remarkable approaches
were created or developed in these quoted papers.



Chapter 10

Stochastic Models of
Economic Optimization

This chapter deals with some stochastic models of economic optimization. Due to
their value in practice, the models are quite attractive. But our knowledge on them
is still very limited, and some fundamental problems remain open.

We begin with a short review of some global economic models (or economy on
a large scale), the well-known input—output method, and L.K. Hua’s fundamental
theorem for the stability of an economy. Then we show that it is necessary to
study the stochastic models. A collapse theorem for a noncontrolling stochastic
economic system is introduced. In the analysis of the system, the products of random
matrices play a crucial role. In particular, the first eigenvalue, the corresponding
eigenfunctions, and an ergodic theorem of Markov chains play a nice role here.
Partial proofs are included. Some challenging open problems are also mentioned.

10.1 Input—output method

First, we fix the units of each product: kilogram, kilovolt, and so on. Denote
by x = (x(l),x(2), . .,x(d)) the quantity of the main products in which we are
interested; it is called the vector of products. Throughout this chapter, all vectors
are row vectors.

To understand the present economy, we need to examine three things: the input,
the output, and the structure matrix. Suppose that the starting vector of products

last year was

Ty = (xél),x(()z), e ,:céd)) .

For production, assume that the jth product distributed amount J?E?) to the ith
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product, and the vector of the products this year becomes

1) (2 d
T, = (xg ),xg ),...,xg )).
Next, set
al) =20 /a7, 1<, j<d.
The matrix Ag = <a§?)> is called a structure matriz (or matrix of expending co-

efficients). This matrix is essential, since it describes the efficiency of the current

economy: to produce one unit of the ¢th product, one needs agg) units of the jth
product. Suppose for a moment that all the products are used for reproduction
(idealized model). Then

Zf"(o) Z@"( 9.

That is, z; = xyAp. Similarly, we have z,_1 = x,A4,,—1 for all n > 1. Suppose
that the structure matrices are time-homogeneous: A, = A for all n > 0 (this is
reasonable if one considers a short time unit). Then we have a simple expression for
the nth output:

x, =x A", n > 1. (10.1)

Thus, once the structure matrix and the input z, are known, we may predict
the future output. This is called the input—output method or Leontief’s method [cf.

Leontief(1936; 1951; 1986)]. It is a well-known method. As far as I know, up to the
1960s, more than 100 countries had used this method in their national economies.

10.2 L.K. Hua’s fundamental theorem

Let us return to the original equation

We now fix A. Then x; is determined by z, only. The question is, which choice of
x is the optimal one? Furthermore, what sense of optimality are we talking about?
The first choice would be “average.” If someone tells you that the average of the
members’ ages in a group is twenty, you may think that everyone in the group is
a vigorous young adult, and that the group might be a team of volleyball players.
However, the group could be a nursery school consisting of six babies and two older
women who are over seventy. The average of the ages in this group is still twenty.
The misleading point is that the variance is too big in this situation, and so the
average is not a good tool. To avoid this, we adopt the minimax principle, i.e.,
finding out the best solution among the worst cases. It is the safest strategy, and is
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used widely in optimization and game theory. In other words, we want to find z,
such that minj¢;<qg xgj ) / :cé] ) attains the maximum below

max min xij)/xé‘y)
x>0, o=z, A 1<j<d

By using the classical Frobenius theorem, L.K. Hua(1984b, Part 1) proved the
following result.

Theorem 10.1 (L.K. Hua(1984b, Part Il)).  Given an irreducible nonnegative matrix
A, let u be the (positive) left eigenvector of A, corresponding to the largest eigenvalue
p(A) of A. Then, up to a constant, the solution to the above problem is z; = wu. In
this case, we have

(‘7)/:1:(3) —1 for all j.

In what follows, we call the above technique (i.e., setting x, = u) the eigenvector
method.

Next, we are going to study further the stability of economies. From (10.1), we
obtain a simple expression,

, = zop(A)~",

whenever x, = u. What happens if we take z, # u (up to a constant)?

Stability of an economy

For convenience, set
=inf {n > 1: z, = = and there is some j such that zl) < 0},

which is called the collapse time of the economic system.
We can now state Hua’s important result as follows.

Theorem 10.2 (L.K. Hua(1984b, Part II; 1985, Part IX)). Let A be nonnegative,
irreducible, invertible, and not of the form that every row and column has one and only
one positive element. Then for every x, # u, we have T%0 < oo.

In the case that the collapse time is bigger than 150 years, we do not need to
worry about the stability of the economy, since none of us will be still alive. However,
the next example shows that we are not in this situation.

Example 10.3 (L.K. Hua(1984b, Part I)).  Consider two products only: industry

and agriculture. Let
1 /25 14
4= 100 <40 12) '

Then u = (5(v/2409s + 13) /7, 20) =~ (44.34397483, 20). For different input x, the
collapse time T™o s listed in Table 10.1.
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Table 10.1 Input and collapse time

x T*o
(44,20) 3
(44.344,20) 8

(44.34397483, 20) 13

This shows that the economy is very sensitive!

We point out that Theorem 10.2 is essential. Recall that the Frobenius theorem
and Brouwer fixed point theorem, often used in the study of economics, do not
provide any information about the collapse phenomena.

To understand Hua’s theorem, for probabilists, it is very natural to consider the
particular case that A = P. That is, A is a transition probability matrix. Then,
from an ergodic theorem for Markov chains (irreducible and aperiodic), it follows
that

P" — 11 as n — o0,

where II is the matrix having the same row (71,72, ... 7(d), which is just the
stationary distribution of the corresponding Markov chain. Since the distribution
is the only stable solution for the chain, it should have some meaning in economics
even though the economic model goes in a converse way:

x, =x, P, n > 1.

From the above facts, it is not difficult to prove, as shown in the next paragraph,
that if
Ty #F U= (77(1),%(2), s ,W(d))

up to a positive constant, then T%0 < co. Next, since the general case can be reduced
to the above particular case, we think that this is a very natural way to understand
Hua’s theorem.

Proof of Theorem 10.2 [L.K. Hua(1984b, Part IX) and Chen(1992b, Part I)].
(a) First, consider the special case that A = P. We need to show that if xy, # 7
up to a positive constant and d > 2, we must have x,, % 0 for some n. In other
words, if z,, > 0 for all n, then z; = 7.
Let z, > 0 be normalized such that zy11* = 1, where 1* is the column vector
having components 1 everywhere. Because g = z, A" = z,P" and P1* = 1%, we

have
l=2,1" =2, P"1" =x,1%, n > 1.

Since the set {z : x > 0, z11* = 1} is compact, there exists a subsequence {J;nk}k>1
and a vector x such that

=z, >0, Il*=L1
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Therefore
zo = (2o P™"*) P =z, P" — Il = 211 = 7.

Thus, we must have z; = 7.

(b) For general nonnegative primitive (irreducible and aperiodic) A, by F.R.
Gantmacher(1989, Chapter 13, Section 6) or L.K. Hua(1984a, Chapter 9, Sec-
tions 2-4), there exists a diagonal matrix D with positive diagonals such that
A= p(A)D7'PD, and so we are done.

(c) Finally, assume that A has periodic r. That is, there are r eigenvalues
{\;} with the same modulus |\;| = p(A). Then A can be represented as (cyclic
decomposition)

0 A O 0
0 0 Ao 0
Anq 0 0 0

where the A;;’s are s x s (d = rs) matrices, since A is invertible. The case that s =1
is exceptional, since then A~! > 0. This is ruled out by the last assumption of the
theorem. Thus s > 1. Then, we have A" = diag[B1, Ba, ..., B,|, where each B; is
primitive. Without loss of generality, assume that p(A) = 1. Then p(B,;) =1 for all
j. According to (b), there exist a diagonal matrix D,, transition probability matrix
P;, and stationary distribution 7() such that B; = D; ' P;D;, and

Bl =D;'P'D; — D' 1ixD;, n— oo,
where 17 is the column vector with s elements 1. Replacing A with A" and renor-
malizing the vector z := (21,2 ... z(") by :z:(j)Dj_lll: =1forall<j<r,
the same argument in (a) shows that we must have 2o = (7, ..., 7(")D, where
D = diag[D;], once x,, > 0 for all n. Because A is irreducible, the left eigenvector
is unique. Moreover, if u = uA, then u = uA". It is clear that the eigenvector must
coincide with (7, ..., 7(")D, up to a positive constant. [

We have seen the crucial role played by the largest or the first eigenvalue and
its eigenvectors, for which the computations are far from nontrivial, especially for
large-scale matrices, as we have seen from the previous chapters. In the numerical
computation of the largest eigenvalue, it is important to have good initial data; this
is just an application of estimation of the eigenvalue. Having the known eigenvalue
at hand, the computation of eigenvectors is easier, for which one needs only to solve
a linear equation (in contrast, the equation of the eigenvalue is polynomial).

Economy in markets

In L.K. Hua’s eleven reports (1984-1985), he also studied some more general eco-
nomic models. But the above two theorems are the key to his idea. The title of the
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reports (written in that specific period) may cause some misunderstanding, since
one may think that the theory works only for planned economies. Actually, market
economies were also treated in(Hua, 1984b, Part VII). The only difference is that in
the latter case one needs to replace the structure matrix A with V1AV, where V
is the diagonal matrix diag(v;/p;), (p;) is the vector of prices in the market, and
(v;) is the right eigenvector of A. Note that the eigenvalues of V1AV are the
same as those of A. Corresponding to the eigenvalue p(V~1AV) = p(A), the left
eigenvector of V1AV becomes uV. Therefore, for a market economy, we have a
new structure matrix V1AV and a new left eigenvector uV, which are all that we
need in Hua’s model. Thus, from a mathematical point of view, the consideration
of markets makes no essential difference in Hua’s model.

10.3 Stochastic model without consumption

In the case that randomness does not play a crucial role, one may simply ignore it

and insist on a deterministic system. Thus, we started our study by examining the

influence of a smaller random perturbation in Hua’s example: Example 10.3.
Consider the perturbation

Ziij = 45 with probability 2/3,
= a;;(1£0.01) with probability 1/6.

Let the elements a;; be independent. Taking (a;;) instead of (a;;), we get a random
matrix. Next, let {4,;n > 1} be a sequence of independent random matrices
(regarding each A,, as a vector, the independence of a sequence of random vectors
is standard) with the same distribution as above. Then z,, = 2, [[,_,; A,;l gives us
a stochastic model of an economy without consumption.

Again, starting from z, = (44.344, 20) (recall that the collapse time is 8 in the
deterministic case), then the collapse probability in the above stochastic model is
the following:

0 for n =1,

P[T% =n]=40.09 forn =2,

0.65  forn = 3.
Surprisingly, we have P[T" < 3] ~ 0.74. This observation tells us that randomness
plays a crucial role in an economy. It also explains why the traditional input—output
is not very practicable, as people often think, because randomness has been ignored

and so the deterministic model is far away from actual practice.
Now, what is the analogue of Hua’s theorem for the stochastic case?

Theorem 10.4 Chen (1992b, Part II)).  Under some mild conditions, we have

P[T% < oo] =1, Va, > 0.
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Note that the limit theory of products of random matrices is quite different from
that in the deterministic case (cf. P. Bougerol and J. Lacroix(1985)); the problem
is nontrivial. We have to deal with the product of random matrices

M, = A, Ap_1---Ay.

As we have seen before, in the deterministic case, the leading order of M, is
H;”Zl p(A;). Thus, in the random case, one may study the limiting behavior of

H;’Zl A;/p(A;), as suggested by L.K.Hua (1984b, Part II). By Kolmogorov’s strong
law of large numbers, we have

1 = a.s,
21 A,) &% Elog p(A
- ogj:l_[lp( j) =S Elogp(Ar),  n— oo,

once E|log p(A1)| < co. So we have a deterministic exponent Elog p(A;). However,
the leading order p(M,,) of M,, is not H?Zl p(A;), as shown by the following result.

Theorem 10.5 (V.I. Oseledec,1968). Let Elog™ ||A;]| < co. Then
1
~log | M| %% 7 € {~c0} UR,

where 1
v= lim —Elog||M,|.
n—oo N,

Note that the Lyapunov exponent v is independent of the norms of the matrices.

Oseledec’s theorem is the most popular result we learned from the limit theory of
products of random matrices, sometimes called the “strong law of large numbers.”
However, this result is still not enough for our purpose, since we need more, the
limiting behavior of M,, under suitable scaling. What we adopted is a much stronger
result. To state the result, we need the following assumptions, which are analogues
of the irreducible and aperiodic conditions.

(Hy) A; > 0 a.s., and there exists an integer m such that
P[M,, is positive] > 0,
where M,, = A;--- A,,.

(H2) P[A; has a zero row or column] = 0.

Theorem 10.6 (H. Kesten and F. Spitzer,1984). Under (Hy) and (Hz), M,, > 0 for
large n with probability one and M, /|| M,, || converges in distribution to a positive matrix
M = L*R with rank one, where |[A| = sup, >_; [a;;| denotes the norm of A = (a;;),
and L and R are independent, positive row vectors satisfying the normalizing condition:

d
121%1%(@) =1, ZlL(]> = 1. (10.2)
j:
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By a change of the probabilistic frame, one may replace “convergence in distri-
bution” by “convergence almost surely” (Skorohod’s theorem, cf. Section 2.2 or N.
Ikeda and S. Watanabe(1988, page 9)). In this sense, the last result is really the
strong law of large numbers. Having these remarks in mind, the proof of Theorem
10.4 is not difficult and is given in Section 10.5.

One may refer to A.Mukherjea (1991), H.Hennion (1997), and references within
for more recent progress on the limit theory of products of random matrices.

10.4 Stochastic model with consumption

The model without consumption is idealized and so is not practical. For practicality
one should have consumption, that is, allow a part of the production to turn into
consumption and not be used for reproduction.

Suppose that in every year we take the () times amount of the increment of the
1th product to be consumed. Then in the first year, the vector of products that can
be used for reproduction is

Y1 = To + (371 - 370)([ - @),

where [ is the d X d unit matrix and © = diag (9(1), 62 ..., Q(d)), which is called a
consumption matriz. Therefore

ylzyO[Aal(I—@)-l—@], Yo = Zo-

Similarly, in the nth year, the vector of the products that can be used for repro-
duction is

n—1
yn =yo [[14, 2 (I —©)+6], n>1
k=0
Let
B, =[A,(I-0)+06] "
Then

n
Yn = Yo H B;E/H_la n = 1.
k=1

We have thus obtained a stochastic model with consumption. In the deterministic
case, a collapse theorem was obtained by L.K. Hua (1985, Part X), L.K. Hua and
S. Hua(1985). The conclusion is that the system becomes more stable than the
idealized model. More precisely, the dimension of (z), for which the economy will
not collapse, can be greater than one. This is consistent with our practice.

To state our result in this general case, we need some notation. Denote by
Gl(d,R) the general linear group of real invertible d x d matrices and by O(d,R)
the orthogonal matrices in GI(d,R). Next, given a family of random matrices with
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distribution p, denote by ¥, the smallest closed semigroup of GI(d,R) containing
the support of u.

Definition 10.7.

e ¢ is called strongly irreducible if there exist no proper linear subspaces of RY,
Y, ..., Y, such that

(UF_ 7)B =U_ % VBe9.

e ¢ is said to be contractive if there exists {B,} C ¢ such that ||B,| !B, con-
verges to a matrix with rank one.

e We call B = Kdiag(a;)U a polar decomposition if K,U € O(d,R) and a; >
az = -+ = aq > 0.

Theorem 10.8 (Chen and Y. Li,1994). Let {B,} be an i.i.d. sequence of random
matrices with common distribution . Suppose that ¢, is strongly irreducible and
contractive and that the sequence { K, } in the polar decomposition satisfies a “tightness
condition.” Then P[T® < oco] = 1 for all z: 0 < x € R%.

Naturally, we have the following question.

Open Problem 10.9. How fast does the economy go to collapse?

As we have seen before, since the economy is very sensitive, one certainly expects
the following large deviation result:

PT > n] < Ce "

Clearly, Theorem 10.8 is still a distance from being complete. Furthermore, in
practice, a collapse result is not expected and less useful. Now another question
arises.

Open Problem 10.10. How can one control the economy and what is the optimal
one?

To date, we have no idea how to handle this problem; we even do not understand
what kind of optimality should be adopted here.

Finally, we mention that a probabilistic exploration of Hua’s model, closely re-
lated to the ergodic theorem used in the proof of Theorem 10.2, was investigated
by K.L.Chung (1995). The topic of this chapter is now explored, with much more
extension and recent references, in the book by D. Han and X.J. Hu(2003).
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10.5 Proof of Theorem 10.4

Given i.i.d., nonnegative random matrices {A4,}°° , since we are working on the

economic model
- 1 -1
xn_xOAl An )

it is natural to assume that
Pldet A; = 0] = 0. (10.3)

We mainly investigate the collapse probability P[T" < oo], where T' is the same as
before,

T ={n >1: there exists some 1 < j < d such that x%j) < 0},

The following result is a more precise statement of Theorem 10.4.

Theorem 10.11 Chen (1992b, Part I)). Let (H;), (H2), and (10.3) hold. Given a
deterministic x, > 0 with max; ng) — 1, we have

P[T = oo] < PR = z).

In particular, if P[R = zy] = 0, then P[T" = oo] = 0.

Proof. (a) Write M,, = A, --- A1, [|A]| = sup, ), |a;;| for A = (ai;), and set
M, = M,/||M}]||. Note that the product M,, is in a different order from that in
Theorem 10.6, from which we know that M,, converges in distribution to R* L, where
R and L are independent, positive row vectors satisfying (10.2).

(b) By condition (10.3), we have ||[M] > 0, a.s., and so
xn>0<:>x0M;1>0<:>a:0Mn_1>0, n > 1.
Hence o
P[T = 00| = Plz,, >0, Vn > 1] = Plz,M,, >0, Vn > 1].

Thus, we can use M,, instead of M,,.
(c) By Skorohod’s theorem (cf. Section 2.2 or N. Tkeda and S. Watanabe (1988,

page 9)), there exists a probability space ((Nl, F, @) on which there are M,, and M
such that

Mn and M,, have the same distribution for each n > 1,

M and M := R*L have the same distribution, (10.4)

—~

M, — M asn — oo, P-a.s.

In particular, o
IP[M has rank 1} = IP)[M has rank 1] =1.
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From these facts and the normalizing condition, it is easy to see that there exist
positive R and L P-a.s. unique, such that M = R*L and

max R(i) = 1, ZE(]) =1, P-a.s.

2

Therefore we must have
P[xoﬁn_l >0,Vn > 1] =Plz,M, ' >0, Vn > 1].

Thus we can ignore ~ and use the original (2,.%#,P) instead of (ﬁ, ;@v,ﬁ)), and as-

sume that M, converges to R*L almost everywhere, rather than convergence in
distribution.
(d) By (10.4), there exists a P-zero set A such that

—X
M, - R*L as m — oo on A°.

Write z,, = ;UOM . Fixwe A If

because of the normalizing condition of z, and M,,, there must exist a subsequence
{n, =n,(w)} such that

lim 7, (w)=:%(w) € [0, 0ol

k—o0
But _ —
Ty = klg{)lo [%Mnk (w)_ank (w)]
= kli)ngo [:Enk (w)ﬁnk (w)]
= r(w)L" (w)R(w).

Combining this with the positivity of z,, L, and R, it follows that
c:=2zL" € (0,00), a.s.

Furthermore, since max; zy(i) = max; R(i) = 1, we know that ¢ = 1, a.s. Therefore
we have

[T = o0] C [R = x] a.s. on A°,
as required. [

Finally, we mention that the condition “P[R = x,] = 0” can be removed in some
cases, as was proven in Chen and Y. Li(1994).

To conclude this chapter, let us make some remarks about the theory of random
matrices. The theory is a traditional and important branch of mathematics and
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has a very wide range of applications including statistics, physics, number theory,
and even the Riemann hypothesis. Refer to M.Mehta (1991), V.L.Girko (1990),
J.B.Conrey (2003), and references within.

Mainly, there are two topics in the study of eigenvalues. The first one is the
estimation of the first few eigenvalues, as dealt with in this book. The second one,
omitted in the book, is the asymptotic behavior of the eigenvalues. In the context of
random matrices, concerning the second topic there is the famous beautiful Wigner’s
semicircle law(1955). For its modern generalization to operator algebras, called
free probability, see D. Voiculescu, K. Dykema, and A. Nica(1992) and E.Haagerup
(2002), for instance.



Appendix A

Some Elementary Lemmas

This appendix is an extension of Chen(1999¢). Lemma A.1 below with m = 1
generalizes a result that appeared in Y. Li(1995). It is essential in our applications
that the functions ¢ and/or 1) below are not required to be nonnegative.

Lemma A.1. Let u, ¢: [a,0] = R™, ¥ : [a,b] = R™ @R™, and G : U — R™ for
some open U C R™. Denote by “<" the ordinary partial order in R™. Suppose that
the following conditions hold:

(1) w is absolutely continuous.

(2) The derivative matrix DG is continuous, nonnegative, and invertible.

(3) Range(u) C U and H(a,t) € Range(G) for all t € (a,b), where H(a,t) is the
unique solution to the linear equation v'(t) = p(t)+¥(t)v(t),a.e. t. If Y(t)YP(s) =
W(s)(t) for all t and s, then we have the expression

G, =ew| [vio1as](Gtutan+ [ [ [vene]ts1as).

(4) W/ (t) < (DG)™H(u(t)) (p(t) + Y (6)G(u(t))) for ae.t € (a,b).

If (i) ¢ is diagonal, or (ii) ¥ is nonnegative and bounded on finite intervals, then we
have u(t) < G~'(H(a,t)) for all t € [a,b), where G~ is the inverse function of G.
Equality holds if it does in (4).

Proof. By the assumptions on G, the inverse function G~! not only exists but
also is continuously differentiable. Because DG is nonnegative, GG is increasing with
respect to “<”. Thus, by (3), it suffices to show that

G(u(t)) < H(a,t), t €la,b).

The idea is to make a change of variables, reducing to the solvable linear case.
Define v(t) = G(u(t)). In view of (1), v'(t) = DG(u(t))u/(t) for a.e. t. Then, by
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(2) and (4), we obtain the linear form v’ < ¢ + ¥, a.e.t. Next, set w = exp[—¥]v,
v = fa. ¥. In case (i), since is diagonal, it follows that exp[—W¥]| is nonnegative,
and hence w’ < exp[—¥|p, a.e.t. By integration, we get an upper bound of w, and
then assertion (i) follows, since exp[¥] is also nonnegative. At the same time, we
obtain the expression for H whenever 1 (t)y(s) = 1(s)(t). For case (ii), assume
b < oo and let Av = fa.wv, o = fa.go, and Bv = ® + Av. Since ¢» > 0, B is
order-preserving, v < B"™v. Next, since v is bounded, the spectral radius r(A) = 0.
Therefore A" — 0 and B"v = ZZ;S AR® + A" — (I — A)7'® = H as n — oo,
since H is the unique fixed point of B. Actually, this is a consequence of the abstract
Gronwall lemma (cf. E.Zeidler (1986, Proposition 7.17)). O

Corollary A.2 (Exponential form). Let u, ¢, ¢, and H be the same as in Lemma
A.1 with G(u) = u. If v/(t) < (respectively, =) o(t) + ¥ (t)u(t) for a.e.t, then we have
for all t € [a,b), u(t) < (respectively, =) H(a,t).

Proof. For G(u) = u, we have DG = I, and so (DG)" ' =1. O

From now on, we consider m = 1 only. We may and will assume that G(u) =
[} 1/g for some g > 0. Then condition (4) takes the following form:
0

u'(t) < g(u(t)) (¢(t) + ()G (u(t))) for a.e. t € (a,b).

If moreover 1 = 0, then an alternative proof of Lemma A.1 goes as follows:

u(t) s u(t) s t W (s
G(u(t)):/ d—:G(u(a))+/ d—):G(u(a))+/ () 45,

o g(S) u(a) g(S g(’U,(S))
Remark A.3. (1) When m = 1 = 0, condition (4) is equivalent to the integral
form wu(ty) — u(ty) ft (s))ds, t1,ta € [a,b), to > t1. This means that

condition (4) is stronger than the above integral form with fixed ¢; = a.
(2) A related result is due to I. Bihari(1956): Let m = 1. If ¢ > 0, g is non-

decreasing, and u( ) < C+ ft (u(s))ds, t € [a,b), for some constant C, then
u(t) < G_l(G f ds) for all t € [a,b).

Denote by U(t) the rlght—hand side. Replacing u(t) by sup,¢.<, U(s), one can
assume that u(t) is continuous and nondecreasing. Then replacing a with inf{t >
a:u(t) > C}, one can also assume that u(t) > C for t > a.

The proof of the result goes as follows. Set w(t) = C + fcf ©(s)g(u(s))ds. Then
u(t) < w(t) and w'(t) = (t)g(u(t)) = 0. Furthermore,

B u(t)ﬁ w(t) ds B w(t) ds ’ wl(s)
G(u(t))_/uo g(s) </u g(s) =GO wia) 9(5) G(C)+/a g(w(s))ds
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Corollary A.4 (Algebraic form). Let u be nonnegative, absolutely continuous with
u(0) >0, let ¢ > 0, ¢ and ¥ be locally integrable. If

() < —pt)u(t)? + P (t)u(t) for a.e. t on (0, 00)

and some p > 1, then we have for t > 0,

o] [+t ol ficndsn]”

where 1/p + 1/q = 1. Equality holds if it does so in the assumption.

Proof. Note that one can reduce to the case that ¢ = 0. If ' < —pu? + Yu a.e.
for some p # 1, then w := exp [ — fo. }u is nonnegative, absolutely continuous,
w(0) = u(0), and satisfies w’ < —pexp [(p — 1) f0° PlwP =: vw?, ae.

If to ;= inf{t > 0: w(t) = O} < 00, we claim that w(t) = 0, and so the estimate
becomes trivial for all ¢ > ty. Otherwise, suppose that there is a t5 > 0 such that
w(te) > 0. Let t; = sup{t € [to,t2) : w(t) = 0}. Then w(t;) = 0 by the continuity
of w and the initial condition w(ty) = 0. Clearly, to < t1 < to and w( ) > 0 for
t € (t1,t2). Thus, by assumption, 0 < w(t3) ft ft s)Pds < 0,
which is a contradiction.

For simplicity, assume that t5 = oo, and so w(t) > 0 for all ¢t. Take (a,b) =
(0,00) = U and g(x) = 2P. Then

and
G () = [P+ (1= p)ul /07 = [0 o (1 = pJu' .

Hence by Lemma Al with m =1, ¢ = 0, and ¢ = v, for sufficiently small € > 0, we
have
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We remark that the corollary is meaningful for general ¢ and p # 1 within the
interval for which the estimate is positive, provided u is assumed to be positive.
The conclusion can be deduced directly from Corollary A.2 using the transform

w=u'""/(1-p).

Corollary A.5. If a function u > 1 satisfies u/(¢) < ¥(t)u(t)logu(t) for a.e. ¢ on
[a,b), then

w(t) < ula)®Ple @Al ¢ e g p).

In particular, when ¢ (t) = 1/(¢(1 — bt)) on [a,b), we have

u(t) < u(a)tt—ab)/a(l=bt) t € la,b).

Proof. The main assertion follows from Lemma A.1 with m = 1, ¢ = 0, and
g(z) = x (ug = 1) or from Corollary A.2 using the transform v — logu. The
particular case then follows from

B 1 _1+ b
~ s(1—bs) s 1—bs’

t
/ Y(s)ds=logt —loga — log(1 — bt) + log(1 — ab) = log

P(s)

t(1—ab
w. n
a(l — bt)

For the remainder of this part, we consider a Markov semigroup {P(t)}+>0 with
weak operator {2 having domain

Dw(Q) = {f : %P(t)f(x) = P(t)Qf(z) for all x € F and t > O}.

The next two results describe the exponential or algebraic decay of the semigroup
in terms of its operator.

Lemma A.6 (Exponential form). Let f € 2,,(2) and a > 0 be a constant. Then
P(t)f <e ™fiff Qf < —af.

Proof. Let f; = P(t)f. Then f/ = P(t)Qf < —aP(t)f = —af;. The sufficiency
now follows from Corollary A3. The necessity follows from

%ghme_at—_lf:_af. n

Qf = lim lim ——

t—0

Lemma A.7 (Algebraic form). Fix p > 1. Let f € 2,,(Q2), f >0, and C > 0 be a
constant. Then P(t)f < [f1™P+ (p— 1)Ct' 9 iff Qf < —CfP, where 1/p+1/q=1.
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Proof. Again, let f; = P(t)f. Then f; = P(t)Q)f < —CP(t)(fP). However, by
the Holder inequality, P(t)(f?) > (P(t)f)P. Hence f; < —C fF. The sufficiency now
follows from Corollary A4. Next, note that p — 1 = p/q and ¢ — 1 = ¢/p. The
necessity follows from

_ 1—q
of = Jim = < i LG _tl)Cﬂ =
= lim(1 - g)(p— DC[f' "+ (p = 1)Ct] " = —C 7D

= _—Cfr. O






Appendix B

Examples of the Ising Model
on Two to Four Sites

This appendix introduces some ideas for reducing the higher-dimensional or graphic
cases to dimension one, based on the symmetry of the model, to estimate the spectral
gap of Markov chains by couplings. As an illustration, we compute the spectral gap
for the Ising model on two, three, or four sites. The discussions here show, as
in Section 3.4, that an effective estimation depends on not only the couplings but
also the choice of “distance.” Such a choice becomes even more serious in higher
dimensions. Clearly, the discrete world is still largely open.

Some idea of this appendix appeared in the review [MR: 1768241 (2002b: 60129)]
of the paper by K. Burdzy and W.S. Kendall(2000).

For the study on the spectral gap and logarithmic Sobolev inequality for the
original Ising model and other statistical models, refer to the publications listed at
the end of Chapter 9.

B.1 The model

Let S ={1,2,...,N}, N = |S| < co. Regard S as a circle such that the distance
between 0 and N is equal to one (nearest neighbor). Consider a time-continuous
Markov chain, which jumps at each site v € S with flip rate from 7, to —n, as
follows:

o =exp | <5 3 awn)].  wes e {141

vilv—u|=1

The jumps at different sites are assumed to be independent.
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We are interested in estimating or computing the spectral gap (or the first non-
trivial eigenvalue) A; of the chain by coupling. Here we compute Ay for |S| = 2, 3, 4.
Note that in the last case, the state space consists of 16 points, and so a direct
computation seems impossible.

In the next section, we explain the role played by the symmetry of the eigen-
function and compute A; in the case of two sites. In Section B.3, we introduce a
reduction procedure and compute A; in the case of three sites. The model with four
sites is treated in Section B.4, in which a modification technique is explained.

B.2 Distance based on symmetry: two sites

To illustrate the idea clearly, we begin with the simplest case, |S| = 2. Label the
state space as in Figure B.1.

@Z(_lal) @ = (171)

O = (_17_1) @= (17_1)
Figure B.1 The state space

Starting from (D), after one jump, we arrive at @) or 3. The next jump goes to
@. Half of the transition rates are given in Figure B.2. To get the transition rates
for the opposite direction, simply exchange e*? and e¥?. This figure indicates the
symmetry of the model.

However, we would like to consider a simplified model as shown by Figure B.3.
In other words, we regard 2) and (3) as one class in the sense of having distance zero.
The transition rates are the same as those given in Figure B.2.

e‘ﬁ@ eﬁ
0 >@ p—z O 4

e P @ e’ @

Figure B.2 The rates of transition ~ Figure B.3 A distance on the graph

As explained in Chapter 1, we need only to construct a coupling operator Q and
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a distance p. Our result says that if

Qp(m,m2) < —ap(m,ma), M # Mo, (B.1)

then we have A\ > «a.

We now define the distance between () and @), as well as @) and @), to be the
same z > 0 (by symmetry). Actually, one may simply set x = 1 because of the
homogeneity of (B.1). Thus, the distance between (D) and @) equals 2. Next, we
define a coupling as follows.

e When the two processes start from (I) and @), respectively, we adopt the basic
coupling. In tabular form, we have

(D, @ — (B, Q) atrate e PAe P =eF
— (@,Q@) atrate e PAe P =e P

Thus,
(D, @) =2¢P(0—2) = —4e P, (B.2)

e When the two processes start from () and @), respectively, for the jumps
DO — @ (the first component) and @ — (@ (the second component), let
the two components jump independently; for the jumps @) — @) (the first
component) and @) — @ (the second component), we adopt the coupling by
marching soldiers (that is, the term {---} in (B.3) below). In tabular form,

we have
(@@ — (@ O atrate e
- (@7 @) at rate e P
— (3, @) atrate e®Ne P =eF
— (D, @) atrate (e — 6—6)+ _ B _ B
Then
W@, @) = (¢! +e )0 - D+ {71 -1+ (" —e ") (2~ 1)}
=2 (B.3)

e For the other cases, due to the symmetry again, one can define the coupling
as above.

Inserting (B.2) and (B.3) into (B.1), it follows that the largest « is equal to 2e~7.
Hence, A\; > 2e~”? for this modified model.

We now return to our original model. The distance is chosen to be the same
as in Figure B.3, except for the distance between @) and @), which is set to be an
arbitrarily small € > 0. Besides, we need to modify the coupling by adding the case
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that the two processes start from @) and @), respectively. For this, we adopt the
basic coupling or the coupling of marching soldiers:

(@,0) — (@O O atrate e’ Nel =€
— (@, @) atrate e Ae = el

Thus, B
(@, ®) = 270 — &) = —2¢e < ~2¢°(@, B). (B4)

Combining this with (B.3), (B.2), and (B.1), we still get A\; > 2e~7, which is indeed
exact. Actually, for this example, the four eigenvalues are the following:

0, 2727, 27 2(e7? 4 e7?P).

One may feel strange in first looking at the last distance p(@),®)) = e. It is
clearly different from the geometric distance in the graph. However, this distance is
quite natural, due to the symmetry of the eigenfunction of A\;. More precisely, the
eigenfunction of A\; has the same value at 2) and 3). For this, one may say that the
potential (eigenfunction) has three levels. We define the distance according to the
levels. Note that we do not really need to prove this property of the eigenfunction
for this specific situation, because of the “c technique” used above. Unfortunately,
this technique does not work in general. For this, we need more work, as explained
in the next section.

B.3 Reduction: three sites

Consider a general Markov chain with finite state space £ = {n,(,&,...}. Let g be
a fixed eigenfunction (eigenvector) of A\; (it may have multiplicity). Define a partial
ordering on E as follows:

n<mn forallne F and
if n # ¢, then n < (iff g(n) < g(¢).

Next, let o > 0 be symmetric and satisfy

©(n,¢) =0 iff g(n) = g(¢).

Since ¢ is not a constant, we have ¢ # 0.

Proposition B.1. (1) If there exists a coupling process P, such that

Pip(n,¢) < (n, Qe t>0, (B.7)

for some n < (, n # (, then Ay > a.
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(2) If the Markov chain is monotone with respect to the partial ordering, then the
assumption of part (1) holds with ¢(n,¢) = |g(n) — g(¢)| and a = A;. Actually,
(B.7) holds for all n < ¢ and ¢ < 7.

(3) If there are a coupling operator () and a constant a = 0 such that

Qp(n,¢) < —ap(n,¢) forall nand ¢, (B.8)

then the coupling process P, determined by () satisfies (B.7) for all n and .

Proof. Part (3) of the proposition is standard. The proof of part (1) is very much
the same as those given in Section 1.2. First, we have seen that

E"g(n:) = g(n)e™™",  t>0,nekE.
Fix n # (, n < (. Then

e~ g(n) — g(¢Q)] <E™|g(ne) — g(C)|

)
' 9(6) = 96| g
S E" :

oteodaen  PELE) (e, Gt)

’ (51) g( )|_ S0(77’C>6—ozt- (B.Q)

I\

sup
g6 #g(e)  P(€1,82)

Since g(n) # g(¢), we have p(n, () # 0. Letting t — oo, it follows that \; > «.

To prove part (2), by Theorem 2.35 (2), there exists an order-preserving coupling
7,¢

P, such that
Py <G, V2 0l=1, n<C (B.10)
We now fix n # ¢, n < ¢. Then for ¢(n,¢) = |g(n) — g(¢)], we have
0 < e Mo(n,¢) =e M (g(¢) —g(n)
= E9(¢) — E"g(m) =E"[9(¢) — g(m)]

=" [9(¢) — g(m) = e < ]
=E" o(m, ). (B.11)
Thus, (B.7) holds for alln < (. O

Before moving further, let us make some remarks on condition (B.8). For a
monotone process, from (B.10), it follows that

ﬁs@(mé)—}g% {E 0N, Ce) — (m()}

= lim %(6_“ — 1)90(77, ¢)

t—0

=—Ap(n,¢), n=<C (B.12)
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Thus, (B.8) holds with a = Ay for all n < (. When ¢g(n) = ¢g(¢), as in (B.11), we
have

0= Mo(n,¢) = E" [g(¢) — g(m)]
= En’c [so(m, Ct)I['rIt<Ctﬂ - Emc [90(7715, Ct)I[Ct‘<77t]]' (B.13)

The two terms on the right-hand side of (B.13) may not vanish, since an order-
preserving coupling does not provide any information about the partial ordering of
(nt, ¢¢) when started from (n, () with g(n) = ¢g(¢). What we can get from (B.13) is
the following relation:

Qplr)(n,C) = QUplr)(n,¢)  whenever g(n) = g(C), (B.14)
where F' = {(n,¢) : 7 < (} and F' = {(n,{) : ¢ < n}. On the other hand, in order

to estimate Py, we need to estimate Qp(n, () for all n and {. Note that condition
(B.8) implies that

Qo(n,¢) =0  for all n and ¢ with g(n) = ¢(¢). (B.15)

Remark B.2. Let P, be monotone. Suppose that there exists a coupling operator
Q) satisfying (B.15). Then there exists a coupling satisfying (B.8) with ¢(n,() =

l9(n) — g(¢)] and a = Ay,

Proof. As mentioned before, there is an order-preserving coupling € such that
(B.12) holds for all n < ¢ and symmetrically for all n < ¢. Reconstruct a coupling
operator dnew as follows:

Qf(n,¢)  ifn=<Cor (=,
Qf(n,¢)  if g(n) = g(¢).

By (B.12) and (B.15), it is clear that (B.8) holds. Furthermore, it is not difficult to
check that Qnew is an order-preserving coupling operator. [

ﬁNewf(na C) - {

The proof given in Section B.2 with ¢ = 0 illustrates an application of Remark
B.2 and Proposition B.1. Note that (B.2) and (B.3) give us the same solution. This
is due to the freedom in the eigenequation

again based on the symmetry of the model. This leads to a reduction procedure
that we are going to discuss.

Let (¢(n,¢) : n,{ € FE) be an irreducible @-matrix with finite state space E.
Denote by rg < --- < 1y, the values of a fixed eigenfunction g of \;. Note that the
values of g have different signs, the order of {rg,...,r,} is well defined, and m > 1.
However, the values {rg, ..., 7, } are determined by g up to a positive constant only.
We may renormalize g according to our convenience.
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Proposition B.3. Given g as above, set E; = {n: g(n) =r;}, 0 < j < m and define
4 = min g;j a(n,¢),  j#i,0<ij<m (B.17)
Suppose that (g;;) is reversible and denote by A1 its spectral gap.
(1) If
3 ( S qn,¢) - q—ij) (0)—gn) =0, neE,0<i<m,  (B.§)

Jj#i ~CER;
then )\1 > 5\1.
(2) If additionally, there exists a strictly increasing eigenfunction (g;) of A; such that

Z(Z q(n,C)—@j)(gj—gi) =0, nekE;, 0<i<m, (B.19)
j#i NCEE;

then \; = \;.

Proof. For the given g(n), let g; = r;, which is the common value of g(n) for n € E;.
Starting from the eigenequation (B.16), we have for each n € E;,

—Mgi = —Ag(n) = Qg(n) =Y a(n,9)g(¢) — 9(n)]
;
= Z q(n,)[g(¢) — 9(n)]

= Z min » q(n,¢)[g(¢) —g(n)] (by (B.18) and (B.17))
=5"G,;@ —3) by (B17), 0<i<m.

Since (g;) is not a constant and (g;;) is reversible, this implies that A; > ;.

Conversely, let (g;) be a strictly increasing eigenfunction of A\; and define §(n) =
g; for all n € E;. Then the above proof, replacing ¢ with §, shows that A\; > A;.
Therefore, we must have \; = A\;. O

Applying the result to the Ising model on two sites, we get

Qo1 = Go1 = 2¢ ", G2 = o1 = €”.

As in Section B.2, the distance on {0, 1,2} is chosen to be

p(0,1)=p(1,2)=1 and p(0,2) = 2.
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Note that birth-death processes are always reversible and the eigenfunction of \; is
strictly increasing (cf. Proposition 3.4 given in Section 3.7). Since the basic coupling
Q of (Gij) is order-preserving, the analogue of (B.12) for (g;;) with (i, j) = p(i,j) =
|5_7j - gz'? B ~

Qp(’i,j) = _Alp(inj)v t < J, (BQO)

holds for this coupling. Now, because the distance is explicit, there is only one
unknown variable A; in (B.20). We need only consider the coupling starting from
(0,1). Using the basic coupling, we get

2e7P(0 —2) = —2)\,.

That is, \; = A; = 2e 7 as expected. We point out that in the computation of
(B.20), one may adopt different couplings (the classical coupling for instance), only
the order preserving property is essential.

We are now ready to study the model with three sites. Label the state space as

follows:
O=(-1-1,-1), ©=(-L1L1),
@=(-1,-1,1), ©®=(1,-1,1),
@ =(-1,1,-1), @®=(1,1,-1),
@=(1,-1,-1), ®=(1,1,1).
Half of the transition rates are as shown in Figure B.4.
1

7 @\
@\;@ @ .
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Figure B.4 Ising model on three sites

The eigenfunction g has four levels. The transition rates from level i to i + 1 (or
from i to i — 1) are =27, 1, and e2°. Thus, we have a Q-matrix (g;;) on {0,1,2,3}
as follows:

Gor =3¢, G1a=2, Goz=e*".
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Symmetrically,
G2 =3¢ Go1 =2, quo=e*.
Otherwise, g;; = 0 for all i # j. By symmetry, we can define a distance on {0, 1,2, 3}

as follows:
p(0,1) =p(2,3) =1, p(1,2) =z >0,

Conditions (B.18) and (B.19) are trivial for this example. Because there are two
variables A; and z only in (B.20), we need to compute two starting points of an
order-preserving coupling.

When the starting point is (0,2), we adopt the coupling by (inner) reflection,

3e P (z—2—12)= -\ (2+2).
That is, B
6e 2% = X\ (2 + ). (B.21)
When the starting point is (0, 1), we adopt the classical coupling,
(B +e2)(0-1)+2(x+1—-1)=—X\ x L.
That is, B
3720 e — 21 =\ (B.22)
Combining (B.21) with (B.22), we obtain the solution

1
Al =)\ = 5{36_2ﬁ +4 428 — \/(36_25 +4+ 62/8)2 — 48e—28 }

The eigenvalues of this example are 0, A, 3e™2% + €2, 1 + €/ (multiplicity 2),
3 + €2f (multiplicity 2), and

1
5{36_26 +4+ 28+ \/(36—25 +4+ e2ﬂ)2 — 48e—28 }

B.4 Modification: four sites

Consider the Ising model on four sites. Label the state space as follows:

D=(-1,-1,-1,-1), @=(-1,1,1, —1)
@=(1,-1,-1,-1), © =(-1,1,-1,1),
@ =(-1,1,-1,-1), O =(-1,- 1,1,1)
@=(-1,-1,1,-1), @ =(1,1,1,-1),
©®=(-1,-1-1,1), G =(11,-1,1),
®=(1,1,-1,-1), @ =(1,-1,1,1),
@®=(1,-1,1,-1), @ =(-1,1,1,1),
®=(1,-1,-1,1), @ = (1,1,1,1).
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The structure of the transition rates is marked in Figure B.5. The transition rates
from level 0 to level 1 are all equal to e 2%; the ones from level 3 to level 4 are
all equal to €??. The rates from level 1 to level 2 are all equal to 1, except the
dot directions, which have rates e=2%. Similarly, the rates from level 2 to level 3
are all equal to 1, except the dot directions, which have rates e?’. Once again, by
exchanging the rates e*2# with eT2%, we get the rates for the opposite transitions
from level 4 to level 0.

To analyze this model, first we claim that for the eigenfunction g with lowest
level 0 at site (I), there are five levels only. It is clear that the states @), @), @, and ©)
should be located at the same level, and similarly for the states @, @3, @, and @.
It is also clear that states ©), ®), 9), and @) should be located at the same level, but
it is not obvious why the states (7) and @0 should be. Suppose that g(®) < g((D).
That is, the potential at (7) is higher than that at ©). Thus, if we start from (),
then the level of (7) should be located on the right of the level of 6). However, by
symmetry, if we start from @, then the level of (7) should be located on the left of
the level of ). This contradiction shows that ) and (7) should be located at the
same level. Similarly, the same conclusion holds for state (0.

e 28

@
5
@i@
6
L
1

Figure B.5 Ising model on four sites

Note that the partial ordering used here is different from the ordinary one, for
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which the states (6) and @5 are not comparable.

Next, we discuss condition (B.18) given in Proposition B.3. Note that the sums of
transitions from (6) and (7) are different. For this, we modify all of the transition rates
from (7) and @0 to be 1, the same as the transition rates from the other states at level
2. This is based on the following observation. Since g(@) — g(®) = g(®) — 9(®@),

we have
> (@) = 1)(9(Q) - 9(@)) = 0.

CEFE1UE;s
Therefore, the modification does not make any change in the solution to the eigenequa-
tion. This leads to condition (B.18). Actually, in the present situation, g((@) = 0
by symmetry, so we can use any symmetric rates we want for the transitions from
level 2 to level 1 and level 3. Thus, we obtain a @-matrix on {0,1,...,4} as follows:

qor =4e™ %’ quu=2+e", Q@3=2, g =e"’,

and by symmetry,

qus =48, Go=2+e @1 =2, qio=e".

A distance on {0,1,...,4} is defined in Figure B.5, where only one variable, z, is
used. For the same reason explained above, (B.19) holds.
We now compute A\;. When the starting point is (0,4), we adopt the coupling
by reflection
4e72P (2 — 22 — 2) = =\ (24 22).

That is, B
4e7%P =\ (1 +x). (B.23)

When the starting point is (0, 1), we adopt the classical coupling
Thatis, (4¢ 7 +e*)(0-1)+ (2+e ) (@+1-1) = -\
4™ + e — (24 e )z = Ay (B.24)
Solving the equations (B.23) and (B.24), we finally obtain

A1 :5\1:%{56_2B + 2+62ﬁ—\/(56—25+2+625)2—16(6—45+2) }

Remark B.4. Note that the three examples discussed so far are all of birth—death
type. In general, if the reduced (g;;) is a birth-death ()-matrix, then we can apply
Theorem 5.7 to estimate A\; for the original process.

Finally, we mention that some different approaches to estimating the convergence
rate are presented in P. Diaconis and D.W. Stroock(1991), J.A. Fill(1991), F.R.K.
Chung, A. Grigoryan and S.T. Yau(1997), R. Bhattacharya and E.C. Waymire(2001),
N. Madras and D. Randall(2002), D.B. Wilson(2004). For infinite-dimensional path
spaces, see S.Z. Fang(1994) and F.Z. Gong and L.M. Wu(2000). For higher eigenval-
ues, see M.S. Ashbaugh(1999) and M. Levitin and L. Parnovski(2002), and references

within.
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